6 |
|
|
7 |
|
/* |
8 |
|
* sm_stree.c |
9 |
+ |
* An stree (spherical quadtree) is defined by an octahedron in |
10 |
+ |
* canonical form,and a world center point. Each face of the |
11 |
+ |
* octahedron is adaptively subdivided as a planar triangular quadtree. |
12 |
+ |
* World space geometry is projected onto the quadtree faces from the |
13 |
+ |
* sphere center. |
14 |
|
*/ |
15 |
|
#include "standard.h" |
16 |
< |
#include "object.h" |
12 |
< |
|
16 |
> |
#include "sm_flag.h" |
17 |
|
#include "sm_geom.h" |
18 |
+ |
#include "sm_qtree.h" |
19 |
|
#include "sm_stree.h" |
20 |
|
|
21 |
+ |
#ifdef TEST_DRIVER |
22 |
+ |
extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500]; |
23 |
+ |
extern int Pick_cnt; |
24 |
+ |
#endif |
25 |
+ |
/* octahedron coordinates */ |
26 |
+ |
FVECT stDefault_base[6] = { {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.}, |
27 |
+ |
{-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}}; |
28 |
+ |
/* octahedron triangle vertices */ |
29 |
+ |
int stBase_verts[8][3] = { {2,1,0},{1,5,0},{5,1,3},{1,2,3}, |
30 |
+ |
{4,2,0},{4,0,5},{3,4,5},{4,3,2}}; |
31 |
+ |
/* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/ |
32 |
+ |
int stBase_nbrs[8][3] = { {1,4,3},{5,0,2},{3,6,1},{7,2,0}, |
33 |
+ |
{0,5,7},{1,6,4},{5,2,7},{3,4,6}}; |
34 |
+ |
/* look up table for octahedron point location */ |
35 |
+ |
int stlocatetbl[8] = {6,7,2,3,5,4,1,0}; |
36 |
|
|
17 |
– |
/* Define 4 vertices on the sphere to create a tetrahedralization on |
18 |
– |
the sphere: triangles are as follows: |
19 |
– |
(0,1,2),(0,2,3), (0,3,1), (1,3,2) |
20 |
– |
*/ |
37 |
|
|
38 |
< |
FVECT stDefault_base[4] = { {SQRT3_INV, SQRT3_INV, SQRT3_INV}, |
39 |
< |
{-SQRT3_INV, -SQRT3_INV, SQRT3_INV}, |
40 |
< |
{-SQRT3_INV, SQRT3_INV, -SQRT3_INV}, |
41 |
< |
{SQRT3_INV, -SQRT3_INV, -SQRT3_INV}}; |
26 |
< |
int stTri_verts[4][3] = { {2,1,0}, |
27 |
< |
{3,2,0}, |
28 |
< |
{1,3,0}, |
29 |
< |
{2,3,1}}; |
30 |
< |
|
31 |
< |
stNth_base_verts(st,i,v1,v2,v3) |
38 |
> |
/* Initializes an stree structure with origin 'center': |
39 |
> |
Frees existing quadtrees hanging off of the roots |
40 |
> |
*/ |
41 |
> |
stInit(st) |
42 |
|
STREE *st; |
33 |
– |
int i; |
34 |
– |
FVECT v1,v2,v3; |
43 |
|
{ |
44 |
< |
VCOPY(v1,ST_NTH_BASE(st,stTri_verts[i][0])); |
45 |
< |
VCOPY(v2,ST_NTH_BASE(st,stTri_verts[i][1])); |
46 |
< |
VCOPY(v3,ST_NTH_BASE(st,stTri_verts[i][2])); |
44 |
> |
ST_TOP_ROOT(st) = qtAlloc(); |
45 |
> |
ST_BOTTOM_ROOT(st) = qtAlloc(); |
46 |
> |
ST_INIT_ROOT(st); |
47 |
|
} |
48 |
|
|
49 |
< |
/* Frees the 4 quadtrees rooted at st */ |
49 |
> |
/* Frees the children of the 2 quadtrees rooted at st, |
50 |
> |
Does not free root nodes: just clears |
51 |
> |
*/ |
52 |
|
