6 |
|
|
7 |
|
/* |
8 |
|
* sm_stree.c |
9 |
+ |
* An stree (spherical quadtree) is defined by an octahedron in |
10 |
+ |
* canonical form,and a world center point. Each face of the |
11 |
+ |
* octahedron is adaptively subdivided as a planar triangular quadtree. |
12 |
+ |
* World space geometry is projected onto the quadtree faces from the |
13 |
+ |
* sphere center. |
14 |
|
*/ |
15 |
|
#include "standard.h" |
16 |
+ |
#include "sm_list.h" |
17 |
+ |
#include "sm_flag.h" |
18 |
|
#include "sm_geom.h" |
19 |
+ |
#include "sm_qtree.h" |
20 |
|
#include "sm_stree.h" |
21 |
|
|
14 |
– |
/* Define 4 vertices on the sphere to create a tetrahedralization on |
15 |
– |
the sphere: triangles are as follows: |
16 |
– |
(2,1,0),(3,2,0), (1,3,0), (2,3,1) |
17 |
– |
*/ |
22 |
|
|
23 |
|
#ifdef TEST_DRIVER |
24 |
|
extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500]; |
25 |
|
extern int Pick_cnt; |
26 |
|
#endif |
27 |
< |
FVECT stDefault_base[4] = { {SQRT3_INV, SQRT3_INV, SQRT3_INV}, |
28 |
< |
{-SQRT3_INV, -SQRT3_INV, SQRT3_INV}, |
29 |
< |
{-SQRT3_INV, SQRT3_INV, -SQRT3_INV}, |
30 |
< |
{SQRT3_INV, -SQRT3_INV, -SQRT3_INV}}; |
31 |
< |
int stTri_verts[4][3] = { {2,1,0},{3,2,0},{1,3,0},{2,3,1}}; |
32 |
< |
int stTri_nbrs[4][3] = { {2,1,3},{0,2,3},{1,0,3},{2,0,1}}; |
27 |
> |
/* octahedron coordinates */ |
28 |
> |
FVECT stDefault_base[6] = { {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.}, |
29 |
> |
{-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}}; |
30 |
> |
/* octahedron triangle vertices */ |
31 |
> |
int stBase_verts[8][3] = { {0,1,2},{3,1,2},{0,4,2},{3,4,2}, |
32 |
> |
{0,1,5},{3,1,5},{0,4,5},{3,4,5}}; |
33 |
> |
/* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/ |
34 |
> |
int stBase_nbrs[8][3] = { {1,2,4},{0,3,5},{3,0,6},{2,1,7}, |
35 |
> |
{5,6,0},{4,7,1},{7,4,2},{6,5,3}}; |
36 |
> |
int stRoot_indices[8][3] = {{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1}, |
37 |
> |
{1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}}; |
38 |
> |
/* |
39 |
> |
+z y -z y |
40 |
> |
| | |
41 |
> |
1 | 0 5 | 4 |
42 |
> |
______|______ x _______|______ x |
43 |
> |
3 | 2 7 | 6 |
44 |
> |
| | |
45 |
|
|
46 |
< |
stNth_base_verts(st,i,v1,v2,v3) |
47 |
< |
STREE *st; |
48 |
< |
int i; |
49 |
< |
FVECT v1,v2,v3; |
50 |
< |
{ |
51 |
< |
VCOPY(v1,ST_NTH_BASE(st,stTri_verts[i][0])); |
52 |
< |
VCOPY(v2,ST_NTH_BASE(st,stTri_verts[i][1])); |
53 |
< |
VCOPY(v3,ST_NTH_BASE(st,stTri_verts[i][2])); |
54 |
< |
} |
46 |
> |
Nbrs |
47 |
> |
+z y -z y |
48 |
> |
/0|1\ /1|0\ |
49 |
> |
5 / | \ 4 / | \ |
50 |
> |
/(1)|(0)\ 1 /(5)|(4)\ 0 |
51 |
> |
/ | \ / | \ |
52 |
> |
/2 1|0 2\ /2 0|1 2\ |
53 |
> |
/------|------\x /------|------\x |
54 |
> |
\0 1|2 0/ \0 2|2 1/ |
55 |
> |
\ | / \ | / |
56 |
> |
7\ (3)|(2) / 6 3 \ (7)|(6) / 2 |
57 |
> |
\ | / \ | / |
58 |
> |
\ 2|1 / \ 1|0 / |
59 |
> |
*/ |
60 |
|
|
61 |
< |
/* Frees the 4 quadtrees rooted at st */ |
62 |
< |
stClear(st) |
61 |
> |
|
62 |
> |
stInit(st) |
63 |
|
STREE *st; |
64 |
|
{ |
65 |
< |
int i; |
65 |
> |
int i,j; |
66 |
|
|
67 |
< |
/* stree always has 4 children corresponding to the base tris |
47 |
< |
*/ |
48 |
< |
for (i = 0; i < 4; i++) |
49 |
< |
qtFree(ST_NTH_ROOT(st, i)); |
67 |
> |
qtDone(); |
68 |
|
|
69 |
< |
QT_CLEAR_CHILDREN(ST_ROOT(st)); |
69 |
> |
ST_TOP_QT(st) = qtAlloc(); |
70 |
> |
ST_BOTTOM_QT(st) = qtAlloc(); |
71 |
> |
/* Clear the children */ |
72 |
|
|
73 |
+ |
QT_CLEAR_CHILDREN(ST_TOP_QT(st)); |
74 |
+ |
QT_CLEAR_CHILDREN(ST_BOTTOM_QT(st)); |
75 |
|
} |
76 |
|
|
77 |
+ |
stFree(st) |
78 |
+ |
STREE *st; |
79 |
+ |
{ |
80 |
+ |
qtDone(); |
81 |
+ |
free(st); |
82 |
+ |
} |
83 |
|
|
84 |
+ |
/* Allocates a stree structure and creates octahedron base */ |
85 |
|
STREE |
86 |
< |
*stInit(st,center,base) |
86 |
> |
*stAlloc(st) |
87 |
|
STREE *st; |
59 |
– |
FVECT center,base[4]; |
88 |
|
{ |
89 |
+ |
int i,m; |
90 |
+ |
FVECT v0,v1,v2; |
91 |
+ |
FVECT n; |
92 |
+ |
|
93 |
+ |
if(!st) |
94 |
+ |
if(!(st = (STREE *)malloc(sizeof(STREE)))) |
95 |
+ |
error(SYSTEM,"stAlloc(): Unable to allocate memory\n"); |
96 |
|
|
97 |
< |
if(base) |
98 |
< |
ST_SET_BASE(st,base); |
97 |
> |
/* Allocate the top and bottom quadtree root nodes */ |
98 |
> |
stInit(st); |
99 |
> |
|
100 |
> |
return(st); |
101 |
> |
} |
102 |
> |
|
103 |
> |
#define BARY_INT(v,b) if((v)>2.0) (b) = MAXBCOORD;else \ |
104 |
> |
if((v)<-2.0) (b)=-MAXBCOORD;else (b)=(BCOORD)((v)*MAXBCOORD2); |
105 |
> |
|
106 |
> |
vert_to_qt_frame(root,v,b) |
107 |
> |
int root; |
108 |
> |
FVECT v; |
109 |
> |
BCOORD b[3]; |
110 |
> |
{ |
111 |
> |
int i; |
112 |
> |
double scale; |
113 |
> |
double d0,d1,d2; |
114 |
> |
|
115 |
> |
if(STR_NTH_INDEX(root,0)==-1) |
116 |
> |
d0 = -v[0]; |
117 |
|
else |
118 |
< |
ST_SET_BASE(st,stDefault_base); |
118 |
> |
d0 = v[0]; |
119 |
> |
if(STR_NTH_INDEX(root,1)==-1) |
120 |
> |
d1 = -v[1]; |
121 |
> |
else |
122 |
> |
d1 = v[1]; |
123 |
> |
if(STR_NTH_INDEX(root,2)==-1) |
124 |
> |
d2 = -v[2]; |
125 |
