| 6 |
|
|
| 7 |
|
/* |
| 8 |
|
* sm_stree.c |
| 9 |
+ |
* An stree (spherical quadtree) is defined by an octahedron in |
| 10 |
+ |
* canonical form,and a world center point. Each face of the |
| 11 |
+ |
* octahedron is adaptively subdivided as a planar triangular quadtree. |
| 12 |
+ |
* World space geometry is projected onto the quadtree faces from the |
| 13 |
+ |
* sphere center. |
| 14 |
|
*/ |
| 15 |
|
#include "standard.h" |
| 16 |
< |
#include "object.h" |
| 12 |
< |
|
| 16 |
> |
#include "sm_flag.h" |
| 17 |
|
#include "sm_geom.h" |
| 18 |
+ |
#include "sm_qtree.h" |
| 19 |
|
#include "sm_stree.h" |
| 20 |
|
|
| 21 |
+ |
#ifdef TEST_DRIVER |
| 22 |
+ |
extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500]; |
| 23 |
+ |
extern int Pick_cnt; |
| 24 |
+ |
#endif |
| 25 |
+ |
/* octahedron coordinates */ |
| 26 |
+ |
FVECT stDefault_base[6] = { {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.}, |
| 27 |
+ |
{-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}}; |
| 28 |
+ |
/* octahedron triangle vertices */ |
| 29 |
+ |
int stBase_verts[8][3] = { {0,1,2},{0,5,1},{3,1,5},{3,2,1}, |
| 30 |
+ |
{0,2,4},{5,0,4},{5,4,3},{2,3,4}}; |
| 31 |
+ |
/* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/ |
| 32 |
+ |
int stBase_nbrs[8][3] = { {3,4,1},{2,0,5},{1,6,3},{0,2,7}, |
| 33 |
+ |
{7,5,0},{4,6,1},{7,2,5},{6,4,3}}; |
| 34 |
+ |
/* look up table for octahedron point location */ |
| 35 |
+ |
int stlocatetbl[8] = {6,7,2,3,5,4,1,0}; |
| 36 |
|
|
| 17 |
– |
/* Define 4 vertices on the sphere to create a tetrahedralization on |
| 18 |
– |
the sphere: triangles are as follows: |
| 19 |
– |
(0,1,2),(0,2,3), (0,3,1), (1,3,2) |
| 20 |
– |
*/ |
| 37 |
|
|
| 38 |
< |
FVECT stDefault_base[4] = { {SQRT3_INV, SQRT3_INV, SQRT3_INV}, |
| 39 |
< |
{-SQRT3_INV, -SQRT3_INV, SQRT3_INV}, |
| 40 |
< |
{-SQRT3_INV, SQRT3_INV, -SQRT3_INV}, |
| 41 |
< |
{SQRT3_INV, -SQRT3_INV, -SQRT3_INV}}; |
| 26 |
< |
int stTri_verts[4][3] = { {2,1,0}, |
| 27 |
< |
{3,2,0}, |
| 28 |
< |
{1,3,0}, |
| 29 |
< |
{2,3,1}}; |
| 30 |
< |
|
| 31 |
< |
stNth_base_verts(st,i,v1,v2,v3) |
| 38 |
> |
/* Initializes an stree structure with origin 'center': |
| 39 |
> |
Frees existing quadtrees hanging off of the roots |
| 40 |
> |
*/ |
| 41 |
> |
stInit(st) |
| 42 |
|
STREE *st; |
| 33 |
– |
int i; |
| 34 |
– |
FVECT v1,v2,v3; |
| 43 |
|
{ |
| 44 |
< |
VCOPY(v1,ST_NTH_BASE(st,stTri_verts[i][0])); |
| 45 |
< |
VCOPY(v2,ST_NTH_BASE(st,stTri_verts[i][1])); |
| 46 |
< |
VCOPY(v3,ST_NTH_BASE(st,stTri_verts[i][2])); |
| 44 |
> |