stClear(st) |
53 |
< |
STREE *st; |
53 |
> |
STREE *st; |
54 |
|
{ |
55 |
< |
int i; |
56 |
< |
|
47 |
< |
/* stree always has 4 children corresponding to the base tris |
48 |
< |
*/ |
49 |
< |
for (i = 0; i < 4; i++) |
50 |
< |
qtFree(ST_NTH_ROOT(st, i)); |
51 |
< |
|
52 |
< |
QT_CLEAR_CHILDREN(ST_ROOT(st)); |
53 |
< |
|
55 |
> |
qtDone(); |
56 |
> |
stInit(st); |
57 |
|
} |
58 |
|
|
59 |
< |
|
59 |
> |
/* Allocates a stree structure and creates octahedron base */ |
60 |
|
STREE |
58 |
– |
*stInit(st,center,base) |
59 |
– |
STREE *st; |
60 |
– |
FVECT center,base[4]; |
61 |
– |
{ |
62 |
– |
|
63 |
– |
if(base) |
64 |
– |
ST_SET_BASE(st,base); |
65 |
– |
else |
66 |
– |
ST_SET_BASE(st,stDefault_base); |
67 |
– |
|
68 |
– |
ST_SET_CENTER(st,center); |
69 |
– |
stClear(st); |
70 |
– |
|
71 |
– |
return(st); |
72 |
– |
} |
73 |
– |
|
74 |
– |
|
75 |
– |
/* "base" defines 4 vertices on the sphere to create a tetrahedralization on |
76 |
– |
the sphere: triangles are as follows:(0,1,2),(0,2,3), (0,3,1), (1,3,2) |
77 |
– |
if base is null: does default. |
78 |
– |
|
79 |
– |
*/ |
80 |
– |
STREE |
61 |
|
*stAlloc(st) |
62 |
|
STREE *st; |
63 |
|
{ |
64 |
< |
int i; |
65 |
< |
|
64 |
> |
int i,m; |
65 |
> |
FVECT v0,v1,v2; |
66 |
> |
FVECT n; |
67 |
> |
|
68 |
|
if(!st) |
69 |
< |
st = (STREE *)malloc(sizeof(STREE)); |
69 |
> |
if(!(st = (STREE *)malloc(sizeof(STREE)))) |
70 |
> |
error(SYSTEM,"stAlloc(): Unable to allocate memory\n"); |
71 |
|
|
72 |
< |
ST_ROOT(st) = qtAlloc(); |
73 |
< |
|
74 |
< |
QT_CLEAR_CHILDREN(ST_ROOT(st)); |
72 |
> |
/* Allocate the top and bottom quadtree root nodes */ |
73 |
> |
stInit(st); |
74 |
> |
|
75 |
> |
/* Set the octahedron base */ |
76 |
> |
ST_SET_BASE(st,stDefault_base); |
77 |
|
|
78 |
+ |
/* Calculate octahedron face and edge normals */ |
79 |
+ |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
80 |
+ |
{ |
81 |
+ |
VCOPY(v0,ST_NTH_V(st,i,0)); |
82 |
+ |
VCOPY(v1,ST_NTH_V(st,i,1)); |
83 |
+ |
VCOPY(v2,ST_NTH_V(st,i,2)); |
84 |
+ |
tri_plane_equation(v0,v1,v2, &ST_NTH_PLANE(st,i),FALSE); |
85 |
+ |
m = max_index(FP_N(ST_NTH_PLANE(st,i)),NULL); |
86 |
+ |
FP_X(ST_NTH_PLANE(st,i)) = (m+1)%3; |
87 |
+ |
FP_Y(ST_NTH_PLANE(st,i)) = (m+2)%3; |
88 |
+ |
FP_Z(ST_NTH_PLANE(st,i)) = m; |
89 |
+ |
VCROSS(ST_EDGE_NORM(st,i,0),v0,v1); |
90 |
+ |
VCROSS(ST_EDGE_NORM(st,i,1),v1,v2); |
91 |
+ |
VCROSS(ST_EDGE_NORM(st,i,2),v2,v0); |
92 |
+ |
} |
93 |
|
return(st); |
94 |
|
} |
95 |
|
|
96 |
|
|
97 |
< |
/* Find location of sample point in the DAG and return lowest level |
98 |
< |
containing triangle. "type" indicates whether the point was found |
99 |
< |
to be in interior to the triangle: GT_FACE, on one of its |
100 |
< |