> |
else |
126 |
> |
d2 = v[2]; |
127 |
|
|
128 |
< |
ST_SET_CENTER(st,center); |
129 |
< |
stClear(st); |
128 |
> |
/* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */ |
129 |
> |
scale = 1.0/ (d0 + d1 + d2); |
130 |
> |
d0 *= scale; |
131 |
> |
d1 *= scale; |
132 |
> |
d2 *= scale; |
133 |
|
|
134 |
< |
return(st); |
134 |
> |
BARY_INT(d0,b[0]) |
135 |
> |
BARY_INT(d1,b[1]) |
136 |
> |
BARY_INT(d2,b[2]) |
137 |
|
} |
138 |
|
|
139 |
|
|
74 |
– |
/* "base" defines 4 vertices on the sphere to create a tetrahedralization on |
75 |
– |
the sphere: triangles are as follows:(0,1,2),(0,2,3), (0,3,1), (1,3,2) |
76 |
– |
if base is null: does default. |
140 |
|
|
141 |
< |
*/ |
142 |
< |
STREE |
143 |
< |
*stAlloc(st) |
144 |
< |
STREE *st; |
141 |
> |
|
142 |
> |
ray_to_qt_frame(root,v,dir,b,db) |
143 |
> |
int root; |
144 |
> |
FVECT v,dir; |
145 |
> |
BCOORD b[3],db[3]; |
146 |
|
{ |
147 |
|
int i; |
148 |
+ |
double scale; |
149 |
+ |
double d0,d1,d2; |
150 |
+ |
double dir0,dir1,dir2; |
151 |
|
|
152 |
< |
if(!st) |
153 |
< |
st = (STREE *)malloc(sizeof(STREE)); |
152 |
> |
if(STR_NTH_INDEX(root,0)==-1) |
153 |
> |
{ |
154 |
> |
d0 = -v[0]; |
155 |
> |
dir0 = -dir[0]; |
156 |
> |
} |
157 |
> |
else |
158 |
> |
{ |
159 |
> |
d0 = v[0]; |
160 |
> |
dir0 = dir[0]; |
161 |
> |
} |
162 |
> |
if(STR_NTH_INDEX(root,1)==-1) |
163 |
> |
{ |
164 |
> |
d1 = -v[1]; |
165 |
> |
dir1 = -dir[1]; |
166 |
> |
} |
167 |
> |
else |
168 |
> |
{ |
169 |
> |
d1 = v[1]; |
170 |
> |
dir1 = dir[1]; |
171 |
> |
} |
172 |
> |
if(STR_NTH_INDEX(root,2)==-1) |
173 |
> |
{ |
174 |
> |
d2 = -v[2]; |
175 |
> |
dir2 = -dir[2]; |
176 |
> |
} |
177 |
> |
else |
178 |
> |
{ |
179 |
> |
d2 = v[2]; |
180 |
> |
dir2 = dir[2]; |
181 |
> |
} |
182 |
> |
/* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */ |
183 |
> |
scale = 1.0/ (d0 + d1 + d2); |
184 |
> |
d0 *= scale; |
185 |
> |
d1 *= scale; |
186 |
> |
d2 *= scale; |
187 |
|
|
188 |
< |
ST_ROOT(st) = qtAlloc(); |
189 |
< |
|
190 |
< |
QT_CLEAR_CHILDREN(ST_ROOT(st)); |
188 |
> |
/* Calculate intersection point of orig+dir: This calculation is done |
189 |
> |
after the origin is projected into the plane in order to constrain |
190 |
> |
the projection( i.e. the size of the projection of the unit direction |
191 |
> |
vector translated to the origin depends on how close |
192 |
> |
the origin is to the view center |
193 |
> |
*/ |
194 |
> |
/* Must divide by at least root2 to insure that projection will fit |
195 |
> |
int [-2,2] bounds: assumed length is 1: therefore greatest projection |
196 |
> |
from endpoint of triangle is at 45 degrees or projected length of root2 |
197 |
> |
*/ |
198 |
> |
dir0 = d0 + dir0*0.5; |
199 |
> |
dir1 = d1 + dir1*0.5; |
200 |
> |
dir2 = d2 + dir2*0.5; |
201 |
|
|
202 |
< |
return(st); |
203 |
< |
} |
202 |
> |
scale = 1.0/ (dir0 + dir1 + dir2); |
203 |
> |
dir0 *= scale; |
204 |
> |
dir1 *= scale; |
205 |
> |
dir2 *= scale; |
206 |
|
|
207 |
+ |
BARY_INT(d0,b[0]) |
208 |
+ |
BARY_INT(d1,b[1]) |
209 |
+ |
BARY_INT(d2,b[2]) |
210 |
+ |
BARY_INT(dir0,db[0]) |
211 |
+ |
BARY_INT(dir1,db[1]) |
212 |
+ |
BARY_INT(dir2,db[2]) |
213 |
|
|
214 |
< |
/* Find location of sample point in the DAG and return lowest level |
215 |
< |
containing triangle. "type" indicates whether the point was found |
216 |
< |
to be in interior to the triangle: GT_FACE, on one of its |
217 |
< |
edges GT_EDGE or coinciding with one of its vertices GT_VERTEX. |
218 |
< |
"which" specifies which vertex (0,1,2) or edge (0=v0v1, 1 = v1v2, 2 = v21) |
219 |
< |
*/ |
220 |
< |
int |
221 |
< |
stPoint_locate(st,npt) |
222 |
< |
STREE *st; |
105 |
< |
FVECT npt; |
214 |
> |
db[0] -= b[0]; |
215 |
> |
db[1] -= b[1]; |
216 |
> |
db[2] -= b[2]; |
217 |
> |
} |
218 |
> |
|
219 |
> |
qt_frame_to_vert(root,b,v) |
220 |
> |
int root; |
221 |
> |
BCOORD b[3]; |
222 |
> |
FVECT v; |
223 |
|
{ |
224 |
< |
int i,d,j,id; |
225 |
< |
QUADTREE *rootptr,*qtptr; |
109 |
< |
FVECT v1,v2,v3; |
110 |
< |
OBJECT os[QT_MAXSET+1],*optr; |
111 |
< |
FVECT p0,p1,p2; |
224 |
> |
int i; |
225 |
> |
double d0,d1,d2; |
226 |
|
|
227 |
< |
/* Test each of the root triangles against point id */ |
228 |
< |
for(i=0; i < 4; i++) |
229 |
< |
{ |
230 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
231 |
< |
stNth_base_verts(st,i,v1,v2,v3); |
232 |
< |
/* Return tri that p falls in */ |
233 |
< |
qtptr = qtRoot_point_locate(rootptr,v1,v2,v3,npt,NULL,NULL,NULL); |
234 |
< |
if(!qtptr || QT_IS_EMPTY(*qtptr)) |
235 |
< |
continue; |
236 |
< |
/* Get the set */ |
237 |
< |
optr = qtqueryset(*qtptr); |
238 |
< |
for (j = QT_SET_CNT(optr),optr = QT_SET_PTR(optr);j > 0; j--) |
239 |
< |
{ |
240 |
< |
/* Find the first triangle that pt falls */ |
241 |
< |
id = QT_SET_NEXT_ELEM(optr); |
242 |
< |
qtTri_from_id(id,NULL,NULL,NULL,p0,p1,p2,NULL,NULL,NULL); |
129 |
< |
d = point_in_stri(p0,p1,p2,npt); |
130 |
< |
if(d) |
131 |
< |
return(id); |
132 |
< |
} |
133 |
< |
} |
134 |
< |
return(EMPTY); |