ST_TOP_ROOT(st) = qtAlloc(); |
| 45 |
> |
ST_BOTTOM_ROOT(st) = qtAlloc(); |
| 46 |
> |
ST_INIT_ROOT(st); |
| 47 |
|
} |
| 48 |
|
|
| 49 |
< |
/* Frees the 4 quadtrees rooted at st */ |
| 49 |
> |
/* Frees the children of the 2 quadtrees rooted at st, |
| 50 |
> |
Does not free root nodes: just clears |
| 51 |
> |
*/ |
| 52 |
|
stClear(st) |
| 53 |
< |
STREE *st; |
| 53 |
> |
STREE *st; |
| 54 |
|
{ |
| 55 |
< |
int i; |
| 56 |
< |
|
| 47 |
< |
/* stree always has 4 children corresponding to the base tris |
| 48 |
< |
*/ |
| 49 |
< |
for (i = 0; i < 4; i++) |
| 50 |
< |
qtFree(ST_NTH_ROOT(st, i)); |
| 51 |
< |
|
| 52 |
< |
QT_CLEAR_CHILDREN(ST_ROOT(st)); |
| 53 |
< |
|
| 55 |
> |
qtDone(); |
| 56 |
> |
stInit(st); |
| 57 |
|
} |
| 58 |
|
|
| 59 |
< |
|
| 59 |
> |
/* Allocates a stree structure and creates octahedron base */ |
| 60 |
|
STREE |
| 61 |
< |
*stInit(st,center,base) |
| 61 |
> |
*stAlloc(st) |
| 62 |
|
STREE *st; |
| 60 |
– |
FVECT center,base[4]; |
| 63 |
|
{ |
| 64 |
+ |
int i,m; |
| 65 |
+ |
FVECT v0,v1,v2; |
| 66 |
+ |
FVECT n; |
| 67 |
+ |
|
| 68 |
+ |
if(!st) |
| 69 |
+ |
if(!(st = (STREE *)malloc(sizeof(STREE)))) |
| 70 |
+ |
error(SYSTEM,"stAlloc(): Unable to allocate memory\n"); |
| 71 |
|
|
| 72 |
< |
if(base) |
| 73 |
< |
ST_SET_BASE(st,base); |
| 74 |
< |
else |
| 75 |
< |
ST_SET_BASE(st,stDefault_base); |
| 72 |
> |
/* Allocate the top and bottom quadtree root nodes */ |
| 73 |
> |
stInit(st); |
| 74 |
> |
|
| 75 |
> |
/* Set the octahedron base */ |
| 76 |
> |
ST_SET_BASE(st,stDefault_base); |
| 77 |
|
|
| 78 |
< |
ST_SET_CENTER(st,center); |
| 79 |
< |
stClear(st); |
| 80 |
< |
|
| 78 |
> |
/* Calculate octahedron face and edge normals */ |
| 79 |
> |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
| 80 |
> |
{ |
| 81 |
> |
VCOPY(v0,ST_NTH_V(st,i,0)); |
| 82 |
> |
VCOPY(v1,ST_NTH_V(st,i,1)); |
| 83 |
> |
VCOPY(v2,ST_NTH_V(st,i,2)); |
| 84 |
> |
tri_plane_equation(v0,v1,v2, &ST_NTH_PLANE(st,i),FALSE); |
| 85 |
> |
m = max_index(FP_N(ST_NTH_PLANE(st,i)),NULL); |
| 86 |
> |
FP_X(ST_NTH_PLANE(st,i)) = (m+1)%3; |
| 87 |
> |
FP_Y(ST_NTH_PLANE(st,i)) = (m+2)%3; |
| 88 |
> |
FP_Z(ST_NTH_PLANE(st,i)) = m; |
| 89 |
> |
VCROSS(ST_EDGE_NORM(st,i,0),v1,v0); |
| 90 |
> |
VCROSS(ST_EDGE_NORM(st,i,1),v2,v1); |
| 91 |
> |
VCROSS(ST_EDGE_NORM(st,i,2),v0,v2); |
| 92 |
> |
} |
| 93 |
|
return(st); |
| 94 |
|
} |
| 95 |
|
|
| 96 |
|
|
| 97 |
< |
/* "base" defines 4 vertices on the sphere to create a tetrahedralization on |
| 98 |
< |
the sphere: triangles are as follows:(0,1,2),(0,2,3), (0,3,1), (1,3,2) |
