ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/sm_stree.c
Revision: 3.13
Committed: Sat Feb 22 02:07:25 2003 UTC (21 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R6P1, rad3R5, rad3R6
Changes since 3.12: +21 -12 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * sm_stree.c
6 * An stree (spherical quadtree) is defined by an octahedron in
7 * canonical form,and a world center point. Each face of the
8 * octahedron is adaptively subdivided as a planar triangular quadtree.
9 * World space geometry is projected onto the quadtree faces from the
10 * sphere center.
11 */
12 #include "standard.h"
13 #include "sm_list.h"
14 #include "sm_flag.h"
15 #include "sm_geom.h"
16 #include "object.h"
17 #include "sm_qtree.h"
18 #include "sm_stree.h"
19
20
21 #ifdef TEST_DRIVER
22 extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500];
23 extern int Pick_cnt;
24 #endif
25 /* octahedron coordinates */
26 FVECT stDefault_base[6] = { {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.},
27 {-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}};
28 /* octahedron triangle vertices */
29 int stBase_verts[8][3] = { {0,1,2},{3,1,2},{0,4,2},{3,4,2},
30 {0,1,5},{3,1,5},{0,4,5},{3,4,5}};
31 /* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/
32 int stBase_nbrs[8][3] = { {1,2,4},{0,3,5},{3,0,6},{2,1,7},
33 {5,6,0},{4,7,1},{7,4,2},{6,5,3}};
34 int stRoot_indices[8][3] = {{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1},
35 {1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}};
36 /*
37 +z y -z y
38 | |
39 1 | 0 5 | 4
40 ______|______ x _______|______ x
41 3 | 2 7 | 6
42 | |
43
44 Nbrs
45 +z y -z y
46 /0|1\ /1|0\
47 5 / | \ 4 / | \
48 /(1)|(0)\ 1 /(5)|(4)\ 0
49 / | \ / | \
50 /2 1|0 2\ /2 0|1 2\
51 /------|------\x /------|------\x
52 \0 1|2 0/ \0 2|2 1/
53 \ | / \ | /
54 7\ (3)|(2) / 6 3 \ (7)|(6) / 2
55 \ | / \ | /
56 \ 2|1 / \ 1|0 /
57 */
58
59
60 stInit(st)
61 STREE *st;
62 {
63 int i,j;
64
65 qtDone();
66
67 ST_TOP_QT(st) = qtAlloc();
68 ST_BOTTOM_QT(st) = qtAlloc();
69 /* Clear the children */
70
71 QT_CLEAR_CHILDREN(ST_TOP_QT(st));
72 QT_CLEAR_CHILDREN(ST_BOTTOM_QT(st));
73 }
74
75 stFree(st)
76 STREE *st;
77 {
78 qtDone();
79 free(st);
80 }
81
82 /* Allocates a stree structure and creates octahedron base */
83 STREE
84 *stAlloc(st)
85 STREE *st;
86 {
87 int i,m;
88 FVECT v0,v1,v2;
89 FVECT n;
90
91 if(!st)
92 if(!(st = (STREE *)malloc(sizeof(STREE))))
93 error(SYSTEM,"stAlloc(): Unable to allocate memory\n");
94
95 /* Allocate the top and bottom quadtree root nodes */
96 stInit(st);
97
98 return(st);
99 }
100
101 #define BARY_INT(v,b) if((v)>2.0) (b) = MAXBCOORD;else \
102 if((v)<-2.0) (b)=-MAXBCOORD;else (b)=(BCOORD)((v)*MAXBCOORD2);
103
104 vert_to_qt_frame(root,v,b)
105 int root;
106 FVECT v;
107 BCOORD b[3];
108 {
109 int i;
110 double scale;
111 double d0,d1,d2;
112
113 if(STR_NTH_INDEX(root,0)==-1)
114 d0 = -v[0];
115 else
116 d0 = v[0];
117 if(STR_NTH_INDEX(root,1)==-1)