227 |
> |
d0 = b[0]/(double)MAXBCOORD2; |
228 |
> |
d1 = b[1]/(double)MAXBCOORD2; |
229 |
> |
d2 = b[2]/(double)MAXBCOORD2; |
230 |
> |
|
231 |
> |
if(STR_NTH_INDEX(root,0)==-1) |
232 |
> |
v[0] = -d0; |
233 |
> |
else |
234 |
> |
v[0] = d0; |
235 |
> |
if(STR_NTH_INDEX(root,1)==-1) |
236 |
> |
v[1] = -d1; |
237 |
> |
else |
238 |
> |
v[1] = d1; |
239 |
> |
if(STR_NTH_INDEX(root,2)==-1) |
240 |
> |
v[2] = -d2; |
241 |
> |
else |
242 |
> |
v[2] = d2; |
243 |
|
} |
244 |
|
|
245 |
+ |
|
246 |
+ |
/* Return quadtree leaf node containing point 'p'*/ |
247 |
|
QUADTREE |
248 |
< |
*stPoint_locate_cell(st,p,t0,t1,t2) |
248 |
> |
stPoint_locate(st,p) |
249 |
|
STREE *st; |
250 |
|
FVECT p; |
141 |
– |
FVECT t0,t1,t2; |
251 |
|
{ |
252 |
< |
int i,d; |
253 |
< |
QUADTREE *rootptr,*qtptr; |
254 |
< |
FVECT v0,v1,v2; |
252 |
> |
QUADTREE qt; |
253 |
> |
BCOORD bcoordi[3]; |
254 |
> |
int i; |
255 |
|
|
256 |
+ |
/* Find root quadtree that contains p */ |
257 |
+ |
i = stLocate_root(p); |
258 |
+ |
qt = ST_ROOT_QT(st,i); |
259 |
|
|
260 |
< |
/* Test each of the root triangles against point id */ |
261 |
< |
for(i=0; i < 4; i++) |
262 |
< |
{ |
263 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
264 |
< |
stNth_base_verts(st,i,v0,v1,v2); |
265 |
< |
/* Return quadtree tri that p falls in */ |
266 |
< |
qtptr = qtRoot_point_locate(rootptr,v0,v1,v2,p,t0,t1,t2); |
267 |
< |
if(qtptr) |
268 |
< |
return(qtptr); |
269 |
< |
} /* Point not found */ |
270 |
< |
return(NULL); |
260 |
> |
/* Will return lowest level triangle containing point: It the |
261 |
> |
point is on an edge or vertex: will return first associated |
262 |
> |
triangle encountered in the child traversal- the others can |
263 |
> |
be derived using triangle adjacency information |
264 |
> |
*/ |
265 |
> |
if(QT_IS_TREE(qt)) |
266 |
> |
{ |
267 |
> |
vert_to_qt_frame(i,p,bcoordi); |
268 |
> |
i = bary_child(bcoordi); |
269 |
> |
return(qtLocate(QT_NTH_CHILD(qt,i),bcoordi)); |
270 |
> |
} |
271 |
> |
else |
272 |
> |
return(qt); |
273 |
|
} |
274 |
|
|
275 |
< |
|
276 |
< |
int |
277 |
< |
stAdd_tri(st,id,v0,v1,v2) |
278 |
< |
STREE *st; |
279 |
< |
int id; |
280 |
< |
FVECT v0,v1,v2; |
275 |
> |
static unsigned int nbr_b[8][3] ={{2,4,16},{1,8,32},{8,1,64},{4,2,128}, |
276 |
> |
{32,64,1},{16,128,2},{128,16,4},{64,32,8}}; |
277 |
> |
unsigned int |
278 |
> |
stTri_cells(st,v) |
279 |
> |
STREE *st; |
280 |
> |
FVECT v[3]; |
281 |
|
{ |
282 |
< |
|
283 |
< |
int i,found; |
284 |
< |
QUADTREE *rootptr; |
285 |
< |
FVECT t0,t1,t2; |
282 |
> |
unsigned int cells,cross; |
283 |
> |
unsigned int vcell[3]; |
284 |
> |
double t0,t1; |
285 |
> |
int i,inext; |
286 |
|
|
287 |
< |
found = 0; |
288 |
< |
for(i=0; i < 4; i++) |
287 |
> |
/* First find base cells that tri vertices are in (0-7)*/ |
288 |
> |
vcell[0] = stLocate_root(v[0]); |
289 |
> |
vcell[1] = stLocate_root(v[1]); |
290 |
> |
vcell[2] = stLocate_root(v[2]); |
291 |
> |
|
292 |
> |
/* If all in same cell- return that bit only */ |
293 |
> |
if(vcell[0] == vcell[1] && vcell[1] == vcell[2]) |
294 |
> |
return( 1 << vcell[0]); |
295 |
> |
|
296 |
> |
cells = 0; |
297 |
> |
for(i=0;i<3; i++) |
298 |
|
{ |
299 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
300 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
301 |
< |
found |= qtRoot_add_tri(rootptr,t0,t1,t2,v0,v1,v2,id,0); |
299 |
> |
if(i==2) |
300 |
> |
inext = 0; |
301 |
> |
else |
302 |
> |
inext = i+1; |
303 |
> |
/* Mark cell containing initial vertex */ |
304 |
> |
cells |= 1 << vcell[i]; |
305 |
> |
|
306 |
> |
/* Take the exclusive or: will have bits set where edge crosses axis=0*/ |
307 |
> |
cross = vcell[i] ^ vcell[inext]; |
308 |
> |
/* If crosses 2 planes: then have 2 options for edge crossing-pick closest |
309 |
> |
otherwise just hits two*/ |
310 |
> |
/* Neighbors are zyx */ |
311 |
> |
switch(cross){ |
312 |
> |
case 3: /* crosses x=0 and y=0 */ |
313 |
> |
t0 = -v[i][0]/(v[inext][0]-v[i][0]); |
314 |
> |
t1 = -v[i][1]/(v[inext][1]-v[i][1]); |
315 |
> |
if(t0==t1) |
316 |
> |
break; |
317 |
> |
else if(t0 < t1) |
318 |
> |
cells |= nbr_b[vcell[i]][0]; |
319 |
> |
else |
320 |
> |
cells |= nbr_b[vcell[i]][1]; |
321 |
> |
break; |
322 |
> |
case 5: /* crosses x=0 and z=0 */ |
323 |
> |
t0 = -v[i][0]/(v[inext][0]-v[i][0]); |
324 |
> |
t1 = -v[i][2]/(v[inext][2]-v[i][2]); |
325 |
> |
if(t0==t1) |
326 |
> |
break; |
327 |
> |
else if(t0 < t1) |
328 |
> |
cells |= nbr_b[vcell[i]][0]; |
329 |
> |
else |
330 |
> |
cells |=nbr_b[vcell[i]][2]; |
331 |
> |
|
332 |
> |
break; |
333 |
> |
case 6:/* crosses z=0 and y=0 */ |
334 |
> |
t0 = -v[i][2]/(v[inext][2]-v[i][2]); |
335 |
> |
t1 = -v[i][1]/(v[inext][1]-v[i][1]); |
336 |
> |
if(t0==t1) |
337 |
> |
break; |
338 |
> |
else if(t0 < t1) |
339 |
> |
{ |
340 |
> |
cells |= nbr_b[vcell[i]][2]; |
341 |
> |
} |
342 |
> |
else |
343 |
> |
{ |
344 |
> |
cells |=nbr_b[vcell[i]][1]; |
345 |
> |
} |
346 |
> |
break; |
347 |
> |
case 7: |
348 |
> |