| 99 |
< |
if base is null: does default. |
| 97 |
> |
/* Return quadtree leaf node containing point 'p'*/ |
| 98 |
> |
QUADTREE |
| 99 |
> |
stPoint_locate(st,p) |
| 100 |
> |
STREE *st; |
| 101 |
> |
FVECT p; |
| 102 |
> |
{ |
| 103 |
> |
int i; |
| 104 |
> |
QUADTREE root,qt; |
| 105 |
|
|
| 106 |
< |
*/ |
| 107 |
< |
STREE |
| 108 |
< |
*stAlloc(st) |
| 106 |
> |
/* Find root quadtree that contains p */ |
| 107 |
> |
i = stPoint_in_root(p); |
| 108 |
> |
root = ST_NTH_ROOT(st,i); |
| 109 |
> |
|
| 110 |
> |
/* Traverse quadtree to leaf level */ |
| 111 |
> |
qt = qtRoot_point_locate(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
| 112 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),p); |
| 113 |
> |
return(qt); |
| 114 |
> |
} |
| 115 |
> |
|
| 116 |
> |
/* Add triangle 'id' with coordinates 't0,t1,t2' to the stree: returns |
| 117 |
> |
FALSE on error, TRUE otherwise |
| 118 |
> |
*/ |
| 119 |
> |
|
| 120 |
> |
stAdd_tri(st,id,t0,t1,t2) |
| 121 |
|
STREE *st; |
| 122 |
+ |
int id; |
| 123 |
+ |
FVECT t0,t1,t2; |
| 124 |
|
{ |
| 125 |
|
int i; |
| 126 |
+ |
QUADTREE root; |
| 127 |
|
|
| 128 |
< |
if(!st) |
| 129 |
< |
st = (STREE *)malloc(sizeof(STREE)); |
| 128 |
> |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
| 129 |
> |
{ |
| 130 |
> |
root = ST_NTH_ROOT(st,i); |
| 131 |
> |
ST_NTH_ROOT(st,i) = qtRoot_add_tri(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
| 132 |
> |
ST_NTH_V(st,i,2),t0,t1,t2,id,0); |
| 133 |
> |
} |
| 134 |
> |
} |
| 135 |
|
|
| 136 |
< |
ST_ROOT(st) = qtAlloc(); |
| 137 |
< |
|
| 138 |
< |
QT_CLEAR_CHILDREN(ST_ROOT(st)); |
| 136 |
> |
/* Remove triangle 'id' with coordinates 't0,t1,t2' to the stree: returns |
| 137 |
> |
FALSE on error, TRUE otherwise |
| 138 |
> |
*/ |
| 139 |
|
|
| 140 |
< |
return(st); |
| 140 |
> |
stRemove_tri(st,id,t0,t1,t2) |
| 141 |
> |
STREE *st; |
| 142 |
> |
int id; |
| 143 |
> |
FVECT t0,t1,t2; |
| 144 |
> |
{ |
| 145 |
> |
int i; |
| 146 |
> |
QUADTREE root; |
| 147 |
> |
|
| 148 |
> |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
| 149 |
> |
{ |
| 150 |
> |
root = ST_NTH_ROOT(st,i); |
| 151 |
> |
ST_NTH_ROOT(st,i)=qtRoot_remove_tri(root,id,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
| 152 |
> |
ST_NTH_V(st,i,2),t0,t1,t2); |
| 153 |
> |
} |
| 154 |
|
} |
| 155 |
|
|
| 156 |
< |
|
| 157 |
< |
/* Find location of sample point in the DAG and return lowest level |
| 98 |
< |
containing triangle. "type" indicates whether the point was found |
| 99 |
< |
