1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id$"; |
3 |
#endif |
4 |
/* |
5 |
* sm_stree.c |
6 |
* An stree (spherical quadtree) is defined by an octahedron in |
7 |
* canonical form,and a world center point. Each face of the |
8 |
* octahedron is adaptively subdivided as a planar triangular quadtree. |
9 |
* World space geometry is projected onto the quadtree faces from the |
10 |
* sphere center. |
11 |
*/ |
12 |
#include "standard.h" |
13 |
#include "sm_list.h" |
14 |
#include "sm_flag.h" |
15 |
#include "sm_geom.h" |
16 |
#include "object.h" |
17 |
#include "sm_qtree.h" |
18 |
#include "sm_stree.h" |
19 |
|
20 |
|
21 |
#ifdef TEST_DRIVER |
22 |
extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500]; |
23 |
extern int Pick_cnt; |
24 |
#endif |
25 |
/* octahedron coordinates */ |
26 |
FVECT stDefault_base[6] = { {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.}, |
27 |
{-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}}; |
28 |
/* octahedron triangle vertices */ |
29 |
int stBase_verts[8][3] = { {0,1,2},{3,1,2},{0,4,2},{3,4,2}, |
30 |
{0,1,5},{3,1,5},{0,4,5},{3,4,5}}; |
31 |
/* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/ |
32 |
int stBase_nbrs[8][3] = { {1,2,4},{0,3,5},{3,0,6},{2,1,7}, |
33 |
{5,6,0},{4,7,1},{7,4,2},{6,5,3}}; |
34 |
int stRoot_indices[8][3] = {{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1}, |
35 |
{1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}}; |
36 |
/* |
37 |
+z y -z y |
38 |
| | |
39 |
1 | 0 5 | 4 |
40 |
______|______ x _______|______ x |
41 |
3 | 2 7 | 6 |
42 |
| | |
43 |
|
44 |
Nbrs |
45 |
+z y -z y |
46 |
/0|1\ /1|0\ |
47 |
5 / | \ 4 / | \ |
48 |
/(1)|(0)\ 1 /(5)|(4)\ 0 |
49 |
/ | \ / | \ |
50 |
/2 1|0 2\ /2 0|1 2\ |
51 |
/------|------\x /------|------\x |
52 |
\0 1|2 0/ \0 2|2 1/ |
53 |
\ | / \ | / |
54 |
7\ (3)|(2) / 6 3 \ (7)|(6) / 2 |
55 |
\ | / \ | / |
56 |
\ 2|1 / \ 1|0 / |
57 |
*/ |
58 |
|
59 |
|
60 |
stInit(st) |
61 |
STREE *st; |
62 |
{ |
63 |
int i,j; |
64 |
|
65 |
qtDone(); |
66 |
|
67 |
ST_TOP_QT(st) = qtAlloc(); |
68 |
ST_BOTTOM_QT(st) = qtAlloc(); |
69 |
/* Clear the children */ |
70 |
|
71 |
QT_CLEAR_CHILDREN(ST_TOP_QT(st)); |
72 |
QT_CLEAR_CHILDREN(ST_BOTTOM_QT(st)); |
73 |
} |
74 |
|
75 |
stFree(st) |
76 |
STREE *st; |
77 |
{ |
78 |
qtDone(); |
79 |
free(st); |
80 |
} |
81 |
|
82 |
/* Allocates a stree structure and creates octahedron base */ |
83 |
STREE |
84 |
*stAlloc(st) |
85 |
STREE *st; |
86 |
{ |
87 |
int i,m; |
88 |
FVECT v0,v1,v2; |
89 |
FVECT n; |
90 |
|
91 |
if(!st) |
92 |
if(!(st = (STREE *)malloc(sizeof(STREE)))) |
93 |
error(SYSTEM,"stAlloc(): Unable to allocate memory\n"); |
94 |
|
95 |
/* Allocate the top and bottom quadtree root nodes */ |
96 |
stInit(st); |
97 |
|
98 |
return(st); |
99 |
} |
100 |
|
101 |
#define BARY_INT(v,b) if((v)>2.0) (b) = MAXBCOORD;else \ |
102 |
if((v)<-2.0) (b)=-MAXBCOORD;else (b)=(BCOORD)((v)*MAXBCOORD2); |
103 |
|
104 |