118 d1 = -v[1];
119 else
120 d1 = v[1];
121 if(STR_NTH_INDEX(root,2)==-1)
122 d2 = -v[2];
123 else
124 d2 = v[2];
125
126 /* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */
127 scale = 1.0/ (d0 + d1 + d2);
128 d0 *= scale;
129 d1 *= scale;
130 d2 *= scale;
131
132 BARY_INT(d0,b[0])
133 BARY_INT(d1,b[1])
134 BARY_INT(d2,b[2])
135 }
136
137
138
139
140 ray_to_qt_frame(root,v,dir,b,db)
141 int root;
142 FVECT v,dir;
143 BCOORD b[3],db[3];
144 {
145 int i;
146 double scale;
147 double d0,d1,d2;
148 double dir0,dir1,dir2;
149
150 if(STR_NTH_INDEX(root,0)==-1)
151 {
152 d0 = -v[0];
153 dir0 = -dir[0];
154 }
155 else
156 {
157 d0 = v[0];
158 dir0 = dir[0];
159 }
160 if(STR_NTH_INDEX(root,1)==-1)
161 {
162 d1 = -v[1];
163 dir1 = -dir[1];
164 }
165 else
166 {
167 d1 = v[1];
168 dir1 = dir[1];
169 }
170 if(STR_NTH_INDEX(root,2)==-1)
171 {
172 d2 = -v[2];
173 dir2 = -dir[2];
174 }
175 else
176 {
177 d2 = v[2];
178 dir2 = dir[2];
179 }
180 /* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */
181 scale = 1.0/ (d0 + d1 + d2);
182 d0 *= scale;
183 d1 *= scale;
184 d2 *= scale;
185
186 /* Calculate intersection point of orig+dir: This calculation is done
187 after the origin is projected into the plane in order to constrain
188 the projection( i.e. the size of the projection of the unit direction
189 vector translated to the origin depends on how close
190 the origin is to the view center
191 */
192 /* Must divide by at least root2 to insure that projection will fit
193 int [-2,2] bounds: assumed length is 1: therefore greatest projection
194 from endpoint of triangle is at 45 degrees or projected length of root2
195 */
196 dir0 = d0 + dir0*0.5;
197 dir1 = d1 + dir1*0.5;
198 dir2 = d2 + dir2*0.5;
199
200 scale = 1.0/ (dir0 + dir1 + dir2);
201 dir0 *= scale;
202 dir1 *= scale;
203 dir2 *= scale;
204
205 BARY_INT(d0,b[0])
206 BARY_INT(d1,b[1])
207 BARY_INT(d2,b[2])
208 BARY_INT(dir0,db[0])
209 BARY_INT(dir1,db[1])
210 BARY_INT(dir2,db[2])
211
212 db[0] -= b[0];
213 db[1] -= b[1];
214 db[2] -= b[2];
215 }
216
217 qt_frame_to_vert(root,b,v)
218 int root;
219 BCOORD b[3];
220 FVECT v;
221 {
222 int i;
223 double d0,d1,d2;
224
225 d0 = b[0]/(double)MAXBCOORD2;
226 d1 = b[1]/(double)MAXBCOORD2;
227 d2 = b[2]/(double)MAXBCOORD2;
228
229 if(STR_NTH_INDEX(root,0)==-1)
230 v[0] = -d0;
231 else
232 v[0] = d0;
233 if(STR_NTH_INDEX(root,1)==-1)
234 v[1] = -d1;
235 else
236 v[1] = d1;
237 if(STR_NTH_INDEX(root,2)==-1)
238 v[2] = -d2;
239 else
240 v[2] = d2;
241 }
242
243
244 /* Return quadtree leaf node containing point 'p'*/
245 QUADTREE
246 stPoint_locate(st,p)
247 STREE *st;
248 FVECT p;
249 {
250 QUADTREE qt;
251 BCOORD bcoordi[3];
252 int i;
253
254 /* Find root quadtree that contains p */
255 i = stLocate_root(p);
256 qt = ST_ROOT_QT(st,i);
257
258 /* Will return lowest level triangle containing point: It the
259 point is on an edge or vertex: will return first associated