edges GT_EDGE or coinciding with one of its vertices GT_VERTEX. |
101 |
< |
"which" specifies which vertex (0,1,2) or edge (0=v0v1, 1 = v1v2, 2 = v21) |
102 |
< |
*/ |
103 |
< |
int |
104 |
< |
stPoint_locate(st,npt,type,which) |
105 |
< |
STREE *st; |
106 |
< |
FVECT npt; |
107 |
< |
char *type,*which; |
108 |
< |
{ |
109 |
< |
int i,d,j,id; |
110 |
< |
QUADTREE *rootptr,*qtptr; |
111 |
< |
FVECT v1,v2,v3; |
112 |
< |
OBJECT os[MAXSET+1],*optr; |
113 |
< |
char w; |
114 |
< |
FVECT p0,p1,p2; |
115 |
< |
|
116 |
< |
/* Test each of the root triangles against point id */ |
117 |
< |
for(i=0; i < 4; i++) |
118 |
< |
{ |
119 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
120 |
< |
stNth_base_verts(st,i,v1,v2,v3); |
121 |
< |
/* Return tri that p falls in */ |
122 |
< |
qtptr = qtRoot_point_locate(rootptr,v1,v2,v3,npt,NULL,NULL,NULL); |
123 |
< |
if(!qtptr) |
124 |
< |
continue; |
125 |
< |
/* Get the set */ |
126 |
< |
qtgetset(os,*qtptr); |
127 |
< |
for (j = QT_SET_CNT(os),optr = QT_SET_PTR(os); j > 0; j--) |
128 |
< |
{ |
129 |
< |
/* Find the first triangle that pt falls */ |
130 |
< |
id = QT_SET_NEXT_ELEM(optr); |
131 |
< |
qtTri_verts_from_id(id,p0,p1,p2); |
132 |
< |
d = test_single_point_against_spherical_tri(p0,p1,p2,npt,&w); |
133 |
< |
if(d) |
134 |
< |
{ |
135 |
< |
if(type) |
136 |
< |
*type = d; |
137 |
< |
if(which) |
138 |
< |
*which = w; |
139 |
< |
return(id); |
140 |
< |
} |
141 |
< |
} |
142 |
< |
} |
143 |
< |
if(which) |
144 |
< |
*which = 0; |
145 |
< |
if(type) |
146 |
< |
*type = 0; |
147 |
< |
return(EMPTY); |
148 |
< |
} |
149 |
< |
|
97 |
> |
/* Return quadtree leaf node containing point 'p'*/ |
98 |
|
QUADTREE |
99 |
< |
*stPoint_locate_cell(st,p,t0,t1,t2) |
99 |
> |
stPoint_locate(st,p) |
100 |
|
STREE *st; |
101 |
|
FVECT p; |
154 |
– |
FVECT t0,t1,t2; |
102 |
|
{ |
103 |
< |
int i,d; |
104 |
< |
QUADTREE *rootptr,*qtptr; |
158 |
< |
FVECT v0,v1,v2; |
103 |
> |
int i; |
104 |
> |
QUADTREE root,qt; |
105 |
|
|
106 |
+ |
/* Find root quadtree that contains p */ |
107 |
+ |
i = stPoint_in_root(p); |
108 |
+ |
root = ST_NTH_ROOT(st,i); |
109 |
|
|
110 |
< |
/* Test each of the root triangles against point id */ |
111 |
< |
for(i=0; i < 4; i++) |
112 |
< |
{ |
113 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
165 |
< |
stNth_base_verts(st,i,v0,v1,v2); |
166 |
< |
/* Return tri that p falls in */ |
167 |
< |
qtptr = qtRoot_point_locate(rootptr,v0,v1,v2,p,t0,t1,t2); |
168 |
< |
/* NOTE: For now return only one triangle */ |
169 |
< |
if(qtptr) |
170 |
< |
return(qtptr); |
171 |
< |
} /* Point not found */ |
172 |
< |
return(NULL); |
110 |
> |
/* Traverse quadtree to leaf level */ |
111 |
> |
qt = qtRoot_point_locate(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