vert_to_qt_frame(root,v,b) |
105 |
int root; |
106 |
FVECT v; |
107 |
BCOORD b[3]; |
108 |
{ |
109 |
int i; |
110 |
double scale; |
111 |
double d0,d1,d2; |
112 |
|
113 |
if(STR_NTH_INDEX(root,0)==-1) |
114 |
d0 = -v[0]; |
115 |
else |
116 |
d0 = v[0]; |
117 |
if(STR_NTH_INDEX(root,1)==-1) |
118 |
d1 = -v[1]; |
119 |
else |
120 |
d1 = v[1]; |
121 |
if(STR_NTH_INDEX(root,2)==-1) |
122 |
d2 = -v[2]; |
123 |
else |
124 |
d2 = v[2]; |
125 |
|
126 |
/* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */ |
127 |
scale = 1.0/ (d0 + d1 + d2); |
128 |
d0 *= scale; |
129 |
d1 *= scale; |
130 |
d2 *= scale; |
131 |
|
132 |
BARY_INT(d0,b[0]) |
133 |
BARY_INT(d1,b[1]) |
134 |
BARY_INT(d2,b[2]) |
135 |
} |
136 |
|
137 |
|
138 |
|
139 |
|
140 |
ray_to_qt_frame(root,v,dir,b,db) |
141 |
int root; |
142 |
FVECT v,dir; |
143 |
BCOORD b[3],db[3]; |
144 |
{ |
145 |
int i; |
146 |
double scale; |
147 |
double d0,d1,d2; |
148 |
double dir0,dir1,dir2; |
149 |
|
150 |
if(STR_NTH_INDEX(root,0)==-1) |
151 |
{ |
152 |
d0 = -v[0]; |
153 |
dir0 = -dir[0]; |
154 |
} |
155 |
else |
156 |
{ |
157 |
d0 = v[0]; |
158 |
dir0 = dir[0]; |
159 |
} |
160 |
if(STR_NTH_INDEX(root,1)==-1) |
161 |
{ |
162 |
d1 = -v[1]; |
163 |
dir1 = -dir[1]; |
164 |
} |
165 |
else |
166 |
{ |
167 |
d1 = v[1]; |
168 |
dir1 = dir[1]; |
169 |
} |
170 |
if(STR_NTH_INDEX(root,2)==-1) |
171 |
{ |
172 |
d2 = -v[2]; |
173 |
dir2 = -dir[2]; |
174 |
} |
175 |
else |
176 |
{ |
177 |
d2 = v[2]; |
178 |
dir2 = dir[2]; |
179 |
} |
180 |
/* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */ |
181 |
scale = 1.0/ (d0 + d1 + d2); |
182 |
d0 *= scale; |
183 |
d1 *= scale; |
184 |
d2 *= scale; |
185 |
|
186 |
/* Calculate intersection point of orig+dir: This calculation is done |
187 |
after the origin is projected into the plane in order to constrain |
188 |
the projection( i.e. the size of the projection of the unit direction |
189 |
vector translated to the origin depends on how close |
190 |
the origin is to the view center |
191 |
*/ |
192 |
/* Must divide by at least root2 to insure that projection will fit |
193 |
int [-2,2] bounds: assumed length is 1: therefore greatest projection |
194 |
from endpoint of triangle is at 45 degrees or projected length of root2 |
195 |
*/ |
196 |
dir0 = d0 + dir0*0.5; |
197 |
dir1 = d1 + dir1*0.5; |
198 |
dir2 = d2 + dir2*0.5; |
199 |
|
200 |
scale = 1.0/ (dir0 + dir1 + dir2); |
201 |
dir0 *= scale; |
202 |
dir1 *= scale; |
203 |
dir2 *= scale; |
204 |
|
205 |
BARY_INT(d0,b[0]) |
206 |
BARY_INT(d1,b[1]) |
207 |
BARY_INT(d2,b[2]) |
208 |
BARY_INT(dir0,db[0]) |
209 |
BARY_INT(dir1,db[1]) |
210 |
BARY_INT(dir2,db[2]) |
211 |
|
212 |
db[0] -= b[0]; |
213 |
db[1] -= b[1]; |
214 |
db[2] -= b[2]; |
215 |
} |
216 |
|
217 |
qt_frame_to_vert(root,b,v) |
218 |
int root; |
219 |
BCOORD b[3]; |
220 |
FVECT v; |
221 |
{ |
222 |
int i; |
223 |
double d0,d1,d2; |
224 |
|
225 |
d0 = b[0]/(double)MAXBCOORD2; |
226 |