error(CONSISTENCY," Insert:Edge shouldnt be able to span 3 cells"); |
349 |
> |
break; |
350 |
> |
} |
351 |
|
} |
352 |
< |
return(found); |
352 |
> |
return(cells); |
353 |
|
} |
354 |
|
|
355 |
< |
int |
356 |
< |
stApply_to_tri_cells(st,v0,v1,v2,func,arg) |
357 |
< |
STREE *st; |
358 |
< |
FVECT v0,v1,v2; |
359 |
< |
int (*func)(); |
360 |
< |
int *arg; |
355 |
> |
|
356 |
> |
stRoot_trace_ray(qt,root,orig,dir,nextptr,func,f) |
357 |
> |
QUADTREE qt; |
358 |
> |
int root; |
359 |
> |
FVECT orig,dir; |
360 |
> |
int *nextptr; |
361 |
> |
FUNC func; |
362 |
> |
int *f; |
363 |
|
{ |
364 |
< |
int i,found; |
365 |
< |
QUADTREE *rootptr; |
366 |
< |
FVECT t0,t1,t2; |
364 |
> |
double br[3]; |
365 |
> |
BCOORD bi[3],dbi[3]; |
366 |
> |
|
367 |
> |
/* Project the origin onto the root node plane */ |
368 |
> |
/* Find the intersection point of the origin */ |
369 |
> |
ray_to_qt_frame(root,orig,dir,bi,dbi); |
370 |
|
|
371 |
< |
found = 0; |
372 |
< |
func(ST_ROOT_PTR(st),arg); |
373 |
< |
QT_SET_FLAG(ST_ROOT(st)); |
374 |
< |
for(i=0; i < 4; i++) |
375 |
< |
{ |
199 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
200 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
201 |
< |
found |= qtApply_to_tri_cells(rootptr,v0,v1,v2,t0,t1,t2,func,arg); |
202 |
< |
} |
203 |
< |
return(found); |
371 |
> |
/* trace the ray starting with this node */ |
372 |
> |
qtTrace_ray(qt,bi,dbi[0],dbi[1],dbi[2],nextptr,0,0,func,f); |
373 |
> |
if(!QT_FLAG_IS_DONE(*f)) |
374 |
> |
qt_frame_to_vert(root,bi,orig); |
375 |
> |
|
376 |
|
} |
377 |
|
|
378 |
+ |
/* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each |
379 |
+ |
node that it intersects |
380 |
+ |
*/ |
381 |
+ |
int |
382 |
+ |
stTrace_ray(st,orig,dir,func) |
383 |
+ |
STREE *st; |
384 |
+ |
FVECT orig,dir; |
385 |
+ |
FUNC func; |
386 |
+ |
{ |
387 |
+ |
int next,last,i,f=0; |
388 |
+ |
QUADTREE qt; |
389 |
+ |
FVECT o,n,v; |
390 |
+ |
double pd,t,d; |
391 |
|
|
392 |
+ |
VCOPY(o,orig); |
393 |
+ |
#ifdef TEST_DRIVER |
394 |
+ |
Pick_cnt=0; |
395 |
+ |
#endif; |
396 |
+ |
/* Find the qt node that o falls in */ |
397 |
+ |
i = stLocate_root(o); |
398 |
+ |
qt = ST_ROOT_QT(st,i); |
399 |
+ |
|
400 |
+ |
stRoot_trace_ray(qt,i,o,dir,&next,func,&f); |
401 |
|
|
402 |
+ |
if(QT_FLAG_IS_DONE(f)) |
403 |
+ |
return(TRUE); |
404 |
+ |
/* |
405 |
+ |
d = DOT(orig,dir)/sqrt(DOT(orig,orig)); |
406 |
+ |
VSUM(v,orig,dir,-d); |
407 |
+ |
*/ |
408 |
+ |
/* Crossed over to next cell: id = nbr */ |
409 |
+ |
while(1) |
410 |
+ |
{ |
411 |
+ |
/* test if ray crosses plane between this quadtree triangle and |
412 |
+ |
its neighbor- if it does then find intersection point with |
413 |
+ |
ray and plane- this is the new origin |
414 |
+ |
*/ |
415 |
+ |
if(next == INVALID) |
416 |
+ |
return(FALSE); |
417 |
+ |
/* |
418 |
+ |
if(DOT(o,v) < 0.0) |
419 |
+ |
return(FALSE); |
420 |
+ |
*/ |
421 |
+ |
i = stBase_nbrs[i][next]; |
422 |
+ |
qt = ST_ROOT_QT(st,i); |
423 |
+ |
stRoot_trace_ray(qt,i,o,dir,&next,func,&f); |
424 |
+ |
if(QT_FLAG_IS_DONE(f)) |
425 |
+ |
return(TRUE); |
426 |
+ |
} |
427 |
+ |
} |
428 |
|
|
429 |
< |
int |
430 |
< |
stRemove_tri(st,id,v0,v1,v2) |
429 |
> |
|
430 |
> |
stVisit_poly(st,verts,l,root,func,n) |
431 |
|
STREE *st; |
432 |
< |
int id; |
433 |
< |
FVECT v0,v1,v2; |
432 |
> |
FVECT *verts; |
433 |
> |
LIST *l; |
434 |
> |
unsigned int root; |
435 |
> |
FUNC func; |
436 |
> |
int n; |
437 |
|
{ |
438 |
< |
|
439 |
< |
int i,found; |
217 |
< |
QUADTREE *rootptr; |
218 |
< |
FVECT t0,t1,t2; |
438 |
> |
int id0,id1,id2; |
439 |
> |
FVECT tri[3]; |
440 |
|
|
441 |
< |
found = 0; |
442 |
< |
for(i=0; i < 4; i++) |
441 |
> |
id0 = pop_list(&l); |
442 |
> |
id1 = pop_list(&l); |
443 |
> |
while(l) |
444 |
|
{ |
445 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
446 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
447 |
< |
found |= qtRemove_tri(rootptr,id,v0,v1,v2,t0,t1,t2); |
445 |
> |
id2 = pop_list(&l); |
446 |
> |
VCOPY(tri[0],verts[id0]); |
447 |
> |
VCOPY(tri[1],verts[id1]); |
448 |
> |
VCOPY(tri[2],verts[id2]); |
449 |
> |
stRoot_visit_tri(st,root,tri,func,n); |
450 |
> |
id1 = id2; |
451 |
|
} |
227 |
– |
return(found); |
452 |
|
} |
453 |
|
|
454 |
< |
int |
455 |
< |
stVisit_tri_edges(st,t0,t1,t2,func,arg1,arg2) |
456 |
< |
STREE *st; |
457 |
< |
FVECT t0,t1,t2; |
458 |
< |
int (*func)(); |
459 |
< |
int *arg1,arg2; |
454 |
> |
stVisit_clip(st,i,verts,vcnt,l,cell,func,n) |
455 |
> |
STREE *st; |
456 |
> |
int i; |
457 |
> |
FVECT *verts; |
458 |
> |
int *vcnt; |
459 |
> |
LIST *l; |
460 |
> |
unsigned int cell; |
461 |
> |
FUNC func; |
462 |
> |
int n; |
463 |
|
{ |
237 |
– |
int id,i,w; |
238 |
– |
QUADTREE *rootptr; |
239 |
– |
FVECT q0,q1,q2,n,v[3],sdir[3],dir[3],tv,d; |
240 |
– |
double pd,t; |
464 |
|
|
465 |
< |
VCOPY(v[0],t0); VCOPY(v[1],t1); VCOPY(v[2],t2); |
466 |
< |
VSUB(dir[0],t1,t0); VSUB(dir[1],t2,t1);VSUB(dir[2],t0,t2); |
467 |
< |
VCOPY(sdir[0],dir[0]);VCOPY(sdir[1],dir[1]);VCOPY(sdir[2],dir[2]); |
468 |
