| 1 |
/* Copyright (c) 1998 Silicon Graphics, Inc. */
|
| 2 |
|
| 3 |
#ifndef lint
|
| 4 |
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
#endif
|
| 6 |
|
| 7 |
/*
|
| 8 |
* sm_stree.c
|
| 9 |
* An stree (spherical quadtree) is defined by an octahedron in
|
| 10 |
* canonical form,and a world center point. Each face of the
|
| 11 |
* octahedron is adaptively subdivided as a planar triangular quadtree.
|
| 12 |
* World space geometry is projected onto the quadtree faces from the
|
| 13 |
* sphere center.
|
| 14 |
*/
|
| 15 |
#include "standard.h"
|
| 16 |
#include "sm_list.h"
|
| 17 |
#include "sm_flag.h"
|
| 18 |
#include "sm_geom.h"
|
| 19 |
#include "sm_qtree.h"
|
| 20 |
#include "sm_stree.h"
|
| 21 |
|
| 22 |
#ifdef TEST_DRIVER
|
| 23 |
extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500];
|
| 24 |
extern int Pick_cnt;
|
| 25 |
#endif
|
| 26 |
/* octahedron coordinates */
|
| 27 |
FVECT stDefault_base[6] = { {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.},
|
| 28 |
{-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}};
|
| 29 |
/* octahedron triangle vertices */
|
| 30 |
int stBase_verts[8][3] = { {0,1,2},{3,1,2},{0,4,2},{3,4,2},
|
| 31 |
{0,1,5},{3,1,5},{0,4,5},{3,4,5}};
|
| 32 |
/* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/
|
| 33 |
int stBase_nbrs[8][3] = { {1,2,4},{0,3,5},{3,0,6},{2,1,7},
|
| 34 |
{5,6,0},{4,7,1},{7,4,2},{6,5,3}};
|
| 35 |
int stRoot_indices[8][3] = {{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1},
|
| 36 |
{1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}};
|
| 37 |
/*
|
| 38 |
+z y -z y
|
| 39 |
| |
|
| 40 |
1 | 0 5 | 4
|
| 41 |
______|______ x _______|______ x
|
| 42 |
3 | 2 7 | 6
|
| 43 |
| |
|
| 44 |
|
| 45 |
Nbrs
|
| 46 |
+z y -z y
|
| 47 |
/0|1\ /1|0\
|
| 48 |
5 / | \ 4 / | \
|
| 49 |
/(1)|(0)\ 1 /(5)|(4)\ 0
|
| 50 |
/ | \ / | \
|
| 51 |
/2 1|0 2\ /2 0|1 2\
|
| 52 |
/------|------\x /------|------\x
|
| 53 |
\0 1|2 0/ \0 2|2 1/
|
| 54 |
\ | / \ | /
|
| 55 |
7\ (3)|(2) / 6 3 \ (7)|(6) / 2
|
| 56 |
\ | / \ | /
|
| 57 |
\ 2|1 / \ 1|0 /
|
| 58 |
*/
|
| 59 |
|
| 60 |
|
| 61 |
stInit(st)
|
| 62 |
STREE *st;
|
| 63 |
{
|
| 64 |
int i,j;
|
| 65 |
|
| 66 |
ST_TOP_QT(st) = qtAlloc();
|
| 67 |
ST_BOTTOM_QT(st) = qtAlloc();
|
| 68 |
/* Clear the children */
|
| 69 |
|
| 70 |
QT_CLEAR_CHILDREN(ST_TOP_QT(st));
|
| 71 |
QT_CLEAR_CHILDREN(ST_BOTTOM_QT(st));
|
| 72 |
}
|
| 73 |
|
| 74 |
/* Frees the children of the 2 quadtrees rooted at st,
|
| 75 |
Does not free root nodes: just clears
|
| 76 |
*/
|
| 77 |
stClear(st)
|
| 78 |
STREE *st;
|
| 79 |
{
|
| 80 |
qtDone();
|
| 81 |
stInit(st);
|
| 82 |
}
|
| 83 |
|
| 84 |
/* Allocates a stree structure and creates octahedron base */
|
| 85 |
STREE
|
| 86 |
*stAlloc(st)
|
| 87 |
STREE *st;