260 triangle encountered in the child traversal- the others can
261 be derived using triangle adjacency information
262 */
263 if(QT_IS_TREE(qt))
264 {
265 vert_to_qt_frame(i,p,bcoordi);
266 i = bary_child(bcoordi);
267 return(qtLocate(QT_NTH_CHILD(qt,i),bcoordi));
268 }
269 else
270 return(qt);
271 }
272
273 static unsigned int nbr_b[8][3] ={{2,4,16},{1,8,32},{8,1,64},{4,2,128},
274 {32,64,1},{16,128,2},{128,16,4},{64,32,8}};
275 unsigned int
276 stTri_cells(st,v)
277 STREE *st;
278 FVECT v[3];
279 {
280 unsigned int cells,cross;
281 unsigned int vcell[3];
282 double t0,t1;
283 int i,inext;
284
285 /* First find base cells that tri vertices are in (0-7)*/
286 vcell[0] = stLocate_root(v[0]);
287 vcell[1] = stLocate_root(v[1]);
288 vcell[2] = stLocate_root(v[2]);
289
290 /* If all in same cell- return that bit only */
291 if(vcell[0] == vcell[1] && vcell[1] == vcell[2])
292 return( 1 << vcell[0]);
293
294 cells = 0;
295 for(i=0;i<3; i++)
296 {
297 if(i==2)
298 inext = 0;
299 else
300 inext = i+1;
301 /* Mark cell containing initial vertex */
302 cells |= 1 << vcell[i];
303
304 /* Take the exclusive or: will have bits set where edge crosses axis=0*/
305 cross = vcell[i] ^ vcell[inext];
306 /* If crosses 2 planes: then have 2 options for edge crossing-pick closest
307 otherwise just hits two*/
308 /* Neighbors are zyx */
309 switch(cross){
310 case 3: /* crosses x=0 and y=0 */
311 t0 = -v[i][0]/(v[inext][0]-v[i][0]);
312 t1 = -v[i][1]/(v[inext][1]-v[i][1]);
313 if(t0==t1)
314 break;
315 else if(t0 < t1)
316 cells |= nbr_b[vcell[i]][0];
317 else
318 cells |= nbr_b[vcell[i]][1];
319 break;
320 case 5: /* crosses x=0 and z=0 */
321 t0 = -v[i][0]/(v[inext][0]-v[i][0]);
322 t1 = -v[i][2]/(v[inext][2]-v[i][2]);
323 if(t0==t1)
324 break;
325 else if(t0 < t1)
326 cells |= nbr_b[vcell[i]][0];
327 else
328 cells |=nbr_b[vcell[i]][2];
329
330 break;
331 case 6:/* crosses z=0 and y=0 */
332 t0 = -v[i][2]/(v[inext][2]-v[i][2]);
333 t1 = -v[i][1]/(v[inext][1]-v[i][1]);
334 if(t0==t1)
335 break;
336 else if(t0 < t1)
337 {
338 cells |= nbr_b[vcell[i]][2];
339 }
340 else
341 {
342 cells |=nbr_b[vcell[i]][1];
343 }
344 break;
345 case 7:
346 error(CONSISTENCY," Insert:Edge shouldnt be able to span 3 cells");
347 break;
348 }
349 }
350 return(cells);
351 }
352
353
354 stRoot_trace_ray(qt,root,orig,dir,nextptr,func,f)
355 QUADTREE qt;
356 int root;
357 FVECT orig,dir;
358 int *nextptr;
359 FUNC func;
360 int *f;
361 {
362 double br[3];
363 BCOORD bi[3],dbi[3];
364
365 /* Project the origin onto the root node plane */
366 /* Find the intersection point of the origin */
367 ray_to_qt_frame(root,orig,dir,bi,dbi);
368
369 /* trace the ray starting with this node */
370 qtTrace_ray(qt,bi,dbi[0],dbi[1],dbi[2],nextptr,0,0,func,f);
371 if(!QT_FLAG_IS_DONE(*f))
372 qt_frame_to_vert(root,bi,orig);
373
374 }
375
376 /* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each
377 node that it intersects
378 */
379 int