112 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),p); |
113 |
> |
return(qt); |
114 |
|
} |
115 |
|
|
116 |
+ |
/* Add triangle 'id' with coordinates 't0,t1,t2' to the stree: returns |
117 |
+ |
FALSE on error, TRUE otherwise |
118 |
+ |
*/ |
119 |
|
|
120 |
< |
QUADTREE |
177 |
< |
*stAdd_tri_from_pt(st,p,t_id) |
178 |
< |
STREE *st; |
179 |
< |
FVECT p; |
180 |
< |
int t_id; |
181 |
< |
{ |
182 |
< |
int i,d; |
183 |
< |
QUADTREE *rootptr,*qtptr; |
184 |
< |
FVECT v0,v1,v2; |
185 |
< |
|
186 |
< |
|
187 |
< |
/* Test each of the root triangles against point id */ |
188 |
< |
for(i=0; i < 4; i++) |
189 |
< |
{ |
190 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
191 |
< |
stNth_base_verts(st,i,v0,v1,v2); |
192 |
< |
/* Return tri that p falls in */ |
193 |
< |
qtptr = qtRoot_add_tri_from_point(rootptr,v0,v1,v2,p,t_id); |
194 |
< |
/* NOTE: For now return only one triangle */ |
195 |
< |
if(qtptr) |
196 |
< |
return(qtptr); |
197 |
< |
} /* Point not found */ |
198 |
< |
return(NULL); |
199 |
< |
} |
200 |
< |
|
201 |
< |
int |
202 |
< |
stAdd_tri(st,id,v0,v1,v2) |
120 |
> |
stAdd_tri(st,id,t0,t1,t2) |
121 |
|
STREE *st; |
122 |
|
int id; |
123 |
< |
FVECT v0,v1,v2; |
123 |
> |
FVECT t0,t1,t2; |
124 |
|
{ |
125 |
< |
|
126 |
< |
int i,found; |
209 |
< |
QUADTREE *rootptr; |
210 |
< |
FVECT t0,t1,t2; |
125 |
> |
int i; |
126 |
> |
QUADTREE root; |
127 |
|
|
128 |
< |
found = 0; |
213 |
< |
for(i=0; i < 4; i++) |
128 |
> |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
129 |
|
{ |
130 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
131 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
132 |
< |
found |= qtRoot_add_tri(rootptr,id,v0,v1,v2,t0,t1,t2,0); |
130 |
> |
root = ST_NTH_ROOT(st,i); |
131 |
> |
ST_NTH_ROOT(st,i) = qtRoot_add_tri(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
132 |
> |
ST_NTH_V(st,i,2),t0,t1,t2,id,0); |
133 |
|
} |
219 |
– |
return(found); |
134 |
|
} |
135 |
|
|
136 |
< |
int |
137 |
< |
stApply_to_tri_cells(st,v0,v1,v2,func,arg) |
136 |
> |
/* Remove triangle 'id' with coordinates 't0,t1,t2' to the stree: returns |
137 |
> |
FALSE on error, TRUE otherwise |
138 |
> |
*/ |
139 |
> |
|
140 |
> |
stRemove_tri(st,id,t0,t1,t2) |
141 |
|
STREE *st; |
142 |
< |
FVECT v0,v1,v2; |
143 |
< |
int (*func)(); |
227 |
< |
char *arg; |
142 |
> |
int id; |
143 |
> |
FVECT t0,t1,t2; |
144 |
|
{ |
145 |
< |
int i,found; |
146 |
< |
QUADTREE *rootptr; |
231 |
< |
FVECT t0,t1,t2; |
145 |
> |
int i; |
146 |
> |
QUADTREE root; |
147 |
|
|
148 |
< |
found = 0; |
234 |
< |
for(i=0; i < 4; i++) |
148 |
> |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
149 |
|
{ |
150 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
