| 1 |
/* Copyright (c) 1998 Silicon Graphics, Inc. */
|
| 2 |
|
| 3 |
#ifndef lint
|
| 4 |
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
#endif
|
| 6 |
|
| 7 |
/*
|
| 8 |
* sm_qtree.c: adapted from octree.c from radiance code
|
| 9 |
*/
|
| 10 |
/*
|
| 11 |
* octree.c - routines dealing with octrees and cubes.
|
| 12 |
*
|
| 13 |
* 7/28/85
|
| 14 |
*/
|
| 15 |
|
| 16 |
#include "standard.h"
|
| 17 |
#include "sm_flag.h"
|
| 18 |
#include "sm_geom.h"
|
| 19 |
#include "sm_qtree.h"
|
| 20 |
|
| 21 |
QUADTREE *quad_block[QT_MAX_BLK]; /* our quadtree */
|
| 22 |
static QUADTREE quad_free_list = EMPTY; /* freed octree nodes */
|
| 23 |
static QUADTREE treetop = 0; /* next free node */
|
| 24 |
int4 *quad_flag= NULL;
|
| 25 |
|
| 26 |
#ifdef TEST_DRIVER
|
| 27 |
extern FVECT Pick_v0[500],Pick_v1[500],Pick_v2[500];
|
| 28 |
extern int Pick_cnt,Pick_tri,Pick_samp;
|
| 29 |
extern FVECT Pick_point[500];
|
| 30 |
|
| 31 |
|
| 32 |
#endif
|
| 33 |
int Incnt=0;
|
| 34 |
|
| 35 |
QUADTREE
|
| 36 |
qtAlloc() /* allocate a quadtree */
|
| 37 |
{
|
| 38 |
register QUADTREE freet;
|
| 39 |
|
| 40 |
if ((freet = quad_free_list) != EMPTY)
|
| 41 |
{
|
| 42 |
quad_free_list = QT_NTH_CHILD(freet, 0);
|
| 43 |
return(freet);
|
| 44 |
}
|
| 45 |
freet = treetop;
|
| 46 |
if (QT_BLOCK_INDEX(freet) == 0)
|
| 47 |
{
|
| 48 |
if (QT_BLOCK(freet) >= QT_MAX_BLK)
|
| 49 |
return(EMPTY);
|
| 50 |
if ((quad_block[QT_BLOCK(freet)] = (QUADTREE *)malloc(
|
| 51 |
QT_BLOCK_SIZE*4*sizeof(QUADTREE))) == NULL)
|
| 52 |
error(SYSTEM,"qtAlloc(): Unable to allocate memory\n");
|
| 53 |
|
| 54 |
/* Realloc the per/node flags */
|
| 55 |
quad_flag = (int4 *)realloc((char *)quad_flag,
|
| 56 |
(QT_BLOCK(freet)+1)*((QT_BLOCK_SIZE+7)>>3));
|
| 57 |
if (quad_flag == NULL)
|
| 58 |
error(SYSTEM,"qtAlloc(): Unable to allocate memory\n");
|
| 59 |
}
|
| 60 |
treetop += 4;
|
| 61 |
return(freet);
|
| 62 |
}
|
| 63 |
|
| 64 |
|
| 65 |
qtClearAllFlags() /* clear all quadtree branch flags */
|
| 66 |
{
|
| 67 |
if (!treetop)
|
| 68 |
return;
|
| 69 |
|
| 70 |
/* Clear the node flags*/
|
| 71 |
bzero((char *)quad_flag, (QT_BLOCK(treetop-4)+1)*((QT_BLOCK_SIZE+7)>>3));
|
| 72 |
/* Clear set flags */
|
| 73 |
qtclearsetflags();
|
| 74 |
}
|
| 75 |
|
| 76 |
qtFree(qt) /* free a quadtree */
|
| 77 |
register QUADTREE qt;
|
| 78 |
{
|
| 79 |
register int i;
|
| 80 |
|
| 81 |
if (!QT_IS_TREE(qt))
|
| 82 |
{
|
| 83 |
qtfreeleaf(qt);
|
| 84 |
return;
|
| 85 |
}
|
| 86 |
for (i = 0; i < 4; i++)
|
| 87 |
qtFree(QT_NTH_CHILD(qt, i));
|
| 88 |
QT_NTH_CHILD(qt, 0) = quad_free_list;
|
| 89 |
quad_free_list = qt;
|
| 90 |
}
|
| 91 |
|
| 92 |
|
| 93 |
qtDone() /* free EVERYTHING */
|
| 94 |
{
|
| 95 |
register int i;
|
| 96 |
|
| 97 |
qtfreeleaves();
|
| 98 |
for (i = 0; i < QT_MAX_BLK; i++)
|
| 99 |
{
|
| 100 |
if (quad_block[i] == NULL)
|
| 101 |
break;
|
| 102 |
free((char *)quad_block[i]);
|
| 103 |
quad_block[i] = NULL;
|
| 104 |
}
|
| 105 |
/* Free the flags */
|
| 106 |
if (i) free((char *)quad_flag);
|
| 107 |
quad_flag = NULL;
|
| 108 |
quad_free_list = EMPTY;
|
| 109 |
treetop = 0;
|
| 110 |
}
|
| 111 |
|
| 112 |
QUADTREE
|
| 113 |
qtLocate_leaf(qt,bcoord)
|
| 114 |
QUADTREE qt;
|
| 115 |
BCOORD bcoord[3];
|
| 116 |
{
|
| 117 |
int i;
|
| 118 |
|
| 119 |
if(QT_IS_TREE(qt))
|
| 120 |
{
|
| 121 |
i = baryi_child(bcoord);
|
| 122 |
|
| 123 |
return(qtLocate_leaf(QT_NTH_CHILD(qt,i),bcoord));
|
| 124 |
}
|
| 125 |
else
|
| 126 |
return(qt);
|
| 127 |
}
|
| 128 |
|
| 129 |
/*
|
| 130 |
Return the quadtree node containing pt. It is assumed that pt is in
|
| 131 |
the root node qt with ws vertices q0,q1,q2 and plane equation peq.