380 stTrace_ray(st,orig,dir,func)
381 STREE *st;
382 FVECT orig,dir;
383 FUNC func;
384 {
385 int next,last,i,f=0;
386 QUADTREE qt;
387 FVECT o,n,v;
388 double pd,t,d;
389
390 VCOPY(o,orig);
391 #ifdef TEST_DRIVER
392 Pick_cnt=0;
393 #endif;
394 /* Find the qt node that o falls in */
395 i = stLocate_root(o);
396 qt = ST_ROOT_QT(st,i);
397
398 stRoot_trace_ray(qt,i,o,dir,&next,func,&f);
399
400 if(QT_FLAG_IS_DONE(f))
401 return(TRUE);
402 /*
403 d = DOT(orig,dir)/sqrt(DOT(orig,orig));
404 VSUM(v,orig,dir,-d);
405 */
406 /* Crossed over to next cell: id = nbr */
407 while(1)
408 {
409 /* test if ray crosses plane between this quadtree triangle and
410 its neighbor- if it does then find intersection point with
411 ray and plane- this is the new origin
412 */
413 if(next == INVALID)
414 return(FALSE);
415 /*
416 if(DOT(o,v) < 0.0)
417 return(FALSE);
418 */
419 i = stBase_nbrs[i][next];
420 qt = ST_ROOT_QT(st,i);
421 stRoot_trace_ray(qt,i,o,dir,&next,func,&f);
422 if(QT_FLAG_IS_DONE(f))
423 return(TRUE);
424 }
425 }
426
427
428 stVisit_poly(st,verts,l,root,func,n)
429 STREE *st;
430 FVECT *verts;
431 LIST *l;
432 unsigned int root;
433 FUNC func;
434 int n;
435 {
436 int id0,id1,id2;
437 FVECT tri[3];
438
439 id0 = pop_list(&l);
440 id1 = pop_list(&l);
441 while(l)
442 {
443 id2 = pop_list(&l);
444 VCOPY(tri[0],verts[id0]);
445 VCOPY(tri[1],verts[id1]);
446 VCOPY(tri[2],verts[id2]);
447 stRoot_visit_tri(st,root,tri,func,n);
448 id1 = id2;
449 }
450 }
451 /* Assumption: know crosses plane:dont need to check for 'on' case */
452 intersect_edge_coord_plane(v0,v1,w,r)
453 FVECT v0,v1;
454 int w;
455 FVECT r;
456 {
457 FVECT dv;
458 int wnext;
459 double t;
460
461 VSUB(dv,v1,v0);
462 t = -v0[w]/dv[w];
463 r[w] = 0.0;
464 wnext = (w+1)%3;
465 r[wnext] = v0[wnext] + dv[wnext]*t;
466 wnext = (w+2)%3;
467 r[wnext] = v0[wnext] + dv[wnext]*t;
468 }
469
470
471 stVisit_clip(st,i,verts,vcnt,l,cell,func,n)
472 STREE *st;
473 int i;
474 FVECT *verts;
475 int *vcnt;
476 LIST *l;
477 unsigned int cell;
478 FUNC func;
479 int n;
480 {
481
482 LIST *labove,*lbelow,*endb,*enda;
483 int last = -1;
484 int id,last_id;
485 int first,first_id;
486 unsigned int cellb;
487
488 labove = lbelow = NULL;
489 enda = endb = NULL;
490 while(l)
491 {
492 id = pop_list(&l);
493 if(ZERO(verts[id][i]))
494 {
495 if(last==-1)
496 {/* add below and above */
497 first = 2;
498 first_id= id;
499 }
500 lbelow=add_data(lbelow,id,&endb);
501 labove=add_data(labove,id,&enda);
502 last_id = id;
503 last = 2;
504 continue;
505 }
506 if(verts[id][i] < 0)
507 {
508 if(last != 1)
509 {
510 lbelow=add_data(lbelow,id,&endb);
511 if(last==-1)
512 {
513 first = 0;
514 first_id = id;
515 }
516 last_id = id;
517 last = 0;
518 continue;
519 }
520 /* intersect_edges */
521 intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]);
522 /*newpoint goes to above and below*/
523 lbelow=add_data(lbelow,*vcnt,&endb);
524 lbelow=add_data(lbelow,id,&endb);