d1 = b[1]/(double)MAXBCOORD2; |
227 |
d2 = b[2]/(double)MAXBCOORD2; |
228 |
|
229 |
if(STR_NTH_INDEX(root,0)==-1) |
230 |
v[0] = -d0; |
231 |
else |
232 |
v[0] = d0; |
233 |
if(STR_NTH_INDEX(root,1)==-1) |
234 |
v[1] = -d1; |
235 |
else |
236 |
v[1] = d1; |
237 |
if(STR_NTH_INDEX(root,2)==-1) |
238 |
v[2] = -d2; |
239 |
else |
240 |
v[2] = d2; |
241 |
} |
242 |
|
243 |
|
244 |
/* Return quadtree leaf node containing point 'p'*/ |
245 |
QUADTREE |
246 |
stPoint_locate(st,p) |
247 |
STREE *st; |
248 |
FVECT p; |
249 |
{ |
250 |
QUADTREE qt; |
251 |
BCOORD bcoordi[3]; |
252 |
int i; |
253 |
|
254 |
/* Find root quadtree that contains p */ |
255 |
i = stLocate_root(p); |
256 |
qt = ST_ROOT_QT(st,i); |
257 |
|
258 |
/* Will return lowest level triangle containing point: It the |
259 |
point is on an edge or vertex: will return first associated |
260 |
triangle encountered in the child traversal- the others can |
261 |
be derived using triangle adjacency information |
262 |
*/ |
263 |
if(QT_IS_TREE(qt)) |
264 |
{ |
265 |
vert_to_qt_frame(i,p,bcoordi); |
266 |
i = bary_child(bcoordi); |
267 |
return(qtLocate(QT_NTH_CHILD(qt,i),bcoordi)); |
268 |
} |
269 |
else |
270 |
return(qt); |
271 |
} |
272 |
|
273 |
static unsigned int nbr_b[8][3] ={{2,4,16},{1,8,32},{8,1,64},{4,2,128}, |
274 |
{32,64,1},{16,128,2},{128,16,4},{64,32,8}}; |
275 |
unsigned int |
276 |
stTri_cells(st,v) |
277 |
STREE *st; |
278 |
FVECT v[3]; |
279 |
{ |
280 |
unsigned int cells,cross; |
281 |
unsigned int vcell[3]; |
282 |
double t0,t1; |
283 |
int i,inext; |
284 |
|
285 |
/* First find base cells that tri vertices are in (0-7)*/ |
286 |
vcell[0] = stLocate_root(v[0]); |
287 |
vcell[1] = stLocate_root(v[1]); |
288 |
vcell[2] = stLocate_root(v[2]); |
289 |
|
290 |
/* If all in same cell- return that bit only */ |
291 |
if(vcell[0] == vcell[1] && vcell[1] == vcell[2]) |
292 |
return( 1 << vcell[0]); |
293 |
|
294 |
cells = 0; |
295 |
for(i=0;i<3; i++) |
296 |
{ |
297 |
if(i==2) |
298 |
inext = 0; |
299 |
else |
300 |
inext = i+1; |
301 |
/* Mark cell containing initial vertex */ |
302 |
cells |= 1 << vcell[i]; |
303 |
|
304 |
/* Take the exclusive or: will have bits set where edge crosses axis=0*/ |
305 |
cross = vcell[i] ^ vcell[inext]; |
306 |
/* If crosses 2 planes: then have 2 options for edge crossing-pick closest |
307 |
otherwise just hits two*/ |
308 |
/* Neighbors are zyx */ |
309 |
switch(cross){ |
310 |
case 3: /* crosses x=0 and y=0 */ |
311 |
t0 = -v[i][0]/(v[inext][0]-v[i][0]); |
312 |
t1 = -v[i][1]/(v[inext][1]-v[i][1]); |
313 |
if(t0==t1) |
314 |
break; |
315 |
else if(t0 < t1) |
316 |
cells |= nbr_b[vcell[i]][0]; |
317 |
else |
318 |
cells |= nbr_b[vcell[i]][1]; |
319 |
break; |
320 |
case 5: /* crosses x=0 and z=0 */ |
321 |
t0 = -v[i][0]/(v[inext][0]-v[i][0]); |
322 |
t1 = -v[i][2]/(v[inext][2]-v[i][2]); |
323 |
if(t0==t1) |
324 |
break; |
325 |
else if(t0 < t1) |
326 |
cells |= nbr_b[vcell[i]][0]; |
327 |