< |
w = 0; |
469 |
< |
for(i=0; i < 4; i++) |
247 |
< |
{ |
248 |
< |
#ifdef TEST_DRIVER |
249 |
< |
Pick_cnt = 0; |
250 |
< |
#endif |
251 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
252 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
253 |
< |
/* Return quadtree tri that p falls in */ |
254 |
< |
if(!point_in_stri(q0,q1,q2,v[w])) |
255 |
< |
continue; |
256 |
< |
id = qtRoot_visit_tri_edges(rootptr,q0,q1,q2,v,dir,&w,func,arg1,arg2); |
257 |
< |
if(id == INVALID) |
258 |
< |
{ |
259 |
< |
#ifdef DEBUG |
260 |
< |
eputs("stVisit_tri_edges(): Unable to trace edges\n"); |
261 |
< |
#endif |
262 |
< |
return(INVALID); |
263 |
< |
} |
264 |
< |
if(id == QT_DONE) |
265 |
< |
return(*arg1); |
266 |
< |
|
267 |
< |
/* Crossed over to next cell: id = nbr */ |
268 |
< |
while(1) |
269 |
< |
{ |
270 |
< |
/* test if ray crosses plane between this quadtree triangle and |
271 |
< |
its neighbor- if it does then find intersection point with |
272 |
< |
ray and plane- this is the new origin |
273 |
< |
*/ |
274 |
< |
if(id==0) |
275 |
< |
VCROSS(n,q1,q2); |
276 |
< |
else |
277 |
< |
if(id==1) |
278 |
< |
VCROSS(n,q2,q0); |
279 |
< |
else |
280 |
< |
VCROSS(n,q0,q1); |
465 |
> |
LIST *labove,*lbelow,*endb,*enda; |
466 |
> |
int last = -1; |
467 |
> |
int id,last_id; |
468 |
> |
int first,first_id; |
469 |
> |
unsigned int cellb; |
470 |
|
|
471 |
< |
if(w==0) |
472 |
< |
VCOPY(tv,t0); |
473 |
< |
else |
474 |
< |
if(w==1) |
475 |
< |
VCOPY(tv,t1); |
476 |
< |
else |
477 |
< |
VCOPY(tv,t2); |
478 |
< |
if(!intersect_ray_plane(tv,sdir[w],n,0.0,&t,v[w])) |
479 |
< |
return(INVALID); |
471 |
> |
labove = lbelow = NULL; |
472 |
> |
enda = endb = NULL; |
473 |
> |
while(l) |
474 |
> |
{ |
475 |
> |
id = pop_list(&l); |
476 |
> |
if(ZERO(verts[id][i])) |
477 |
> |
{ |
478 |
> |
if(last==-1) |
479 |
> |
{/* add below and above */ |
480 |
> |
first = 2; |
481 |
> |
first_id= id; |
482 |
> |
} |
483 |
> |
lbelow=add_data(lbelow,id,&endb); |
484 |
> |
labove=add_data(labove,id,&enda); |
485 |
> |
last_id = id; |
486 |
> |
last = 2; |
487 |
> |
continue; |
488 |
> |
} |
489 |
> |
if(verts[id][i] < 0) |
490 |
> |
{ |
491 |
> |
if(last != 1) |
492 |
> |
{ |
493 |
> |
lbelow=add_data(lbelow,id,&endb); |
494 |
> |
if(last==-1) |
495 |
> |
{ |
496 |
> |
first = 0; |
497 |
> |
first_id = id; |
498 |
> |
} |
499 |
> |
last_id = id; |
500 |
> |
last = 0; |
501 |
> |
continue; |
502 |
> |
} |
503 |
> |
/* intersect_edges */ |
504 |
> |
intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]); |
505 |
> |
/*newpoint goes to above and below*/ |
506 |
> |
lbelow=add_data(lbelow,*vcnt,&endb); |
507 |
> |
lbelow=add_data(lbelow,id,&endb); |
508 |
> |
labove=add_data(labove,*vcnt,&enda); |
509 |
> |
last = 0; |
510 |
> |
last_id = id; |
511 |
> |
(*vcnt)++; |
512 |
> |
} |
513 |
> |
else |
514 |
> |
{ |
515 |
> |
if(last != 0) |
516 |
> |
{ |
517 |
> |
labove=add_data(labove,id,&enda); |
518 |
> |
if(last==-1) |
519 |
> |
{ |
520 |
> |
first = 1; |
521 |
> |
first_id = id; |
522 |
> |
} |
523 |
> |
last_id = id; |
524 |
> |
last = 1; |
525 |
> |
continue; |
526 |
> |
} |
527 |
> |
/* intersect_edges */ |
528 |
> |
/*newpoint goes to above and below*/ |
529 |
> |
intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]); |
530 |
> |
lbelow=add_data(lbelow,*vcnt,&endb); |
531 |
> |
labove=add_data(labove,*vcnt,&enda); |
532 |
> |
labove=add_data(labove,id,&enda); |
533 |
> |
last_id = id; |
534 |
> |
(*vcnt)++; |
535 |
> |
last = 1; |
536 |
> |
} |
537 |
> |
} |
538 |
> |
if(first != 2 && first != last) |
539 |
> |
{ |
540 |
> |
intersect_edge_coord_plane(verts[id],verts[first_id],i,verts[*vcnt]); |
541 |
> |
/*newpoint goes to above and below*/ |
542 |
> |
lbelow=add_data(lbelow,*vcnt,&endb); |
543 |
> |
labove=add_data(labove,*vcnt,&enda); |
544 |
> |
(*vcnt)++; |
545 |
|
|
546 |
< |
VSUM(v[w],v[w],sdir[w],10.0*FTINY); |
546 |
> |
} |
547 |
> |
if(i==2) |
548 |
> |
{ |
549 |
> |
if(lbelow) |
550 |
> |
{ |
551 |
> |
if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow))) |
552 |
> |
{ |
553 |
> |
cellb = cell | (1 << i); |
554 |
> |
stVisit_poly(st,verts,lbelow,cellb,func,n); |
555 |
> |
} |
556 |
> |
else |
557 |
> |
free_list(lbelow); |
558 |
> |
} |
559 |
> |
if(labove) |
560 |
> |
{ |
561 |
> |
if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove))) |
562 |
> |
stVisit_poly(st,verts,labove,cell,func,n); |
563 |
> |
else |
564 |
> |
free_list(labove); |
565 |
> |
} |
566 |
> |
} |
567 |
> |
else |
568 |
> |
{ |
569 |
> |
if(lbelow) |
570 |
> |
{ |
571 |
> |
if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow))) |
572 |
> |
{ |
573 |
> |
cellb = cell | (1 << i); |
574 |
> |
stVisit_clip(st,i+1,verts,vcnt,lbelow,cellb,func,n); |
575 |
> |
} |
576 |
> |
else |
577 |
> |
free_list(lbelow); |
578 |
> |
} |
579 |
> |
if(labove) |
580 |
> |
{ |
581 |
> |
if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove))) |
582 |
> |
stVisit_clip(st,i+1,verts,vcnt,labove,cell,func,n); |
583 |