to be in interior to the triangle: GT_FACE, on one of its |
| 100 |
< |
edges GT_EDGE or coinciding with one of its vertices GT_VERTEX. |
| 101 |
< |
"which" specifies which vertex (0,1,2) or edge (0=v0v1, 1 = v1v2, 2 = v21) |
| 156 |
> |
/* Visit all nodes that are intersected by the edges of triangle 't0,t1,t2' |
| 157 |
> |
and apply 'func' |
| 158 |
|
*/ |
| 159 |
< |
int |
| 160 |
< |
stPoint_locate(st,npt,type,which) |
| 161 |
< |
STREE *st; |
| 162 |
< |
FVECT npt; |
| 163 |
< |
char *type,*which; |
| 159 |
> |
|
| 160 |
> |
stVisit_tri_edges(st,t0,t1,t2,func,fptr,argptr) |
| 161 |
> |
STREE *st; |
| 162 |
> |
FVECT t0,t1,t2; |
| 163 |
> |
int (*func)(),*fptr; |
| 164 |
> |
int *argptr; |
| 165 |
|
{ |
| 166 |
< |
int i,d,j,id; |
| 167 |
< |
QUADTREE *rootptr,qt; |
| 168 |
< |
FVECT v1,v2,v3; |
| 112 |
< |
OBJECT os[MAXSET+1],*optr; |
| 113 |
< |
char w; |
| 114 |
< |
FVECT p0,p1,p2; |
| 166 |
> |
int id,i,w,next; |
| 167 |
> |
QUADTREE root; |
| 168 |
> |
FVECT v[3],i_pt; |
| 169 |
|
|
| 170 |
< |
/* Test each of the root triangles against point id */ |
| 171 |
< |
for(i=0; i < 4; i++) |
| 172 |
< |
{ |
| 173 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
| 174 |
< |
stNth_base_verts(st,i,v1,v2,v3); |
| 175 |
< |
/* Return tri that p falls in */ |
| 176 |
< |
qt = qtRoot_point_locate(rootptr,v1,v2,v3,npt,type,which); |
| 177 |
< |
if(QT_IS_EMPTY(qt)) |
| 178 |
< |
continue; |
| 179 |
< |
/* Get the set */ |
| 180 |
< |
qtgetset(os,qt); |
| 181 |
< |
for (j = QT_SET_CNT(os),optr = QT_SET_PTR(os); j > 0; j--) |
| 182 |
< |
{ |
| 183 |
< |
/* Find the first triangle that pt falls */ |
| 184 |
< |
id = QT_SET_NEXT_ELEM(optr); |
| 185 |
< |
qtTri_verts_from_id(id,p0,p1,p2); |
| 186 |
< |
d = test_single_point_against_spherical_tri(p0,p1,p2,npt,&w); |
| 187 |
< |
if(d) |
| 188 |
< |
{ |
| 189 |
< |
if(type) |
| 190 |
< |
*type = d; |
| 191 |
< |
if(which) |
| 192 |
< |
*which = w; |
| 193 |
< |
return(id); |
| 194 |
< |
} |
| 195 |
< |
} |
| 196 |
< |
} |
| 197 |
< |
if(which) |
| 198 |
< |
*which = 0; |
| 199 |
< |
if(type) |
| 146 |
< |
*type = 0; |
| 147 |
< |
return(EMPTY); |
| 170 |
> |
VCOPY(v[0],t0); VCOPY(v[1],t1); VCOPY(v[2],t2); |
| 171 |
> |
w = -1; |
| 172 |
> |
|
| 173 |
> |
/* Locate the root containing triangle vertex v0 */ |
| 174 |
> |
i = stPoint_in_root(v[0]); |
| 175 |
> |
/* Mark the root node as visited */ |
| 176 |
> |
QT_SET_FLAG(ST_ROOT(st,i)); |
| 177 |
> |
root = ST_NTH_ROOT(st,i); |
| 178 |
> |
|
| 179 |
> |
ST_NTH_ROOT(st,i) = qtRoot_visit_tri_edges(root,ST_NTH_V(st,i,0), |