525 labove=add_data(labove,*vcnt,&enda);
526 last = 0;
527 last_id = id;
528 (*vcnt)++;
529 }
530 else
531 {
532 if(last != 0)
533 {
534 labove=add_data(labove,id,&enda);
535 if(last==-1)
536 {
537 first = 1;
538 first_id = id;
539 }
540 last_id = id;
541 last = 1;
542 continue;
543 }
544 /* intersect_edges */
545 /*newpoint goes to above and below*/
546 intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]);
547 lbelow=add_data(lbelow,*vcnt,&endb);
548 labove=add_data(labove,*vcnt,&enda);
549 labove=add_data(labove,id,&enda);
550 last_id = id;
551 (*vcnt)++;
552 last = 1;
553 }
554 }
555 if(first != 2 && first != last)
556 {
557 intersect_edge_coord_plane(verts[id],verts[first_id],i,verts[*vcnt]);
558 /*newpoint goes to above and below*/
559 lbelow=add_data(lbelow,*vcnt,&endb);
560 labove=add_data(labove,*vcnt,&enda);
561 (*vcnt)++;
562
563 }
564 if(i==2)
565 {
566 if(lbelow)
567 {
568 if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow)))
569 {
570 cellb = cell | (1 << i);
571 stVisit_poly(st,verts,lbelow,cellb,func,n);
572 }
573 else
574 free_list(lbelow);
575 }
576 if(labove)
577 {
578 if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove)))
579 stVisit_poly(st,verts,labove,cell,func,n);
580 else
581 free_list(labove);
582 }
583 }
584 else
585 {
586 if(lbelow)
587 {
588 if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow)))
589 {
590 cellb = cell | (1 << i);
591 stVisit_clip(st,i+1,verts,vcnt,lbelow,cellb,func,n);
592 }
593 else
594 free_list(lbelow);
595 }
596 if(labove)
597 {
598 if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove)))
599 stVisit_clip(st,i+1,verts,vcnt,labove,cell,func,n);
600 else
601 free_list(labove);
602 }
603 }
604
605 }
606
607 stVisit(st,tri,func,n)
608 STREE *st;
609 FVECT tri[3];
610 FUNC func;
611 int n;
612 {
613 int r0,r1,r2;
614 LIST *l;
615
616 r0 = stLocate_root(tri[0]);
617 r1 = stLocate_root(tri[1]);
618 r2 = stLocate_root(tri[2]);
619 if(r0 == r1 && r1==r2)
620 stRoot_visit_tri(st,r0,tri,func,n);
621 else
622 {
623 FVECT verts[ST_CLIP_VERTS];
624 int cnt;
625
626 VCOPY(verts[0],tri[0]);
627 VCOPY(verts[1],tri[1]);
628 VCOPY(verts[2],tri[2]);
629
630 l = add_data(NULL,0,NULL);
631 l = add_data(l,1,NULL);
632 l = add_data(l,2,NULL);
633 cnt = 3;
634 stVisit_clip(st,0,verts,&cnt,l,0,func,n);
635 }
636 }
637
638
639 BCOORD qtRoot[3][3] = { {MAXBCOORD2,0,0},{0,MAXBCOORD2,0},{0,0,MAXBCOORD2}};
640
641
642 convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02)
643 int root;
644 FVECT tri[3];
645 BCOORD b0[3],b1[3],b2[3];
646 BCOORD db10[3],db21[3],db02[3];
647 {
648 /* Project the vertex into the qtree plane */
649 vert_to_qt_frame(root,tri[0],b0);
650 vert_to_qt_frame(root,tri[1],b1);
651 vert_to_qt_frame(root,tri[2],b2);
652
653 /* calculate triangle edge differences in new frame */
654 db10[0] = b1[0] - b0[0]; db10[1] = b1[1] - b0[1]; db10[2] = b1[2] - b0[2];
655 db21[0] = b2[0] - b1[0]; db21[1] = b2[1] - b1[1]; db21[2] = b2[2] - b1[2];