|
| 88 |
{
|
| 89 |
int i,m;
|
| 90 |
FVECT v0,v1,v2;
|
| 91 |
FVECT n;
|
| 92 |
|
| 93 |
if(!st)
|
| 94 |
if(!(st = (STREE *)malloc(sizeof(STREE))))
|
| 95 |
error(SYSTEM,"stAlloc(): Unable to allocate memory\n");
|
| 96 |
|
| 97 |
/* Allocate the top and bottom quadtree root nodes */
|
| 98 |
stInit(st);
|
| 99 |
|
| 100 |
|
| 101 |
/* will go ********************************************/
|
| 102 |
/* Set the octahedron base */
|
| 103 |
ST_SET_BASE(st,stDefault_base);
|
| 104 |
|
| 105 |
/* Calculate octahedron face and edge normals */
|
| 106 |
for(i=0; i < ST_NUM_ROOT_NODES; i++)
|
| 107 |
{
|
| 108 |
VCOPY(v0,ST_NTH_V(st,i,0));
|
| 109 |
VCOPY(v1,ST_NTH_V(st,i,1));
|
| 110 |
VCOPY(v2,ST_NTH_V(st,i,2));
|
| 111 |
tri_plane_equation(v0,v1,v2, &ST_NTH_PLANE(st,i),FALSE);
|
| 112 |
m = max_index(FP_N(ST_NTH_PLANE(st,i)),NULL);
|
| 113 |
FP_X(ST_NTH_PLANE(st,i)) = (m+1)%3;
|
| 114 |
FP_Y(ST_NTH_PLANE(st,i)) = (m+2)%3;
|
| 115 |
FP_Z(ST_NTH_PLANE(st,i)) = m;
|
| 116 |
VCROSS(ST_EDGE_NORM(st,i,0),v0,v1);
|
| 117 |
VCROSS(ST_EDGE_NORM(st,i,1),v1,v2);
|
| 118 |
VCROSS(ST_EDGE_NORM(st,i,2),v2,v0);
|
| 119 |
}
|
| 120 |
|
| 121 |
/*****************************************************************/
|
| 122 |
return(st);
|
| 123 |
}
|
| 124 |
|
| 125 |
#define BARY_INT(v,b) if((v)>2.0) (b) = MAXBCOORD;else \
|
| 126 |
if((v)<-2.0) (b)=-MAXBCOORD;else (b)=(BCOORD)((v)*MAXBCOORD2);
|
| 127 |
|
| 128 |
vert_to_qt_frame(root,v,b)
|
| 129 |
int root;
|
| 130 |
FVECT v;
|
| 131 |
BCOORD b[3];
|
| 132 |
{
|
| 133 |
int i;
|
| 134 |
double scale;
|
| 135 |
double d0,d1,d2;
|
| 136 |
|
| 137 |
if(STR_NTH_INDEX(root,0)==-1)
|
| 138 |
d0 = -v[0];
|
| 139 |
else
|
| 140 |
d0 = v[0];
|
| 141 |
if(STR_NTH_INDEX(root,1)==-1)
|
| 142 |
d1 = -v[1];
|
| 143 |
else
|
| 144 |
d1 = v[1];
|
| 145 |
if(STR_NTH_INDEX(root,2)==-1)
|
| 146 |
d2 = -v[2];
|
| 147 |
else
|
| 148 |
d2 = v[2];
|
| 149 |
|
| 150 |
/* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */
|
| 151 |
scale = 1.0/ (d0 + d1 + d2);
|
| 152 |
d0 *= scale;
|
| 153 |
d1 *= scale;
|
| 154 |
d2 *= scale;
|
| 155 |
|
| 156 |
BARY_INT(d0,b[0])
|
| 157 |
BARY_INT(d1,b[1])
|
| 158 |
BARY_INT(d2,b[2])
|
| 159 |
}
|
| 160 |
|
| 161 |
|
| 162 |
|
| 163 |
|
| 164 |
ray_to_qt_frame(root,v,dir,b,db)
|
| 165 |
int root;
|
| 166 |
FVECT v,dir;
|
| 167 |
BCOORD b[3],db[3];
|
| 168 |
{
|
| 169 |
int i;
|
| 170 |
double scale;
|
| 171 |
double d0,d1,d2;
|
| 172 |
double dir0,dir1,dir2;
|
| 173 |
|
| 174 |
if(STR_NTH_INDEX(root,0)==-1)
|
| 175 |
{
|
| 176 |
d0 = -v[0];
|
| 177 |
dir0 = -dir[0];
|
| 178 |
}
|
| 179 |
else
|
| 180 |
{
|
| 181 |
d0 = v[0];
|
| 182 |
dir0 = dir[0];
|
| 183 |
}
|
| 184 |
if(STR_NTH_INDEX(root,1)==-1)
|
| 185 |
{
|
| 186 |
d1 = -v[1];
|
| 187 |