> |
else |
584 |
> |
free_list(labove); |
585 |
> |
} |
586 |
> |
} |
587 |
|
|
294 |
– |
t = (1.0-t-10.0*FTINY); |
295 |
– |
if(t <= 0.0) |
296 |
– |
{ |
297 |
– |
t = FTINY; |
298 |
– |
#if 0 |
299 |
– |
eputs("stVisit_tri_edges(): edge end on plane\n"); |
300 |
– |
#endif |
301 |
– |
} |
302 |
– |
dir[w][0] = sdir[w][0] * t; |
303 |
– |
dir[w][1] = sdir[w][1] * t; |
304 |
– |
dir[w][2] = sdir[w][2] * t; |
305 |
– |
i = stTri_nbrs[i][id]; |
306 |
– |
rootptr = ST_NTH_ROOT_PTR(st,i); |
307 |
– |
stNth_base_verts(st,i,q0,q1,q2); |
308 |
– |
id=qtRoot_visit_tri_edges(rootptr,q0,q1,q2,v,dir,&w,func,arg1,arg2); |
309 |
– |
if(id == QT_DONE) |
310 |
– |
return(*arg1); |
311 |
– |
if(id == INVALID) |
312 |
– |
{ |
313 |
– |
#if 0 |
314 |
– |
eputs("stVisit_tri_edges(): point not found\n"); |
315 |
– |
#endif |
316 |
– |
return(INVALID); |
317 |
– |
} |
318 |
– |
|
319 |
– |
} |
320 |
– |
} /* Point not found */ |
321 |
– |
return(INVALID); |
588 |
|
} |
589 |
|
|
590 |
< |
|
325 |
< |
int |
326 |
< |
stVisit_tri_edges2(st,t0,t1,t2,func,arg1,arg2) |
590 |
> |
stVisit(st,tri,func,n) |
591 |
|
STREE *st; |
592 |
< |
FVECT t0,t1,t2; |
593 |
< |
int (*func)(); |
594 |
< |
int *arg1,arg2; |
592 |
> |
FVECT tri[3]; |
593 |
> |
FUNC func; |
594 |
> |
int n; |
595 |
|
{ |
596 |
< |
int id,i,w; |
597 |
< |
QUADTREE *rootptr; |
334 |
< |
FVECT q0,q1,q2,v[3],i_pt; |
596 |
> |
int r0,r1,r2; |
597 |
> |
LIST *l; |
598 |
|
|
599 |
< |
VCOPY(v[0],t0); VCOPY(v[1],t1); VCOPY(v[2],t2); |
600 |
< |
w = -1; |
601 |
< |
for(i=0; i < 4; i++) |
602 |
< |
{ |
603 |
< |
#ifdef TEST_DRIVER |
604 |
< |
Pick_cnt = 0; |
605 |
< |
#endif |
606 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
607 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
608 |
< |
/* Return quadtree tri that p falls in */ |
609 |
< |
if(!point_in_stri(q0,q1,q2,v[0])) |
610 |
< |
continue; |
611 |
< |
id = qtRoot_visit_tri_edges2(rootptr,q0,q1,q2,v,i_pt,&w, |
349 |
< |
func,arg1,arg2); |
350 |
< |
if(id == INVALID) |
351 |
< |
{ |
352 |
< |
#ifdef DEBUG |
353 |
< |
eputs("stVisit_tri_edges(): Unable to trace edges\n"); |
354 |
< |
#endif |
355 |
< |
return(INVALID); |
356 |
< |
} |
357 |
< |
if(id == QT_DONE) |
358 |
< |
return(*arg1); |
599 |
> |
r0 = stLocate_root(tri[0]); |
600 |
> |
r1 = stLocate_root(tri[1]); |
601 |
> |
r2 = stLocate_root(tri[2]); |
602 |
> |
if(r0 == r1 && r1==r2) |
603 |
> |
stRoot_visit_tri(st,r0,tri,func,n); |
604 |
> |
else |
605 |
> |
{ |
606 |
> |
FVECT verts[ST_CLIP_VERTS]; |
607 |
> |
int cnt; |
608 |
> |
|
609 |
> |
VCOPY(verts[0],tri[0]); |
610 |
> |
VCOPY(verts[1],tri[1]); |
611 |
> |
VCOPY(verts[2],tri[2]); |
612 |
|
|
613 |
< |
/* Crossed over to next cell: id = nbr */ |
614 |
< |
while(1) |
615 |
< |
{ |
616 |
< |
/* test if ray crosses plane between this quadtree triangle and |
617 |
< |
its neighbor- if it does then find intersection point with |
618 |
< |
ray and plane- this is the new origin |
366 |
< |
*/ |
367 |
< |
i = stTri_nbrs[i][id]; |
368 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
369 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
370 |
< |
id=qtRoot_visit_tri_edges2(rootptr,q0,q1,q2,v,i_pt,&w, |
371 |
< |
func,arg1,arg2); |
372 |
< |
if(id == QT_DONE) |
373 |
< |
return(*arg1); |
374 |
< |
if(id == INVALID) |
375 |
< |
{ |
376 |
< |
#ifdef DEBUG |
377 |
< |
eputs("stVisit_tri_edges(): point not found\n"); |
378 |
< |
#endif |
379 |
< |
return(INVALID); |
380 |
< |
} |
381 |
< |
|
382 |
< |
} |
383 |
< |
} /* Point not found */ |
384 |
< |
return(INVALID); |
613 |
> |
l = add_data(NULL,0,NULL); |
614 |
> |
l = add_data(l,1,NULL); |
615 |
> |
l = add_data(l,2,NULL); |
616 |
> |
cnt = 3; |
617 |
> |
stVisit_clip(st,0,verts,&cnt,l,0,func,n); |
618 |
> |
} |
619 |
|
} |
620 |
|
|
387 |
– |
int |
388 |
– |
stTrace_edge(st,orig,dir,max_t,func,arg1,arg2) |
389 |
– |
STREE *st; |
390 |
– |
FVECT orig,dir; |
391 |
– |
double max_t; |
392 |
– |
int (*func)(); |
393 |
– |
int *arg1,arg2; |
394 |
– |
{ |
395 |
– |
int id,i; |
396 |
– |
QUADTREE *rootptr; |
397 |
– |
FVECT q0,q1,q2,o,n,d; |
398 |
– |
double pd,t; |
621 |
|
|
622 |
< |
#if DEBUG |
401 |
< |
if(max_t > 1.0 || max_t < 0.0) |
402 |
< |
{ |
403 |
< |
eputs("stTrace_edge(): max_t must be in [0,1]:adjusting\n"); |
404 |
< |
max_t = 1.0; |
405 |
< |
} |
406 |
< |
#endif |
622 |
> |
/* New Insertion code!!! */ |
623 |
|
|
408 |
– |
VCOPY(o,orig); |
409 |
– |
for(i=0; i < 4; i++) |
410 |
– |
{ |
411 |
– |
#ifdef TEST_DRIVER |
412 |
– |
Pick_cnt = 0; |
413 |
– |
#endif |
414 |
– |
rootptr = ST_NTH_ROOT_PTR(st,i); |
415 |
– |
stNth_base_verts(st,i,q0,q1,q2); |
416 |
– |
/* Return quadtree tri that p falls in */ |
417 |
– |
id= qtRoot_trace_edge(rootptr,q0,q1,q2,o,dir,max_t,func,arg1,arg2); |
418 |
– |
if(id == INVALID) |
419 |
– |
continue; |
420 |
– |
if(id == QT_DONE) |
421 |
– |
return(*arg1); |
422 |
– |
|
423 |
– |
/* Crossed over to next cell: id = nbr */ |
424 |
– |
while(1) |
425 |
– |
{ |
426 |
– |