| 180 |
> |
ST_NTH_V(st,i,1),ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),v,i_pt,&w, |
| 181 |
> |
&next,func,fptr,argptr); |
| 182 |
> |
if(QT_FLAG_IS_DONE(*fptr)) |
| 183 |
> |
return; |
| 184 |
> |
|
| 185 |
> |
/* Crossed over to next node: id = nbr */ |
| 186 |
> |
while(1) |
| 187 |
> |
{ |
| 188 |
> |
/* test if ray crosses plane between this quadtree triangle and |
| 189 |
> |
its neighbor- if it does then find intersection point with |
| 190 |
> |
ray and plane- this is the new start point |
| 191 |
> |
*/ |
| 192 |
> |
i = stBase_nbrs[i][next]; |
| 193 |
> |
root = ST_NTH_ROOT(st,i); |
| 194 |
> |
ST_NTH_ROOT(st,i) = |
| 195 |
> |
qtRoot_visit_tri_edges(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
| 196 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),v,i_pt,&w,&next,func,fptr,argptr); |
| 197 |
> |
if(QT_FLAG_IS_DONE(*fptr)) |
| 198 |
> |
return; |
| 199 |
> |
} |
| 200 |
|
} |
| 201 |
|
|
| 202 |
+ |
/* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each |
| 203 |
+ |
node that it intersects |
| 204 |
+ |
*/ |
| 205 |
|
int |
| 206 |
< |
stPoint_locate_cell(st,p,type,which) |
| 207 |
< |
STREE *st; |
| 208 |
< |
FVECT p; |
| 209 |
< |
char *type,*which; |
| 206 |
> |
stTrace_ray(st,orig,dir,func,argptr) |
| 207 |
> |
STREE *st; |
| 208 |
> |
FVECT orig,dir; |
| 209 |
> |
int (*func)(); |
| 210 |
> |
int *argptr; |
| 211 |
|
{ |
| 212 |
< |
int i,d; |
| 213 |
< |
QUADTREE *rootptr,qt; |
| 214 |
< |
FVECT v0,v1,v2; |
| 212 |
> |
int next,last,i,f=0; |
| 213 |
> |
QUADTREE root; |
| 214 |
> |
FVECT o,n; |
| 215 |
> |
double pd,t; |
| 216 |
|
|
| 217 |
+ |
VCOPY(o,orig); |
| 218 |
+ |
|
| 219 |
+ |
/* Find the root node that o falls in */ |
| 220 |
+ |
i = stPoint_in_root(o); |
| 221 |
+ |
root = ST_NTH_ROOT(st,i); |
| 222 |
|
|
| 223 |
< |
/* Test each of the root triangles against point id */ |
| 224 |
< |
for(i=0; i < 4; i++) |
| 225 |
< |
{ |
| 226 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
| 227 |
< |
stNth_base_verts(st,i,v0,v1,v2); |
| 228 |
< |
/* Return tri that p falls in */ |
| 229 |
< |
qt = qtRoot_point_locate(rootptr,v0,v1,v2,p,type,which); |
| 230 |
< |
/* NOTE: For now return only one triangle */ |
| 231 |
< |
if(!QT_IS_EMPTY(qt)) |
| 232 |
< |
return(qt); |
| 233 |
< |
} /* Point not found */ |
| 234 |
< |
if(which) |
| 235 |
< |
*which = 0; |
| 236 |
< |
if(type) |
| 237 |
< |
*type = 0; |
| 238 |
< |
return(EMPTY); |
| 223 |
> |
ST_NTH_ROOT(st,i) = |
| 224 |
> |
qtRoot_trace_ray(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