dir1 = -dir[1];
|
| 188 |
}
|
| 189 |
else
|
| 190 |
{
|
| 191 |
d1 = v[1];
|
| 192 |
dir1 = dir[1];
|
| 193 |
}
|
| 194 |
if(STR_NTH_INDEX(root,2)==-1)
|
| 195 |
{
|
| 196 |
d2 = -v[2];
|
| 197 |
dir2 = -dir[2];
|
| 198 |
}
|
| 199 |
else
|
| 200 |
{
|
| 201 |
d2 = v[2];
|
| 202 |
dir2 = dir[2];
|
| 203 |
}
|
| 204 |
/* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */
|
| 205 |
scale = 1.0/ (d0 + d1 + d2);
|
| 206 |
d0 *= scale;
|
| 207 |
d1 *= scale;
|
| 208 |
d2 *= scale;
|
| 209 |
|
| 210 |
/* Calculate intersection point of orig+dir: This calculation is done
|
| 211 |
after the origin is projected into the plane in order to constrain
|
| 212 |
the projection( i.e. the size of the projection of the unit direction
|
| 213 |
vector translated to the origin depends on how close
|
| 214 |
the origin is to the view center
|
| 215 |
*/
|
| 216 |
/* Must divide by at least root2 to insure that projection will fit
|
| 217 |
int [-2,2] bounds: assumed length is 1: therefore greatest projection
|
| 218 |
from endpoint of triangle is at 45 degrees or projected length of root2
|
| 219 |
*/
|
| 220 |
dir0 = d0 + dir0*0.5;
|
| 221 |
dir1 = d1 + dir1*0.5;
|
| 222 |
dir2 = d2 + dir2*0.5;
|
| 223 |
|
| 224 |
scale = 1.0/ (dir0 + dir1 + dir2);
|
| 225 |
dir0 *= scale;
|
| 226 |
dir1 *= scale;
|
| 227 |
dir2 *= scale;
|
| 228 |
|
| 229 |
BARY_INT(d0,b[0])
|
| 230 |
BARY_INT(d1,b[1])
|
| 231 |
BARY_INT(d2,b[2])
|
| 232 |
BARY_INT(dir0,db[0])
|
| 233 |
BARY_INT(dir1,db[1])
|
| 234 |
BARY_INT(dir2,db[2])
|
| 235 |
|
| 236 |
db[0] -= b[0];
|
| 237 |
db[1] -= b[1];
|
| 238 |
db[2] -= b[2];
|
| 239 |
}
|
| 240 |
|
| 241 |
qt_frame_to_vert(root,b,v)
|
| 242 |
int root;
|
| 243 |
BCOORD b[3];
|
| 244 |
FVECT v;
|
| 245 |
{
|
| 246 |
int i;
|
| 247 |
double d0,d1,d2;
|
| 248 |
|
| 249 |
d0 = b[0]/(double)MAXBCOORD2;
|
| 250 |
d1 = b[1]/(double)MAXBCOORD2;
|
| 251 |
d2 = b[2]/(double)MAXBCOORD2;
|
| 252 |
|
| 253 |
if(STR_NTH_INDEX(root,0)==-1)
|
| 254 |
v[0] = -d0;
|
| 255 |
else
|
| 256 |
v[0] = d0;
|
| 257 |
if(STR_NTH_INDEX(root,1)==-1)
|
| 258 |
v[1] = -d1;
|
| 259 |
else
|
| 260 |
v[1] = d1;
|
| 261 |
if(STR_NTH_INDEX(root,2)==-1)
|
| 262 |
v[2] = -d2;
|
| 263 |
else
|
| 264 |
v[2] = d2;
|
| 265 |
}
|
| 266 |
|
| 267 |
|
| 268 |
/* Return quadtree leaf node containing point 'p'*/
|
| 269 |
QUADTREE
|
| 270 |
stPoint_locate(st,p)
|
| 271 |
STREE *st;
|
| 272 |
FVECT p;
|
| 273 |
{
|
| 274 |
QUADTREE qt;
|
| 275 |
BCOORD bcoordi[3];
|
| 276 |
int i;
|
| 277 |
|
| 278 |
/* Find root quadtree that contains p */
|
| 279 |
i = stLocate_root(p);
|
| 280 |
qt = ST_ROOT_QT(st,i);
|
| 281 |
|
| 282 |
/* Will return lowest level triangle containing point: It the
|
| 283 |
point is on an edge or vertex: will return first associated