else |
328 |
cells |=nbr_b[vcell[i]][2]; |
329 |
|
330 |
break; |
331 |
case 6:/* crosses z=0 and y=0 */ |
332 |
t0 = -v[i][2]/(v[inext][2]-v[i][2]); |
333 |
t1 = -v[i][1]/(v[inext][1]-v[i][1]); |
334 |
if(t0==t1) |
335 |
break; |
336 |
else if(t0 < t1) |
337 |
{ |
338 |
cells |= nbr_b[vcell[i]][2]; |
339 |
} |
340 |
else |
341 |
{ |
342 |
cells |=nbr_b[vcell[i]][1]; |
343 |
} |
344 |
break; |
345 |
case 7: |
346 |
error(CONSISTENCY," Insert:Edge shouldnt be able to span 3 cells"); |
347 |
break; |
348 |
} |
349 |
} |
350 |
return(cells); |
351 |
} |
352 |
|
353 |
|
354 |
stRoot_trace_ray(qt,root,orig,dir,nextptr,func,f) |
355 |
QUADTREE qt; |
356 |
int root; |
357 |
FVECT orig,dir; |
358 |
int *nextptr; |
359 |
FUNC func; |
360 |
int *f; |
361 |
{ |
362 |
double br[3]; |
363 |
BCOORD bi[3],dbi[3]; |
364 |
|
365 |
/* Project the origin onto the root node plane */ |
366 |
/* Find the intersection point of the origin */ |
367 |
ray_to_qt_frame(root,orig,dir,bi,dbi); |
368 |
|
369 |
/* trace the ray starting with this node */ |
370 |
qtTrace_ray(qt,bi,dbi[0],dbi[1],dbi[2],nextptr,0,0,func,f); |
371 |
if(!QT_FLAG_IS_DONE(*f)) |
372 |
qt_frame_to_vert(root,bi,orig); |
373 |
|
374 |
} |
375 |
|
376 |
/* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each |
377 |
node that it intersects |
378 |
*/ |
379 |
int |
380 |
stTrace_ray(st,orig,dir,func) |
381 |
STREE *st; |
382 |
FVECT orig,dir; |
383 |
FUNC func; |
384 |
{ |
385 |
int next,last,i,f=0; |
386 |
QUADTREE qt; |
387 |
FVECT o,n,v; |
388 |
double pd,t,d; |
389 |
|
390 |
VCOPY(o,orig); |
391 |
#ifdef TEST_DRIVER |
392 |
Pick_cnt=0; |
393 |
#endif; |
394 |
/* Find the qt node that o falls in */ |
395 |
i = stLocate_root(o); |
396 |
qt = ST_ROOT_QT(st,i); |
397 |
|
398 |
stRoot_trace_ray(qt,i,o,dir,&next,func,&f); |
399 |
|
400 |
if(QT_FLAG_IS_DONE(f)) |
401 |
return(TRUE); |
402 |
/* |
403 |
d = DOT(orig,dir)/sqrt(DOT(orig,orig)); |
404 |
VSUM(v,orig,dir,-d); |
405 |
*/ |
406 |
/* Crossed over to next cell: id = nbr */ |
407 |
while(1) |
408 |
{ |
409 |
/* test if ray crosses plane between this quadtree triangle and |
410 |
its neighbor- if it does then find intersection point with |
411 |
ray and plane- this is the new origin |
412 |
*/ |
413 |
if(next == INVALID) |
414 |
return(FALSE); |
415 |
/* |
416 |
if(DOT(o,v) < 0.0) |
417 |
return(FALSE); |
418 |
*/ |
419 |
i = stBase_nbrs[i][next]; |
420 |
qt = ST_ROOT_QT(st,i); |
421 |
stRoot_trace_ray(qt,i,o,dir,&next,func,&f); |
422 |
if(QT_FLAG_IS_DONE(f)) |
423 |
return(TRUE); |
424 |
} |
425 |
} |
426 |
|
427 |
|
428 |
stVisit_poly(st,verts,l,root,func,n) |
429 |
STREE *st; |
430 |
FVECT *verts; |
431 |
LIST *l; |
432 |
unsigned int root; |
433 |
FUNC func; |
434 |
int n; |
435 |
{ |
436 |
int id0,id1,id2; |
437 |
FVECT tri[3]; |
438 |
|
439 |
id0 = pop_list(&l); |
440 |
id1 = pop_list(&l); |
441 |
while(l) |
442 |
{ |
443 |
id2 = pop_list(&l); |
444 |
VCOPY(tri[0],verts[id0]); |