151 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
152 |
< |
found |= qtApply_to_tri_cells(rootptr,v0,v1,v2,t0,t1,t2,func,arg); |
150 |
> |
root = ST_NTH_ROOT(st,i); |
151 |
> |
ST_NTH_ROOT(st,i)=qtRoot_remove_tri(root,id,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
152 |
> |
ST_NTH_V(st,i,2),t0,t1,t2); |
153 |
|
} |
240 |
– |
return(found); |
154 |
|
} |
155 |
|
|
156 |
+ |
/* Visit all nodes that are intersected by the edges of triangle 't0,t1,t2' |
157 |
+ |
and apply 'func' |
158 |
+ |
*/ |
159 |
|
|
160 |
+ |
stVisit_tri_edges(st,t0,t1,t2,func,fptr,argptr) |
161 |
+ |
STREE *st; |
162 |
+ |
FVECT t0,t1,t2; |
163 |
+ |
int (*func)(),*fptr; |
164 |
+ |
int *argptr; |
165 |
+ |
{ |
166 |
+ |
int id,i,w,next; |
167 |
+ |
QUADTREE root; |
168 |
+ |
FVECT v[3],i_pt; |
169 |
|
|
170 |
+ |
VCOPY(v[0],t0); VCOPY(v[1],t1); VCOPY(v[2],t2); |
171 |
+ |
w = -1; |
172 |
|
|
173 |
+ |
/* Locate the root containing triangle vertex v0 */ |
174 |
+ |
i = stPoint_in_root(v[0]); |
175 |
+ |
/* Mark the root node as visited */ |
176 |
+ |
QT_SET_FLAG(ST_ROOT(st,i)); |
177 |
+ |
root = ST_NTH_ROOT(st,i); |
178 |
+ |
|
179 |
+ |
ST_NTH_ROOT(st,i) = qtRoot_visit_tri_edges(root,ST_NTH_V(st,i,0), |
180 |
+ |
ST_NTH_V(st,i,1),ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),v,i_pt,&w, |
181 |
+ |
&next,func,fptr,argptr); |
182 |
+ |
if(QT_FLAG_IS_DONE(*fptr)) |
183 |
+ |
return; |
184 |
+ |
|
185 |
+ |
/* Crossed over to next node: id = nbr */ |
186 |
+ |
while(1) |
187 |
+ |
{ |
188 |
+ |
/* test if ray crosses plane between this quadtree triangle and |
189 |
+ |
its neighbor- if it does then find intersection point with |
190 |
+ |
ray and plane- this is the new start point |
191 |
+ |
*/ |
192 |
+ |
i = stBase_nbrs[i][next]; |
193 |
+ |
root = ST_NTH_ROOT(st,i); |
194 |
+ |
ST_NTH_ROOT(st,i) = |
195 |
+ |
qtRoot_visit_tri_edges(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
196 |
+ |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),v,i_pt,&w,&next,func,fptr,argptr); |
197 |
+ |
if(QT_FLAG_IS_DONE(*fptr)) |
198 |
+ |
return; |
199 |
+ |
} |
200 |
+ |
} |
201 |
+ |
|
202 |
+ |
/* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each |
203 |
+ |
node that it intersects |
204 |
+ |
*/ |
205 |
|
int |
206 |
< |
stRemove_tri(st,id,v0,v1,v2) |
207 |
< |
STREE *st; |
208 |
< |
int id; |
209 |
< |
FVECT v0,v1,v2; |
206 |
> |
stTrace_ray(st,orig,dir,func,argptr) |
207 |
> |
STREE *st; |
208 |
> |
FVECT orig,dir; |
209 |
> |
int (*func)(); |
210 |
> |
int *argptr; |
211 |
|
{ |
212 |
< |
|
213 |
< |
int i,found; |
214 |
< |
QUADTREE *rootptr; |
215 |
< |
FVECT t0,t1,t2; |
212 |
> |
int next,last,i,f=0; |
213 |
> |
QUADTREE root; |
214 |
> |
FVECT o,n,v; |
215 |
> |
double pd,t,d; |
216 |
|