|
| 284 |
triangle encountered in the child traversal- the others can
|
| 285 |
be derived using triangle adjacency information
|
| 286 |
*/
|
| 287 |
if(QT_IS_TREE(qt))
|
| 288 |
{
|
| 289 |
vert_to_qt_frame(i,p,bcoordi);
|
| 290 |
i = bary_child(bcoordi);
|
| 291 |
return(qtLocate(QT_NTH_CHILD(qt,i),bcoordi));
|
| 292 |
}
|
| 293 |
else
|
| 294 |
return(qt);
|
| 295 |
}
|
| 296 |
|
| 297 |
static unsigned int nbr_b[8][3] ={{2,4,16},{1,8,32},{8,1,64},{4,2,128},
|
| 298 |
{32,64,1},{16,128,2},{128,16,4},{64,32,8}};
|
| 299 |
unsigned int
|
| 300 |
stTri_cells(st,v)
|
| 301 |
STREE *st;
|
| 302 |
FVECT v[3];
|
| 303 |
{
|
| 304 |
unsigned int cells,cross;
|
| 305 |
unsigned int vcell[3];
|
| 306 |
double t0,t1;
|
| 307 |
int i,inext;
|
| 308 |
|
| 309 |
/* First find base cells that tri vertices are in (0-7)*/
|
| 310 |
vcell[0] = stLocate_root(v[0]);
|
| 311 |
vcell[1] = stLocate_root(v[1]);
|
| 312 |
vcell[2] = stLocate_root(v[2]);
|
| 313 |
|
| 314 |
/* If all in same cell- return that bit only */
|
| 315 |
if(vcell[0] == vcell[1] && vcell[1] == vcell[2])
|
| 316 |
return( 1 << vcell[0]);
|
| 317 |
|
| 318 |
cells = 0;
|
| 319 |
for(i=0;i<3; i++)
|
| 320 |
{
|
| 321 |
if(i==2)
|
| 322 |
inext = 0;
|
| 323 |
else
|
| 324 |
inext = i+1;
|
| 325 |
/* Mark cell containing initial vertex */
|
| 326 |
cells |= 1 << vcell[i];
|
| 327 |
|
| 328 |
/* Take the exclusive or: will have bits set where edge crosses axis=0*/
|
| 329 |
cross = vcell[i] ^ vcell[inext];
|
| 330 |
/* If crosses 2 planes: then have 2 options for edge crossing-pick closest
|
| 331 |
otherwise just hits two*/
|
| 332 |
/* Neighbors are zyx */
|
| 333 |
switch(cross){
|
| 334 |
case 3: /* crosses x=0 and y=0 */
|
| 335 |
t0 = -v[i][0]/(v[inext][0]-v[i][0]);
|
| 336 |
t1 = -v[i][1]/(v[inext][1]-v[i][1]);
|
| 337 |
if(t0==t1)
|
| 338 |
break;
|
| 339 |
else if(t0 < t1)
|
| 340 |
cells |= nbr_b[vcell[i]][0];
|
| 341 |
else
|
| 342 |
cells |= nbr_b[vcell[i]][1];
|
| 343 |
break;
|
| 344 |
case 5: /* crosses x=0 and z=0 */
|
| 345 |
t0 = -v[i][0]/(v[inext][0]-v[i][0]);
|
| 346 |
t1 = -v[i][2]/(v[inext][2]-v[i][2]);
|
| 347 |
if(t0==t1)
|
| 348 |
break;
|
| 349 |
else if(t0 < t1)
|
| 350 |
cells |= nbr_b[vcell[i]][0];
|
| 351 |
else
|
| 352 |
cells |=nbr_b[vcell[i]][2];
|
| 353 |
|
| 354 |
break;
|
| 355 |
case 6:/* crosses z=0 and y=0 */
|
| 356 |
t0 = -v[i][2]/(v[inext][2]-v[i][2]);
|
| 357 |
t1 = -v[i][1]/(v[inext][1]-v[i][1]);
|
| 358 |
if(t0==t1)
|
| 359 |
break;
|
| 360 |
else if(t0 < t1)
|
| 361 |
{
|
| 362 |
cells |= nbr_b[vcell[i]][2];
|
| 363 |
}
|
| 364 |
else
|
| 365 |
{
|
| 366 |
cells |=nbr_b[vcell[i]][1];
|
| 367 |
}
|
| 368 |
break;
|
| 369 |
case 7:
|
| 370 |
error(CONSISTENCY," Insert:Edge shouldnt be able to span 3 cells");