445 |
VCOPY(tri[1],verts[id1]); |
446 |
VCOPY(tri[2],verts[id2]); |
447 |
stRoot_visit_tri(st,root,tri,func,n); |
448 |
id1 = id2; |
449 |
} |
450 |
} |
451 |
/* Assumption: know crosses plane:dont need to check for 'on' case */ |
452 |
intersect_edge_coord_plane(v0,v1,w,r) |
453 |
FVECT v0,v1; |
454 |
int w; |
455 |
FVECT r; |
456 |
{ |
457 |
FVECT dv; |
458 |
int wnext; |
459 |
double t; |
460 |
|
461 |
VSUB(dv,v1,v0); |
462 |
t = -v0[w]/dv[w]; |
463 |
r[w] = 0.0; |
464 |
wnext = (w+1)%3; |
465 |
r[wnext] = v0[wnext] + dv[wnext]*t; |
466 |
wnext = (w+2)%3; |
467 |
r[wnext] = v0[wnext] + dv[wnext]*t; |
468 |
} |
469 |
|
470 |
|
471 |
stVisit_clip(st,i,verts,vcnt,l,cell,func,n) |
472 |
STREE *st; |
473 |
int i; |
474 |
FVECT *verts; |
475 |
int *vcnt; |
476 |
LIST *l; |
477 |
unsigned int cell; |
478 |
FUNC func; |
479 |
int n; |
480 |
{ |
481 |
|
482 |
LIST *labove,*lbelow,*endb,*enda; |
483 |
int last = -1; |
484 |
int id,last_id; |
485 |
int first,first_id; |
486 |
unsigned int cellb; |
487 |
|
488 |
labove = lbelow = NULL; |
489 |
enda = endb = NULL; |
490 |
while(l) |
491 |
{ |
492 |
id = pop_list(&l); |
493 |
if(ZERO(verts[id][i])) |
494 |
{ |
495 |
if(last==-1) |
496 |
{/* add below and above */ |
497 |
first = 2; |
498 |
first_id= id; |
499 |
} |
500 |
lbelow=add_data(lbelow,id,&endb); |
501 |
labove=add_data(labove,id,&enda); |
502 |
last_id = id; |
503 |
last = 2; |
504 |
continue; |
505 |
} |
506 |
if(verts[id][i] < 0) |
507 |
{ |
508 |
if(last != 1) |
509 |
{ |
510 |
lbelow=add_data(lbelow,id,&endb); |
511 |
if(last==-1) |
512 |
{ |
513 |
first = 0; |
514 |
first_id = id; |
515 |
} |
516 |
last_id = id; |
517 |
last = 0; |
518 |
continue; |
519 |
} |
520 |
/* intersect_edges */ |
521 |
intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]); |
522 |
/*newpoint goes to above and below*/ |
523 |
lbelow=add_data(lbelow,*vcnt,&endb); |
524 |
lbelow=add_data(lbelow,id,&endb); |
525 |
labove=add_data(labove,*vcnt,&enda); |
526 |
last = 0; |
527 |
last_id = id; |
528 |
(*vcnt)++; |
529 |
} |
530 |
else |
531 |
{ |
532 |
if(last != 0) |
533 |
{ |
534 |
labove=add_data(labove,id,&enda); |
535 |
if(last==-1) |
536 |
{ |
537 |
first = 1; |
538 |
first_id = id; |
539 |
} |
540 |
last_id = id; |
541 |
last = 1; |
542 |
continue; |
543 |
} |
544 |
/* intersect_edges */ |
545 |
/*newpoint goes to above and below*/ |
546 |
intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]); |
547 |
lbelow=add_data(lbelow,*vcnt,&endb); |
548 |
labove=add_data(labove,*vcnt,&enda); |
549 |
labove=add_data(labove,id,&enda); |
550 |
last_id = id; |
551 |
(*vcnt)++; |
552 |
last = 1; |
553 |
} |
554 |
} |
555 |
if(first != 2 && first != last) |
556 |
{ |
557 |
intersect_edge_coord_plane(verts[id],verts[first_id],i,verts[*vcnt]); |
558 |
/*newpoint goes to above and below*/ |
559 |
lbelow=add_data(lbelow,*vcnt,&endb); |
560 |
labove=add_data(labove,*vcnt,&enda); |
561 |
(*vcnt)++; |