|
217 |
< |
found = 0; |
218 |
< |
for(i=0; i < 4; i++) |
219 |
< |
{ |
220 |
< |
rootptr = ST_NTH_ROOT_PTR(st,i); |
221 |
< |
stNth_base_verts(st,i,t0,t1,t2); |
222 |
< |
found |= qtRemove_tri(rootptr,id,v0,v1,v2,t0,t1,t2); |
223 |
< |
} |
224 |
< |
return(found); |
217 |
> |
VCOPY(o,orig); |
218 |
> |
#ifdef TEST_DRIVER |
219 |
> |
Pick_cnt=0; |
220 |
> |
#endif; |
221 |
> |
/* Find the root node that o falls in */ |
222 |
> |
i = stPoint_in_root(o); |
223 |
> |
root = ST_NTH_ROOT(st,i); |
224 |
> |
|
225 |
> |
ST_NTH_ROOT(st,i) = |
226 |
> |
qtRoot_trace_ray(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
227 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),o,dir,&next,func,&f,argptr); |
228 |
> |
|
229 |
> |
if(QT_FLAG_IS_DONE(f)) |
230 |
> |
return(TRUE); |
231 |
> |
|
232 |
> |
d = DOT(orig,dir)/sqrt(DOT(orig,orig)); |
233 |
> |
VSUM(v,orig,dir,-d); |
234 |
> |
/* Crossed over to next cell: id = nbr */ |
235 |
> |
while(1) |
236 |
> |
{ |
237 |
> |
/* test if ray crosses plane between this quadtree triangle and |
238 |
> |
its neighbor- if it does then find intersection point with |
239 |
> |
ray and plane- this is the new origin |
240 |
> |
*/ |
241 |
> |
if(next == INVALID) |
242 |
> |
return(FALSE); |
243 |
> |
#if 0 |
244 |
> |
if(!intersect_ray_oplane(o,dir,ST_EDGE_NORM(st,i,(next+1)%3),NULL,o)) |
245 |
> |
#endif |
246 |
> |
if(DOT(o,v) < 0.0) |
247 |
> |
/* Ray does not cross into next cell: done and tri not found*/ |
248 |
> |
return(FALSE); |
249 |
> |
|
250 |
> |
VSUM(o,o,dir,10*FTINY); |
251 |
> |
i = stBase_nbrs[i][next]; |
252 |
> |
root = ST_NTH_ROOT(st,i); |
253 |
> |
|
254 |
> |
ST_NTH_ROOT(st,i) = |
255 |
> |
qtRoot_trace_ray(root, ST_NTH_V(st,i,0),ST_NTH_V(st,i,1), |
256 |
> |
ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),o,dir,&next,func,&f,argptr); |
257 |
> |
if(QT_FLAG_IS_DONE(f)) |
258 |
> |
return(TRUE); |
259 |
> |
} |
260 |
|
} |
261 |
|
|
262 |
|
|
263 |
+ |
/* Visit nodes intersected by tri 't0,t1,t2' and apply 'func(arg1,arg2,arg3): |
264 |
+ |
assumes that stVisit_tri_edges has already been called such that all nodes |
265 |
+ |
intersected by tri edges are already marked as visited |
266 |
+ |
*/ |
267 |
+ |
stVisit_tri(st,t0,t1,t2,func,f,argptr) |
268 |
+ |
STREE *st; |
269 |
+ |
FVECT t0,t1,t2; |
270 |
+ |
int (*func)(),*f; |
271 |
+ |
int *argptr; |
272 |
+ |
{ |
273 |
+ |
int i; |
274 |
+ |
QUADTREE root; |
275 |
+ |
FVECT n0,n1,n2; |
276 |
|
|
277 |
+ |
/* Calcuate the edge normals for tri */ |
278 |
+ |
VCROSS(n0,t0,t1); |
279 |
+ |
VCROSS(n1,t1,t2); |
280 |
+ |
VCROSS(n2,t2,t0); |
281 |
|
|
282 |
+ |
for(i=0; i < ST_NUM_ROOT_NODES; i++) |
283 |
+ |
{ |
284 |
+ |
root = ST_NTH_ROOT(st,i); |
285 |
+ |