| 225 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),o,dir,&next,func,&f,argptr); |
| 226 |
> |
|
| 227 |
> |
if(QT_FLAG_IS_DONE(f)) |
| 228 |
> |
return(TRUE); |
| 229 |
> |
|
| 230 |
> |
/* Crossed over to next cell: id = nbr */ |
| 231 |
> |
while(1) |
| 232 |
> |
{ |
| 233 |
> |
/* test if ray crosses plane between this quadtree triangle and |
| 234 |
> |
its neighbor- if it does then find intersection point with |
| 235 |
> |
ray and plane- this is the new origin |
| 236 |
> |
*/ |
| 237 |
> |
if(next == INVALID) |
| 238 |
> |
return(FALSE); |
| 239 |
> |
if(!intersect_ray_oplane(orig,dir, |
| 240 |
> |
ST_EDGE_NORM(st,i,(next+1)%3),NULL,o)) |
| 241 |
> |
/* Ray does not cross into next cell: done and tri not found*/ |
| 242 |
> |
return(FALSE); |
| 243 |
> |
|
| 244 |
> |
VSUM(o,o,dir,10*FTINY); |
| 245 |
> |
i = stBase_nbrs[i][next]; |
| 246 |
> |
root = ST_NTH_ROOT(st,i); |
| 247 |
> |
|
| 248 |
> |
ST_NTH_ROOT(st,i) = |
| 249 |
> |
qtRoot_trace_ray(root, ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
| 250 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),o,dir,&next,func,&f,argptr); |
| 251 |
> |
if(QT_FLAG_IS_DONE(f)) |
| 252 |
> |
return(TRUE); |
| 253 |
> |
} |
| 254 |
|
} |
| 255 |
|
|
| 256 |
< |
int |
| 257 |
< |
stAdd_tri(st,id,v0,v1,v2) |
| 258 |
< |
STREE *st; |
| 259 |
< |
int id; |
| 260 |
< |
FVECT v0,v1,v2; |
| 256 |
> |
|
| 257 |
> |
/* Visit nodes intersected by tri 't0,t1,t2' and apply 'func(arg1,arg2,arg3): |
| 258 |
> |
assumes that stVisit_tri_edges has already been called such that all nodes |
| 259 |
> |
intersected by tri edges are already marked as visited |
| 260 |
> |
*/ |
| 261 |
> |
stVisit_tri(st,t0,t1,t2,func,f,argptr) |
| 262 |
> |
STREE *st; |
| 263 |
> |
FVECT t0,t1,t2; |
| 264 |
> |
int (*func)(),*f; |
| 265 |
> |
int *argptr; |
| 266 |
|
{ |
| 267 |
< |
|
| 268 |
< |
int i,found; |
| 269 |
< |
QUADTREE *rootptr; |
| 188 |
< |
FVECT t0,t1,t2; |
| 267 |
> |
int i; |
| 268 |
> |
QUADTREE root; |
| 269 |
> |
FVECT n0,n1,n2; |
| 270 |
|
|
| 271 |
< |
found = 0; |
| 272 |
< |
for(i=0; i < 4; i++) |
| 271 |
> |
/* Calcuate the edge normals for tri */ |
| 272 |
> |
VCROSS(n0,t1,t0); |
| 273 |
> |
VCROSS(n1,t2,t1); |
| 274 |
> |
VCROSS(n2,t0,t2); |
| 275 |
> |
|
| 276 |
> |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
| 277 |
|
{ |
| 278 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
| 279 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
| 280 |
< |
found |= qtAdd_tri(rootptr,id,v0,v1,v2,t0,t1,t2,0); |