562 |
|
563 |
} |
564 |
if(i==2) |
565 |
{ |
566 |
if(lbelow) |
567 |
{ |
568 |
if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow))) |
569 |
{ |
570 |
cellb = cell | (1 << i); |
571 |
stVisit_poly(st,verts,lbelow,cellb,func,n); |
572 |
} |
573 |
else |
574 |
free_list(lbelow); |
575 |
} |
576 |
if(labove) |
577 |
{ |
578 |
if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove))) |
579 |
stVisit_poly(st,verts,labove,cell,func,n); |
580 |
else |
581 |
free_list(labove); |
582 |
} |
583 |
} |
584 |
else |
585 |
{ |
586 |
if(lbelow) |
587 |
{ |
588 |
if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow))) |
589 |
{ |
590 |
cellb = cell | (1 << i); |
591 |
stVisit_clip(st,i+1,verts,vcnt,lbelow,cellb,func,n); |
592 |
} |
593 |
else |
594 |
free_list(lbelow); |
595 |
} |
596 |
if(labove) |
597 |
{ |
598 |
if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove))) |
599 |
stVisit_clip(st,i+1,verts,vcnt,labove,cell,func,n); |
600 |
else |
601 |
free_list(labove); |
602 |
} |
603 |
} |
604 |
|
605 |
} |
606 |
|
607 |
stVisit(st,tri,func,n) |
608 |
STREE *st; |
609 |
FVECT tri[3]; |
610 |
FUNC func; |
611 |
int n; |
612 |
{ |
613 |
int r0,r1,r2; |
614 |
LIST *l; |
615 |
|
616 |
r0 = stLocate_root(tri[0]); |
617 |
r1 = stLocate_root(tri[1]); |
618 |
r2 = stLocate_root(tri[2]); |
619 |
if(r0 == r1 && r1==r2) |
620 |
stRoot_visit_tri(st,r0,tri,func,n); |
621 |
else |
622 |
{ |
623 |
FVECT verts[ST_CLIP_VERTS]; |
624 |
int cnt; |
625 |
|
626 |
VCOPY(verts[0],tri[0]); |
627 |
VCOPY(verts[1],tri[1]); |
628 |
VCOPY(verts[2],tri[2]); |
629 |
|
630 |
l = add_data(NULL,0,NULL); |
631 |
l = add_data(l,1,NULL); |
632 |
l = add_data(l,2,NULL); |
633 |
cnt = 3; |
634 |
stVisit_clip(st,0,verts,&cnt,l,0,func,n); |
635 |
} |
636 |
} |
637 |
|
638 |
|
639 |
BCOORD qtRoot[3][3] = { {MAXBCOORD2,0,0},{0,MAXBCOORD2,0},{0,0,MAXBCOORD2}}; |
640 |
|
641 |
|
642 |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02) |
643 |
int root; |
644 |
FVECT tri[3]; |
645 |
BCOORD b0[3],b1[3],b2[3]; |
646 |
BCOORD db10[3],db21[3],db02[3]; |
647 |
{ |
648 |
/* Project the vertex into the qtree plane */ |
649 |
vert_to_qt_frame(root,tri[0],b0); |
650 |
vert_to_qt_frame(root,tri[1],b1); |
651 |
vert_to_qt_frame(root,tri[2],b2); |
652 |
|
653 |
/* calculate triangle edge differences in new frame */ |
654 |
db10[0] = b1[0] - b0[0]; db10[1] = b1[1] - b0[1]; db10[2] = b1[2] - b0[2]; |
655 |
db21[0] = b2[0] - b1[0]; db21[1] = b2[1] - b1[1]; db21[2] = b2[2] - b1[2]; |
656 |
db02[0] = b0[0] - b2[0]; db02[1] = b0[1] - b2[1]; db02[2] = b0[2] - b2[2]; |
657 |
} |
658 |
|
659 |
|
660 |
QUADTREE |
661 |
stRoot_insert_tri(st,root,tri,f) |
662 |
STREE *st; |
663 |
int root; |
664 |
FVECT tri[3]; |
665 |
FUNC f; |
666 |
{ |
667 |
BCOORD b0[3],b1[3],b2[3]; |
668 |
BCOORD db10[3],db21[3],db02[3]; |
669 |
unsigned int s0,s1,s2,sq0,sq1,sq2; |
670 |
QUADTREE qt; |
671 |
|
672 |
/* Map the triangle vertices into the canonical barycentric frame */ |