/* test if ray crosses plane between this quadtree triangle and |
427 |
– |
its neighbor- if it does then find intersection point with |
428 |
– |
ray and plane- this is the new origin |
429 |
– |
*/ |
430 |
– |
if(id==0) |
431 |
– |
VCROSS(n,q1,q2); |
432 |
– |
else |
433 |
– |
if(id==1) |
434 |
– |
VCROSS(n,q2,q0); |
435 |
– |
else |
436 |
– |
VCROSS(n,q0,q1); |
624 |
|
|
625 |
< |
/* Ray does not cross into next cell: done and tri not found*/ |
439 |
< |
if(!intersect_ray_plane(orig,dir,n,0.0,&t,o)) |
440 |
< |
return(INVALID); |
625 |
> |
BCOORD qtRoot[3][3] = { {MAXBCOORD2,0,0},{0,MAXBCOORD2,0},{0,0,MAXBCOORD2}}; |
626 |
|
|
442 |
– |
VSUM(o,o,dir,10*FTINY); |
627 |
|
|
628 |
< |
d[0] = dir[0]*(1-t-10*FTINY); |
629 |
< |
d[1] = dir[1]*(1-t-10*FTINY); |
630 |
< |
d[2] = dir[2]*(1-t-10*FTINY); |
631 |
< |
i = stTri_nbrs[i][id]; |
632 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
633 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
634 |
< |
id = qtRoot_trace_edge(rootptr,q0,q1,q2,o,d,max_t,func,arg1,arg2); |
635 |
< |
if(id == QT_DONE) |
636 |
< |
return(*arg1); |
637 |
< |
if(id == INVALID) |
638 |
< |
{ |
639 |
< |
#if 0 |
640 |
< |
eputs("stTrace_edges(): point not found\n"); |
641 |
< |
#endif |
642 |
< |
return(INVALID); |
459 |
< |
} |
460 |
< |
|
461 |
< |
} |
462 |
< |
} /* Point not found */ |
463 |
< |
return(INVALID); |
628 |
> |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02) |
629 |
> |
int root; |
630 |
> |
FVECT tri[3]; |
631 |
> |
BCOORD b0[3],b1[3],b2[3]; |
632 |
> |
BCOORD db10[3],db21[3],db02[3]; |
633 |
> |
{ |
634 |
> |
/* Project the vertex into the qtree plane */ |
635 |
> |
vert_to_qt_frame(root,tri[0],b0); |
636 |
> |
vert_to_qt_frame(root,tri[1],b1); |
637 |
> |
vert_to_qt_frame(root,tri[2],b2); |
638 |
> |
|
639 |
> |
/* calculate triangle edge differences in new frame */ |
640 |
> |
db10[0] = b1[0] - b0[0]; db10[1] = b1[1] - b0[1]; db10[2] = b1[2] - b0[2]; |
641 |
> |
db21[0] = b2[0] - b1[0]; db21[1] = b2[1] - b1[1]; db21[2] = b2[2] - b1[2]; |
642 |
> |
db02[0] = b0[0] - b2[0]; db02[1] = b0[1] - b2[1]; db02[2] = b0[2] - b2[2]; |
643 |
|
} |
644 |
|
|
645 |
|
|
646 |
< |
|
647 |
< |
int |
469 |
< |
stTrace_ray(st,orig,dir,func,arg1,arg2) |
646 |
> |
QUADTREE |
647 |
> |
stRoot_insert_tri(st,root,tri,f) |
648 |
|
STREE *st; |
649 |
< |
FVECT orig,dir; |
650 |
< |
int (*func)(); |
651 |
< |
int *arg1,arg2; |
649 |
> |
int root; |
650 |
> |
FVECT tri[3]; |
651 |
> |
FUNC f; |
652 |
|
{ |
653 |
< |
int id,i; |
654 |
< |
QUADTREE *rootptr; |
655 |
< |
FVECT q0,q1,q2,o,n; |
656 |
< |
double pd,t; |
653 |
> |
BCOORD b0[3],b1[3],b2[3]; |
654 |
> |
BCOORD db10[3],db21[3],db02[3]; |
655 |
> |
unsigned int s0,s1,s2,sq0,sq1,sq2; |
656 |
> |
QUADTREE qt; |
657 |
|
|
658 |
< |
VCOPY(o,orig); |
659 |
< |
for(i=0; i < 4; i++) |
482 |
< |
{ |
483 |
< |
#ifdef TEST_DRIVER |
484 |
< |
Pick_cnt = 0; |
485 |
< |
#endif |
486 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
487 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
488 |
< |
/* Return quadtree tri that p falls in */ |
489 |
< |
id= qtRoot_trace_ray(rootptr,q0,q1,q2,o,dir,func,arg1,arg2); |
490 |
< |
if(id == INVALID) |
491 |
< |
continue; |
492 |
< |
if(id == QT_DONE) |
493 |
< |
return(*arg1); |
494 |
< |
|
495 |
< |
/* Crossed over to next cell: id = nbr */ |
496 |
< |
while(1) |
497 |
< |
{ |
498 |
< |
/* test if ray crosses plane between this quadtree triangle and |
499 |
< |
its neighbor- if it does then find intersection point with |
500 |
< |
ray and plane- this is the new origin |
501 |
< |
*/ |
502 |
< |
if(id==0) |
503 |
< |
VCROSS(n,q1,q2); |
504 |
< |
else |
505 |
< |
if(id==1) |
506 |
< |
VCROSS(n,q2,q0); |
507 |
< |
else |
508 |
< |
VCROSS(n,q0,q1); |
658 |
> |
/* Map the triangle vertices into the canonical barycentric frame */ |
659 |
> |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02); |
660 |
|
|
661 |
< |
/* Ray does not cross into next cell: done and tri not found*/ |
662 |
< |
if(!intersect_ray_plane(orig,dir,n,0.0,NULL,o)) |
663 |
< |
return(INVALID); |
661 |
> |
/* Calculate initial sidedness info */ |
662 |
> |
SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]); |
663 |
> |
SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]); |
664 |
|
|
665 |
< |
VSUM(o,o,dir,10*FTINY); |
666 |
< |
i = stTri_nbrs[i][id]; |
667 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
668 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
669 |
< |
id = qtRoot_trace_ray(rootptr,q0,q1,q2,o,dir,func,arg1,arg2); |
670 |
< |
if(id == QT_DONE) |
520 |
< |
return(*arg1); |
521 |
< |
if(id == INVALID) |
522 |
< |
return(INVALID); |
523 |
< |
|
524 |
< |
} |
525 |
< |
} /* Point not found */ |
526 |
< |
return(INVALID); |
665 |
> |
qt = ST_ROOT_QT(st,root); |
666 |
> |
/* Visit cells that triangle intersects */ |
667 |
> |
qt = qtInsert_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2], |
668 |
> |
b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,0); |
669 |