656 db02[0] = b0[0] - b2[0]; db02[1] = b0[1] - b2[1]; db02[2] = b0[2] - b2[2];
657 }
658
659
660 QUADTREE
661 stRoot_insert_tri(st,root,tri,f)
662 STREE *st;
663 int root;
664 FVECT tri[3];
665 FUNC f;
666 {
667 BCOORD b0[3],b1[3],b2[3];
668 BCOORD db10[3],db21[3],db02[3];
669 unsigned int s0,s1,s2,sq0,sq1,sq2;
670 QUADTREE qt;
671
672 /* Map the triangle vertices into the canonical barycentric frame */
673 convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02);
674
675 /* Calculate initial sidedness info */
676 SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]);
677 SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]);
678
679 qt = ST_ROOT_QT(st,root);
680 /* Visit cells that triangle intersects */
681 qt = qtInsert_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2],
682 b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,0);
683
684 return(qt);
685 }
686
687 stRoot_visit_tri(st,root,tri,f,n)
688 STREE *st;
689 int root;
690 FVECT tri[3];
691 FUNC f;
692 int n;
693 {
694 BCOORD b0[3],b1[3],b2[3];
695 BCOORD db10[3],db21[3],db02[3];
696 unsigned int s0,s1,s2,sq0,sq1,sq2;
697 QUADTREE qt;
698
699 /* Map the triangle vertices into the canonical barycentric frame */
700 convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02);
701
702 /* Calculate initial sidedness info */
703 SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]);
704 SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]);
705
706 qt = ST_ROOT_QT(st,root);
707 QT_SET_FLAG(ST_QT(st,root));
708 /* Visit cells that triangle intersects */
709 qtVisit_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2],
710 b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,n);
711
712 }
713
714 stInsert_tri(st,tri,f)
715 STREE *st;
716 FVECT tri[3];
717 FUNC f;
718 {
719 unsigned int cells,which;
720 int root;
721
722
723 /* calculate entry/exit points of edges through the cells */
724 cells = stTri_cells(st,tri);
725
726 /* For each cell that quadtree intersects: Map the triangle vertices into
727 the canonical barycentric frame of (1,0,0), (0,1,0),(0,0,1). Insert
728 by first doing a trivial reject on the interior nodes, and then a
729 tri/tri intersection at the leaf nodes.
730 */
731 for(root=0,which=1; root < ST_NUM_ROOT_NODES; root++,which <<= 1)
732 {
733 /* For each of the quadtree roots: check if marked as intersecting tri*/
734 if(cells & which)
735 /* Visit tri cells */
736 ST_ROOT_QT(st,root) = stRoot_insert_tri(st,root,tri,f);
737 }
738 }
739
740 stInsert_samp(st,p,f)
741 STREE *st;
742 FVECT p;
743 FUNC f;
744 {
745
746 QUADTREE qt;
747 BCOORD bcoordi[3];
748 int i,done;
749
750 /* Find root quadtree that contains p */
751 i = stLocate_root(p);
752 qt = ST_ROOT_QT(st,i);
753
754 vert_to_qt_frame(i,p,bcoordi);
755 ST_ROOT_QT(st,i) = qtInsert_point(i,qt,EMPTY,qtRoot[0],qtRoot[1],
756 qtRoot[2],bcoordi,MAXBCOORD2>>1,f,0,&done);
757
758 }
759
760
761
762
763
764
765
766
767
768