|
| 371 |
break;
|
| 372 |
}
|
| 373 |
}
|
| 374 |
return(cells);
|
| 375 |
}
|
| 376 |
|
| 377 |
|
| 378 |
stRoot_trace_ray(qt,root,orig,dir,nextptr,func,f)
|
| 379 |
QUADTREE qt;
|
| 380 |
int root;
|
| 381 |
FVECT orig,dir;
|
| 382 |
int *nextptr;
|
| 383 |
FUNC func;
|
| 384 |
int *f;
|
| 385 |
{
|
| 386 |
double br[3];
|
| 387 |
BCOORD bi[3],dbi[3];
|
| 388 |
|
| 389 |
/* Project the origin onto the root node plane */
|
| 390 |
/* Find the intersection point of the origin */
|
| 391 |
ray_to_qt_frame(root,orig,dir,bi,dbi);
|
| 392 |
|
| 393 |
/* trace the ray starting with this node */
|
| 394 |
qtTrace_ray(qt,bi,dbi[0],dbi[1],dbi[2],nextptr,0,0,func,f);
|
| 395 |
if(!QT_FLAG_IS_DONE(*f))
|
| 396 |
qt_frame_to_vert(root,bi,orig);
|
| 397 |
|
| 398 |
}
|
| 399 |
|
| 400 |
/* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each
|
| 401 |
node that it intersects
|
| 402 |
*/
|
| 403 |
int
|
| 404 |
stTrace_ray(st,orig,dir,func)
|
| 405 |
STREE *st;
|
| 406 |
FVECT orig,dir;
|
| 407 |
FUNC func;
|
| 408 |
{
|
| 409 |
int next,last,i,f=0;
|
| 410 |
QUADTREE qt;
|
| 411 |
FVECT o,n,v;
|
| 412 |
double pd,t,d;
|
| 413 |
|
| 414 |
VCOPY(o,orig);
|
| 415 |
#ifdef TEST_DRIVER
|
| 416 |
Pick_cnt=0;
|
| 417 |
#endif;
|
| 418 |
/* Find the qt node that o falls in */
|
| 419 |
i = stLocate_root(o);
|
| 420 |
qt = ST_ROOT_QT(st,i);
|
| 421 |
|
| 422 |
stRoot_trace_ray(qt,i,o,dir,&next,func,&f);
|
| 423 |
|
| 424 |
if(QT_FLAG_IS_DONE(f))
|
| 425 |
return(TRUE);
|
| 426 |
/*
|
| 427 |
d = DOT(orig,dir)/sqrt(DOT(orig,orig));
|
| 428 |
VSUM(v,orig,dir,-d);
|
| 429 |
*/
|
| 430 |
/* Crossed over to next cell: id = nbr */
|
| 431 |
while(1)
|
| 432 |
{
|
| 433 |
/* test if ray crosses plane between this quadtree triangle and
|
| 434 |
its neighbor- if it does then find intersection point with
|
| 435 |
ray and plane- this is the new origin
|
| 436 |
*/
|
| 437 |
if(next == INVALID)
|
| 438 |
return(FALSE);
|
| 439 |
/*
|
| 440 |
if(DOT(o,v) < 0.0)
|
| 441 |
return(FALSE);
|
| 442 |
*/
|
| 443 |
i = stBase_nbrs[i][next];
|
| 444 |
qt = ST_ROOT_QT(st,i);
|
| 445 |
stRoot_trace_ray(qt,i,o,dir,&next,func,&f);
|
| 446 |
if(QT_FLAG_IS_DONE(f))
|
| 447 |
return(TRUE);
|
| 448 |
}
|
| 449 |
}
|
| 450 |
|
| 451 |
|
| 452 |
stVisit_poly(st,verts,l,root,func)
|
| 453 |
STREE *st;
|
| 454 |
FVECT *verts;
|
| 455 |
LIST *l;
|
| 456 |
unsigned int root;
|
| 457 |
FUNC func;
|
| 458 |
{
|
| 459 |
int id0,id1,id2;
|
| 460 |
FVECT tri[3];
|
| 461 |
|
| 462 |
id0 = pop_list(&l);
|
| 463 |
id1 = pop_list(&l);
|
| 464 |
while(l)
|
| 465 |
{
|
| 466 |
id2 = pop_list(&l);
|
| 467 |
VCOPY(tri[0],verts[id0]);
|
| 468 |
VCOPY(tri[1],verts[id1]);
|
| 469 |
VCOPY(tri[2],verts[id2]);
|
| 470 |
stRoot_visit_tri(st,root,tri,func);
|
| 471 |