> |
|
670 |
> |
return(qt); |
671 |
|
} |
672 |
|
|
673 |
+ |
stRoot_visit_tri(st,root,tri,f,n) |
674 |
+ |
STREE *st; |
675 |
+ |
int root; |
676 |
+ |
FVECT tri[3]; |
677 |
+ |
FUNC f; |
678 |
+ |
int n; |
679 |
+ |
{ |
680 |
+ |
BCOORD b0[3],b1[3],b2[3]; |
681 |
+ |
BCOORD db10[3],db21[3],db02[3]; |
682 |
+ |
unsigned int s0,s1,s2,sq0,sq1,sq2; |
683 |
+ |
QUADTREE qt; |
684 |
|
|
685 |
+ |
/* Map the triangle vertices into the canonical barycentric frame */ |
686 |
+ |
convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02); |
687 |
|
|
688 |
< |
stVisit_tri_interior(st,t0,t1,t2,func,arg1,arg2) |
688 |
> |
/* Calculate initial sidedness info */ |
689 |
> |
SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]); |
690 |
> |
SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]); |
691 |
> |
|
692 |
> |
qt = ST_ROOT_QT(st,root); |
693 |
> |
QT_SET_FLAG(ST_QT(st,root)); |
694 |
> |
/* Visit cells that triangle intersects */ |
695 |
> |
qtVisit_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2], |
696 |
> |
b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,n); |
697 |
> |
|
698 |
> |
} |
699 |
> |
|
700 |
> |
stInsert_tri(st,tri,f) |
701 |
|
STREE *st; |
702 |
< |
FVECT t0,t1,t2; |
703 |
< |
int (*func)(); |
535 |
< |
int *arg1,arg2; |
702 |
> |
FVECT tri[3]; |
703 |
> |
FUNC f; |
704 |
|
{ |
705 |
< |
int i; |
706 |
< |
QUADTREE *rootptr; |
707 |
< |
FVECT q0,q1,q2; |
705 |
> |
unsigned int cells,which; |
706 |
> |
int root; |
707 |
> |
|
708 |
|
|
709 |
< |
for(i=0; i < 4; i++) |
709 |
> |
/* calculate entry/exit points of edges through the cells */ |
710 |
> |
cells = stTri_cells(st,tri); |
711 |
> |
|
712 |
> |
/* For each cell that quadtree intersects: Map the triangle vertices into |
713 |
> |
the canonical barycentric frame of (1,0,0), (0,1,0),(0,0,1). Insert |
714 |
> |
by first doing a trivial reject on the interior nodes, and then a |
715 |
> |
tri/tri intersection at the leaf nodes. |
716 |
> |
*/ |
717 |
> |
for(root=0,which=1; root < ST_NUM_ROOT_NODES; root++,which <<= 1) |
718 |
|
{ |
719 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
720 |
< |
stNth_base_verts(st,i,q0,q1,q2); |
721 |
< |
qtVisit_tri_interior(rootptr,q0,q1,q2,t0,t1,t2,0,func,arg1,arg2); |
719 |
> |
/* For each of the quadtree roots: check if marked as intersecting tri*/ |
720 |
> |
if(cells & which) |
721 |
> |
/* Visit tri cells */ |
722 |
> |
ST_ROOT_QT(st,root) = stRoot_insert_tri(st,root,tri,f); |
723 |
|
} |
724 |
|
} |
725 |
|
|
726 |
< |
|
550 |
< |
int |
551 |
< |
stApply_to_tri(st,t0,t1,t2,func,arg1,arg2) |
726 |
> |
stInsert_samp(st,p,f) |
727 |
|
STREE *st; |
728 |
< |
FVECT t0,t1,t2; |
729 |
< |
int (*func)(); |
555 |
< |
int *arg1,arg2; |
728 |
> |
FVECT p; |
729 |
> |
FUNC f; |
730 |
|
{ |
731 |
< |
int f; |
732 |
< |
FVECT dir; |
731 |
> |
|
732 |
> |
QUADTREE qt; |
733 |
> |
BCOORD bcoordi[3]; |
734 |
> |
int i,done; |
735 |
> |
|
736 |
> |
/* Find root quadtree that contains p */ |
737 |
> |
i = stLocate_root(p); |
738 |
> |
qt = ST_ROOT_QT(st,i); |
739 |
|
|
740 |
< |
/* First add all of the leaf cells lying on the triangle perimeter: |
741 |
< |
mark all cells seen on the way |
742 |
< |
*/ |
743 |
< |
qtClearAllFlags(); /* clear all quadtree branch flags */ |
744 |
< |
f = 0; |
745 |
< |
VSUB(dir,t1,t0); |
746 |
< |
stTrace_edge(st,t0,dir,1.0,func,arg1,arg2); |
747 |
< |
VSUB(dir,t2,t1); |
748 |
< |
stTrace_edge(st,t1,dir,1.0,func,arg1,arg2); |
569 |
< |
VSUB(dir,t0,t2); |
570 |
< |
stTrace_edge(st,t2,dir,1.0,func,arg1,arg2); |
571 |
< |
/* Now visit interior */ |
572 |
< |
stVisit_tri_interior(st,t0,t1,t2,func,arg1,arg2); |
740 |
> |
/* Will return lowest level triangle containing point: It the |
741 |
> |
point is on an edge or vertex: will return first associated |
742 |
> |
triangle encountered in the child traversal- the others can |
743 |
> |
be derived using triangle adjacency information |
744 |
> |
*/ |
745 |
> |
vert_to_qt_frame(i,p,bcoordi); |
746 |
> |
ST_ROOT_QT(st,i) = qtInsert_point(i,qt,EMPTY,qtRoot[0],qtRoot[1], |
747 |
> |
qtRoot[2],bcoordi,MAXBCOORD2>>1,f,0,&done); |
748 |
> |
|
749 |
|
} |
750 |
|
|
751 |
|
|
752 |
|
|
753 |
|
|
754 |
|
|
579 |
– |
int |
580 |
– |
stUpdate_tri(st,t_id,t0,t1,t2,edge_func,interior_func) |
581 |
– |
STREE *st; |
582 |
– |
int t_id; |
583 |
– |
FVECT t0,t1,t2; |
584 |
– |
int (*edge_func)(),(*interior_func)(); |
585 |
– |
{ |
586 |
– |
int f; |
587 |
– |
FVECT dir; |
588 |
– |
|
589 |
– |
/* First add all of the leaf cells lying on the triangle perimeter: |
590 |
– |
mark all cells seen on the way |
591 |
– |
*/ |
592 |
– |
ST_CLEAR_FLAGS(st); |
593 |
– |
f = 0; |
594 |
– |
/* Visit cells along edges of the tri */ |
755 |
|
|
596 |
– |
stVisit_tri_edges2(st,t0,t1,t2,edge_func,&f,t_id); |
597 |
– |
|
598 |
– |
/* Now visit interior */ |
599 |
– |
if(QT_FLAG_FILL_TRI(f) || QT_FLAG_UPDATE(f)) |
600 |
– |
stVisit_tri_interior(st,t0,t1,t2,interior_func,&f,t_id); |
601 |
– |
} |
756 |
|
|
757 |
|
|
758 |
|
|