673 |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02); |
674 |
|
675 |
/* Calculate initial sidedness info */ |
676 |
SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]); |
677 |
SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]); |
678 |
|
679 |
qt = ST_ROOT_QT(st,root); |
680 |
/* Visit cells that triangle intersects */ |
681 |
qt = qtInsert_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2], |
682 |
b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,0); |
683 |
|
684 |
return(qt); |
685 |
} |
686 |
|
687 |
stRoot_visit_tri(st,root,tri,f,n) |
688 |
STREE *st; |
689 |
int root; |
690 |
FVECT tri[3]; |
691 |
FUNC f; |
692 |
int n; |
693 |
{ |
694 |
BCOORD b0[3],b1[3],b2[3]; |
695 |
BCOORD db10[3],db21[3],db02[3]; |
696 |
unsigned int s0,s1,s2,sq0,sq1,sq2; |
697 |
QUADTREE qt; |
698 |
|
699 |
/* Map the triangle vertices into the canonical barycentric frame */ |
700 |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02); |
701 |
|
702 |
/* Calculate initial sidedness info */ |
703 |
SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]); |
704 |
SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]); |
705 |
|
706 |
qt = ST_ROOT_QT(st,root); |
707 |
QT_SET_FLAG(ST_QT(st,root)); |
708 |
/* Visit cells that triangle intersects */ |
709 |
qtVisit_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2], |
710 |
b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,n); |
711 |
|
712 |
} |
713 |
|
714 |
stInsert_tri(st,tri,f) |
715 |
STREE *st; |
716 |
FVECT tri[3]; |
717 |
FUNC f; |
718 |
{ |
719 |
unsigned int cells,which; |
720 |
int root; |
721 |
|
722 |
|
723 |
/* calculate entry/exit points of edges through the cells */ |
724 |
cells = stTri_cells(st,tri); |
725 |
|
726 |
/* For each cell that quadtree intersects: Map the triangle vertices into |
727 |
the canonical barycentric frame of (1,0,0), (0,1,0),(0,0,1). Insert |
728 |
by first doing a trivial reject on the interior nodes, and then a |
729 |
tri/tri intersection at the leaf nodes. |
730 |
*/ |
731 |
for(root=0,which=1; root < ST_NUM_ROOT_NODES; root++,which <<= 1) |
732 |
{ |
733 |
/* For each of the quadtree roots: check if marked as intersecting tri*/ |
734 |
if(cells & which) |
735 |
/* Visit tri cells */ |
736 |
ST_ROOT_QT(st,root) = stRoot_insert_tri(st,root,tri,f); |
737 |
} |
738 |
} |
739 |
|
740 |
stInsert_samp(st,p,f) |
741 |
STREE *st; |
742 |
FVECT p; |
743 |
FUNC f; |
744 |
{ |
745 |
|
746 |
QUADTREE qt; |
747 |
BCOORD bcoordi[3]; |
748 |
int i,done; |
749 |
|
750 |
/* Find root quadtree that contains p */ |
751 |
i = stLocate_root(p); |
752 |
qt = ST_ROOT_QT(st,i); |
753 |
|
754 |
vert_to_qt_frame(i,p,bcoordi); |
755 |
ST_ROOT_QT(st,i) = qtInsert_point(i,qt,EMPTY,qtRoot[0],qtRoot[1], |
756 |
qtRoot[2],bcoordi,MAXBCOORD2>>1,f,0,&done); |
757 |
|
758 |
} |
759 |
|
760 |
|
761 |
|
762 |
|
763 |
|
764 |
|
765 |
|
766 |
|
767 |
|
768 |
|