id1 = id2;
|
| 472 |
}
|
| 473 |
}
|
| 474 |
|
| 475 |
stVisit_clip(st,i,verts,vcnt,l,cell,func)
|
| 476 |
STREE *st;
|
| 477 |
int i;
|
| 478 |
FVECT *verts;
|
| 479 |
int *vcnt;
|
| 480 |
LIST *l;
|
| 481 |
unsigned int cell;
|
| 482 |
FUNC func;
|
| 483 |
{
|
| 484 |
|
| 485 |
LIST *labove,*lbelow,*endb,*enda;
|
| 486 |
int last = -1;
|
| 487 |
int id,last_id;
|
| 488 |
int first,first_id;
|
| 489 |
unsigned int cellb;
|
| 490 |
|
| 491 |
labove = lbelow = NULL;
|
| 492 |
enda = endb = NULL;
|
| 493 |
while(l)
|
| 494 |
{
|
| 495 |
id = pop_list(&l);
|
| 496 |
if(ZERO(verts[id][i]))
|
| 497 |
{
|
| 498 |
if(last==-1)
|
| 499 |
{/* add below and above */
|
| 500 |
first = 2;
|
| 501 |
first_id= id;
|
| 502 |
}
|
| 503 |
lbelow=add_data(lbelow,id,&endb);
|
| 504 |
labove=add_data(labove,id,&enda);
|
| 505 |
last_id = id;
|
| 506 |
last = 2;
|
| 507 |
continue;
|
| 508 |
}
|
| 509 |
if(verts[id][i] < 0)
|
| 510 |
{
|
| 511 |
if(last != 1)
|
| 512 |
{
|
| 513 |
lbelow=add_data(lbelow,id,&endb);
|
| 514 |
if(last==-1)
|
| 515 |
{
|
| 516 |
first = 0;
|
| 517 |
first_id = id;
|
| 518 |
}
|
| 519 |
last_id = id;
|
| 520 |
last = 0;
|
| 521 |
continue;
|
| 522 |
}
|
| 523 |
/* intersect_edges */
|
| 524 |
intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]);
|
| 525 |
/*newpoint goes to above and below*/
|
| 526 |
lbelow=add_data(lbelow,*vcnt,&endb);
|
| 527 |
lbelow=add_data(lbelow,id,&endb);
|
| 528 |
labove=add_data(labove,*vcnt,&enda);
|
| 529 |
last = 0;
|
| 530 |
last_id = id;
|
| 531 |
(*vcnt)++;
|
| 532 |
}
|
| 533 |
else
|
| 534 |
{
|
| 535 |
if(last != 0)
|
| 536 |
{
|
| 537 |
labove=add_data(labove,id,&enda);
|
| 538 |
if(last==-1)
|
| 539 |
{
|
| 540 |
first = 1;
|
| 541 |
first_id = id;
|
| 542 |
}
|
| 543 |
last_id = id;
|
| 544 |
last = 1;
|
| 545 |
continue;
|
| 546 |
}
|
| 547 |
/* intersect_edges */
|
| 548 |
/*newpoint goes to above and below*/
|
| 549 |
intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]);
|
| 550 |
lbelow=add_data(lbelow,*vcnt,&endb);
|
| 551 |
labove=add_data(labove,*vcnt,&enda);
|
| 552 |
labove=add_data(labove,id,&enda);
|
| 553 |
last_id = id;
|
| 554 |
(*vcnt)++;
|
| 555 |
last = 1;
|
| 556 |
}
|
| 557 |
}
|
| 558 |
if(first != 2 && first != last)
|
| 559 |
{
|
| 560 |
intersect_edge_coord_plane(verts[id],verts[first_id],i,verts[*vcnt]);
|
| 561 |
/*newpoint goes to above and below*/
|
| 562 |
lbelow=add_data(lbelow,*vcnt,&endb);
|
| 563 |
labove=add_data(labove,*vcnt,&enda);
|
| 564 |
(*vcnt)++;
|
| 565 |
|
| 566 |
}
|
| 567 |
if(i==2)
|
| 568 |
{
|
| 569 |
if(lbelow)
|
| 570 |
{
|
| 571 |
if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow)))
|
| 572 |
{
|
| 573 |
cellb = cell | (1 << i);
|
| 574 |
stVisit_poly(st,verts,lbelow,cellb,func);