ST_NTH_ROOT(st,i) = qtVisit_tri_interior(root,ST_NTH_V(st,i,0), |
286 |
+ |
ST_NTH_V(st,i,1),ST_NTH_V(st,i,2),t0,t1,t2,n0,n1,n2,0,func,f,argptr); |
287 |
|
|
288 |
< |
#if 0 |
288 |
> |
} |
289 |
> |
} |
290 |
> |
|
291 |
> |
/* Visit nodes intersected by tri 't0,t1,t2'.Apply 'edge_func(arg1,arg2,arg3)', |
292 |
> |
to those nodes intersected by edges, and interior_func to ALL nodes: |
293 |
> |
ie some Nodes will be visited more than once |
294 |
> |
*/ |
295 |
|
int |
296 |
< |
stAdd_tri_opt(st,id,v0,v1,v2) |
297 |
< |
STREE *st; |
298 |
< |
int id; |
299 |
< |
FVECT v0,v1,v2; |
296 |
> |
stApply_to_tri(st,t0,t1,t2,edge_func,tri_func,argptr) |
297 |
> |
STREE *st; |
298 |
> |
FVECT t0,t1,t2; |
299 |
> |
int (*edge_func)(),(*tri_func)(); |
300 |
> |
int *argptr; |
301 |
|
{ |
302 |
< |
|
303 |
< |
int i,found; |
280 |
< |
QUADTREE *qtptr; |
281 |
< |
FVECT pt,t0,t1,t2; |
302 |
> |
int f; |
303 |
> |
FVECT dir; |
304 |
|
|
305 |
+ |
#ifdef TEST_DRIVER |
306 |
+ |
Pick_cnt=0; |
307 |
+ |
#endif; |
308 |
|
/* First add all of the leaf cells lying on the triangle perimeter: |
309 |
|
mark all cells seen on the way |
310 |
|
*/ |
311 |
< |
/* clear all of the flags */ |
312 |
< |
qtClearAllFlags(); /* clear all quadtree branch flags */ |
311 |
> |
f = 0; |
312 |
> |
/* Visit cells along edges of the tri */ |
313 |
> |
stVisit_tri_edges(st,t0,t1,t2,edge_func,&f,argptr); |
314 |
|
|
315 |
< |
/* Now trace each triangle edge-marking cells visited, and adding tri to |
316 |
< |
the leafs |
317 |
< |
*/ |
292 |
< |
stAdd_tri_from_pt(st,v0,id,t0,t1,t2); |
293 |
< |
/* Find next cell that projection of ray intersects */ |
294 |
< |
VCOPY(pt,v0); |
295 |
< |
/* NOTE: Check if in same cell */ |
296 |
< |
while(traceEdge(pt,v1,t0,t1,t2,pt)) |
297 |
< |
{ |
298 |
< |
stAdd_tri_from_pt(st,pt,id,t0,t1,t2); |
299 |
< |
traceEdge(pt,v1,t0,t1,t2,pt); |
300 |
< |
} |
301 |
< |
while(traceEdge(pt,v2,t0,t1,t2,pt)) |
302 |
< |
{ |
303 |
< |
stAdd_tri_from_pt(st,pt,id,t0,t1,t2); |
304 |
< |
traceEdge(pt,v2,t0,t1,t2,pt); |
305 |
< |
} |
306 |
< |
while(traceEdge(pt,v0,t0,t1,t2,pt)) |
307 |
< |
{ |
308 |
< |
stAdd_tri_from_pt(st,pt,id,t0,t1,t2); |
309 |
< |
traceEdge(pt,v2,t0,t1,t2,pt); |
310 |
< |
} |
311 |
< |
|
312 |
< |
/* NOTE: Optimization: if <= 2 cells added: dont need to fill */ |
313 |
< |
/* Traverse: follow nodes with flag set or one vertex in triangle */ |
314 |
< |
|
315 |
> |
/* Now visit All cells interior */ |
316 |
> |
if(QT_FLAG_FILL_TRI(f) || QT_FLAG_UPDATE(f)) |
317 |
> |
stVisit_tri(st,t0,t1,t2,tri_func,&f,argptr); |
318 |
|
} |
319 |
|
|
320 |
< |
#endif |
320 |
> |
|
321 |
> |
|
322 |
> |
|
323 |
> |
|
324 |
> |
|
325 |
> |
|
326 |
> |
|
327 |
> |
|
328 |
> |
|
329 |
> |
|
330 |
> |
|
331 |
> |
|