| 278 |
> |
root = ST_NTH_ROOT(st,i); |
| 279 |
> |
ST_NTH_ROOT(st,i) = qtVisit_tri_interior(root,ST_NTH_V(st,i,0), |
| 280 |
> |
ST_NTH_V(st,i,1),ST_NTH_V(st,i,2),t0,t1,t2,n0,n1,n2,0,func,f,argptr); |
| 281 |
> |
|
| 282 |
|
} |
| 197 |
– |
return(found); |
| 283 |
|
} |
| 284 |
|
|
| 285 |
+ |
/* Visit nodes intersected by tri 't0,t1,t2'.Apply 'edge_func(arg1,arg2,arg3)', |
| 286 |
+ |
to those nodes intersected by edges, and interior_func to ALL nodes: |
| 287 |
+ |
ie some Nodes will be visited more than once |
| 288 |
+ |
*/ |
| 289 |
|
int |
| 290 |
< |
stApply_to_tri_cells(st,v0,v1,v2,func,arg) |
| 291 |
< |
STREE *st; |
| 292 |
< |
FVECT v0,v1,v2; |
| 293 |
< |
int (*func)(); |
| 294 |
< |
char *arg; |
| 290 |
> |
stApply_to_tri(st,t0,t1,t2,edge_func,tri_func,argptr) |
| 291 |
> |
STREE *st; |
| 292 |
> |
FVECT t0,t1,t2; |
| 293 |
> |
int (*edge_func)(),(*tri_func)(); |
| 294 |
> |
int *argptr; |
| 295 |
|
{ |
| 296 |
< |
int i,found; |
| 297 |
< |
QUADTREE *rootptr; |
| 298 |
< |
FVECT t0,t1,t2; |
| 296 |
> |
int f; |
| 297 |
> |
FVECT dir; |
| 298 |
> |
|
| 299 |
> |
/* First add all of the leaf cells lying on the triangle perimeter: |
| 300 |
> |
mark all cells seen on the way |
| 301 |
> |
*/ |
| 302 |
> |
f = 0; |
| 303 |
> |
/* Visit cells along edges of the tri */ |
| 304 |
> |
stVisit_tri_edges(st,t0,t1,t2,edge_func,&f,argptr); |
| 305 |
|
|
| 306 |
< |
found = 0; |
| 307 |
< |
for(i=0; i < 4; i++) |
| 308 |
< |
{ |
| 214 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
| 215 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
| 216 |
< |
found |= qtApply_to_tri_cells(rootptr,v0,v1,v2,t0,t1,t2,func,arg); |
| 217 |
< |
} |
| 218 |
< |
return(found); |
| 306 |
> |
/* Now visit All cells interior */ |
| 307 |
> |
if(QT_FLAG_FILL_TRI(f) || QT_FLAG_UPDATE(f)) |
| 308 |
> |
stVisit_tri(st,t0,t1,t2,tri_func,&f,argptr); |
| 309 |
|
} |
| 310 |
|
|
| 311 |
|
|
| 312 |
|
|
| 313 |
|
|
| 224 |
– |
int |
| 225 |
– |
stRemove_tri(st,id,v0,v1,v2) |
| 226 |
– |
STREE *st; |
| 227 |
– |
int id; |
| 228 |
– |
FVECT v0,v1,v2; |
| 229 |
– |
{ |
| 230 |
– |
|
| 231 |
– |
int i,found; |
| 232 |
– |
QUADTREE *rootptr; |
| 233 |
– |
FVECT t0,t1,t2; |
| 234 |
– |
|
| 235 |
– |
found = 0; |
| 236 |
– |
for(i=0; i < 4; i++) |
| 237 |
– |
{ |
| 238 |
– |
rootptr = ST_NTH_ROOT_PTR(st,i); |
| 239 |
– |
stNth_base_verts(st,i,t0,t1,t2); |
| 240 |
– |
found |= qtRemove_tri(rootptr,id,v0,v1,v2,t0,t1,t2); |
| 241 |
– |
} |
| 242 |
– |
return(found); |
| 243 |
– |
} |
| 314 |
|
|
| 315 |
|
|
| 316 |
|
|