|
| 575 |
}
|
| 576 |
else
|
| 577 |
free_list(lbelow);
|
| 578 |
}
|
| 579 |
if(labove)
|
| 580 |
{
|
| 581 |
if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove)))
|
| 582 |
stVisit_poly(st,verts,labove,cell,func);
|
| 583 |
else
|
| 584 |
free_list(labove);
|
| 585 |
}
|
| 586 |
}
|
| 587 |
else
|
| 588 |
{
|
| 589 |
if(lbelow)
|
| 590 |
{
|
| 591 |
if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow)))
|
| 592 |
{
|
| 593 |
cellb = cell | (1 << i);
|
| 594 |
stVisit_clip(st,i+1,verts,vcnt,lbelow,cellb,func);
|
| 595 |
}
|
| 596 |
else
|
| 597 |
free_list(lbelow);
|
| 598 |
}
|
| 599 |
if(labove)
|
| 600 |
{
|
| 601 |
if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove)))
|
| 602 |
stVisit_clip(st,i+1,verts,vcnt,labove,cell,func);
|
| 603 |
else
|
| 604 |
free_list(labove);
|
| 605 |
}
|
| 606 |
}
|
| 607 |
|
| 608 |
}
|
| 609 |
|
| 610 |
stVisit(st,tri,func)
|
| 611 |
STREE *st;
|
| 612 |
FVECT tri[3];
|
| 613 |
FUNC func;
|
| 614 |
{
|
| 615 |
int r0,r1,r2;
|
| 616 |
LIST *l;
|
| 617 |
|
| 618 |
r0 = stLocate_root(tri[0]);
|
| 619 |
r1 = stLocate_root(tri[1]);
|
| 620 |
r2 = stLocate_root(tri[2]);
|
| 621 |
if(r0 == r1 && r1==r2)
|
| 622 |
stRoot_visit_tri(st,r0,tri,func);
|
| 623 |
else
|
| 624 |
{
|
| 625 |
FVECT verts[ST_CLIP_VERTS];
|
| 626 |
int cnt;
|
| 627 |
|
| 628 |
VCOPY(verts[0],tri[0]);
|
| 629 |
VCOPY(verts[1],tri[1]);
|
| 630 |
VCOPY(verts[2],tri[2]);
|
| 631 |
|
| 632 |
l = add_data(NULL,0,NULL);
|
| 633 |
l = add_data(l,1,NULL);
|
| 634 |
l = add_data(l,2,NULL);
|
| 635 |
cnt = 3;
|
| 636 |
stVisit_clip(st,0,verts,&cnt,l,0,func);
|
| 637 |
}
|
| 638 |
}
|
| 639 |
|
| 640 |
|
| 641 |
/* New Insertion code!!! */
|
| 642 |
|
| 643 |
|
| 644 |
BCOORD qtRoot[3][3] = { {MAXBCOORD2,0,0},{0,MAXBCOORD2,0},{0,0,MAXBCOORD2}};
|
| 645 |
|
| 646 |
|
| 647 |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02)
|
| 648 |
int root;
|
| 649 |
FVECT tri[3];
|
| 650 |
BCOORD b0[3],b1[3],b2[3];
|
| 651 |
BCOORD db10[3],db21[3],db02[3];
|
| 652 |
{
|
| 653 |
/* Project the vertex into the qtree plane */
|
| 654 |
vert_to_qt_frame(root,tri[0],b0);
|
| 655 |
vert_to_qt_frame(root,tri[1],b1);
|
| 656 |
vert_to_qt_frame(root,tri[2],b2);
|
| 657 |
|
| 658 |
/* calculate triangle edge differences in new frame */
|
| 659 |
db10[0] = b1[0] - b0[0]; db10[1] = b1[1] - b0[1]; db10[2] = b1[2] - b0[2];
|
| 660 |
db21[0] = b2[0] - b1[0]; db21[1] = b2[1] - b1[1]; db21[2] = b2[2] - b1[2];
|
| 661 |
db02[0] = b0[0] - b2[0]; db02[1] = b0[1] - b2[1]; db02[2] = b0[2] - b2[2];
|
| 662 |
}
|
| 663 |
|
| 664 |
|
| 665 |
QUADTREE
|
| 666 |
stRoot_insert_tri(st,root,tri,f)
|
| 667 |
STREE *st;
|
| 668 |
int root;
|
| 669 |
FVECT tri[3];
|
| 670 |
FUNC f;
|
| 671 |
{
|
| 672 |
BCOORD b0[3],b1[3],b2[3];
|
| 673 |
BCOORD db10[3],db21[3],db02[3];
|
| 674 |
unsigned int s0,s1,s2,sq0,sq1,sq2;
|
| 675 |
QUADTREE qt;
|
| 676 |
|
| 677 |
/* Map the triangle vertices into the canonical barycentric frame */
|
| 678 |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02);
|
| 679 |
|
| 680 |
/* Calculate initial sidedness info */
|
| 681 |
SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]);
|
| 682 |
SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]);
|
| 683 |
|
| 684 |
qt = ST_ROOT_QT(st,root);
|
| 685 |
/* Visit cells that triangle intersects */
|
| 686 |
qt = qtInsert_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2],
|
| 687 |
b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,0);
|
| 688 |
|
| 689 |
return(qt);
|
| 690 |
}
|
| 691 |
|
| 692 |
stRoot_visit_tri(st,root,tri,f)
|
| 693 |
STREE *st;
|
| 694 |
int root;
|
| 695 |
FVECT tri[3];
|
| 696 |
FUNC f;
|
| 697 |
{
|
| 698 |
BCOORD b0[3],b1[3],b2[3];
|
| 699 |
BCOORD db10[3],db21[3],db02[3];
|
| 700 |
unsigned int s0,s1,s2,sq0,sq1,sq2;
|
| 701 |
QUADTREE qt;
|
| 702 |
|
| 703 |
/* Map the triangle vertices into the canonical barycentric frame */
|
| 704 |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02);
|
| 705 |
|
| 706 |
/* Calculate initial sidedness info */
|
| 707 |
SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]);
|
| 708 |
SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]);
|
| 709 |
|
| 710 |
qt = ST_ROOT_QT(st,root);
|
| 711 |
QT_SET_FLAG(ST_QT(st,root));
|
| 712 |
/* Visit cells that triangle intersects */
|
| 713 |
qtVisit_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2],
|
| 714 |
b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f);
|
| 715 |
|
| 716 |
}
|
| 717 |
|
| 718 |
stInsert_tri(st,tri,f)
|
| 719 |
STREE *st;
|
| 720 |
FVECT tri[3];
|
| 721 |
FUNC f;
|
| 722 |
{
|
| 723 |
unsigned int cells,which;
|
| 724 |
int root;
|
| 725 |
|
| 726 |
|
| 727 |
/* calculate entry/exit points of edges through the cells */
|
| 728 |
cells = stTri_cells(st,tri);
|
| 729 |
|
| 730 |
/* For each cell that quadtree intersects: Map the triangle vertices into
|
| 731 |
the canonical barycentric frame of (1,0,0), (0,1,0),(0,0,1). Insert
|
| 732 |
by first doing a trivial reject on the interior nodes, and then a
|
| 733 |
tri/tri intersection at the leaf nodes.
|
| 734 |
*/
|
| 735 |
for(root=0,which=1; root < ST_NUM_ROOT_NODES; root++,which <<= 1)
|
| 736 |
{
|
| 737 |
/* For each of the quadtree roots: check if marked as intersecting tri*/
|
| 738 |
if(cells & which)
|
| 739 |
/* Visit tri cells */
|
| 740 |
ST_ROOT_QT(st,root) = stRoot_insert_tri(st,root,tri,f);
|
| 741 |
}
|
| 742 |
}
|
| 743 |
|
| 744 |
|
| 745 |
|
| 746 |
|
| 747 |
|
| 748 |
|
| 749 |
|
| 750 |
|
| 751 |
|
| 752 |
|
| 753 |
|