|
| 132 |
*/
|
| 133 |
QUADTREE
|
| 134 |
qtRoot_point_locate(qt,q0,q1,q2,peq,pt)
|
| 135 |
QUADTREE qt;
|
| 136 |
FVECT q0,q1,q2;
|
| 137 |
FPEQ peq;
|
| 138 |
FVECT pt;
|
| 139 |
{
|
| 140 |
int i,x,y;
|
| 141 |
FVECT i_pt;
|
| 142 |
double bcoord[3];
|
| 143 |
BCOORD bcoordi[3];
|
| 144 |
|
| 145 |
/* Will return lowest level triangle containing point: It the
|
| 146 |
point is on an edge or vertex: will return first associated
|
| 147 |
triangle encountered in the child traversal- the others can
|
| 148 |
be derived using triangle adjacency information
|
| 149 |
*/
|
| 150 |
if(QT_IS_TREE(qt))
|
| 151 |
{
|
| 152 |
/* Find the intersection point */
|
| 153 |
intersect_vector_plane(pt,peq,NULL,i_pt);
|
| 154 |
|
| 155 |
x = FP_X(peq);
|
| 156 |
y = FP_Y(peq);
|
| 157 |
/* Calculate barycentric coordinates of i_pt */
|
| 158 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],i_pt[x],i_pt[y],bcoord);
|
| 159 |
|
| 160 |
/* convert to integer coordinate */
|
| 161 |
convert_dtol(bcoord,bcoordi);
|
| 162 |
|
| 163 |
i = baryi_child(bcoordi);
|
| 164 |
|
| 165 |
return(qtLocate_leaf(QT_NTH_CHILD(qt,i),bcoordi));
|
| 166 |
}
|
| 167 |
else
|
| 168 |
return(qt);
|
| 169 |
}
|
| 170 |
|
| 171 |
|
| 172 |
|
| 173 |
|
| 174 |
/* for triangle v0-v1-v2- returns a,b,c: children are:
|
| 175 |
|
| 176 |
v2 0: v0,a,c
|
| 177 |
/\ 1: a,v1,b
|
| 178 |
/2 \ 2: c,b,v2
|
| 179 |
c/____\b 3: b,c,a
|
| 180 |
/\ /\
|
| 181 |
/0 \3 /1 \
|
| 182 |
v0____\/____\v1
|
| 183 |
a
|
| 184 |
*/
|
| 185 |
|
| 186 |
|
| 187 |
qtNth_child_tri(v0,v1,v2,a,b,c,i,r0,r1,r2)
|
| 188 |
FVECT v0,v1,v2;
|
| 189 |
FVECT a,b,c;
|
| 190 |
int i;
|
| 191 |
FVECT r0,r1,r2;
|
| 192 |
{
|
| 193 |
|
| 194 |
if(!a)
|
| 195 |
{
|
| 196 |
/* Caution: r's must not be equal to v's:will be incorrect */
|
| 197 |
switch(i){
|
| 198 |
case 0:
|
| 199 |
VCOPY(r0,v0);
|
| 200 |
EDGE_MIDPOINT_VEC3(r1,v0,v1);
|
| 201 |
EDGE_MIDPOINT_VEC3(r2,v2,v0);
|
| 202 |
break;
|
| 203 |
case 1:
|
| 204 |
EDGE_MIDPOINT_VEC3(r0,v0,v1);
|
| 205 |
VCOPY(r1,v1);
|
| 206 |
EDGE_MIDPOINT_VEC3(r2,v1,v2);
|
| 207 |
break;
|
| 208 |
case 2:
|
| 209 |
EDGE_MIDPOINT_VEC3(r0,v2,v0);
|
| 210 |
EDGE_MIDPOINT_VEC3(r1,v1,v2);
|
| 211 |
VCOPY(r2,v2);
|
| 212 |
break;
|
| 213 |
case 3:
|
| 214 |
EDGE_MIDPOINT_VEC3(r0,v1,v2);
|
| 215 |
EDGE_MIDPOINT_VEC3(r1,v2,v0);
|
| 216 |
EDGE_MIDPOINT_VEC3(r2,v0,v1);
|
| 217 |
break;
|
| 218 |
}
|
| 219 |
}
|
| 220 |
else
|
| 221 |
{
|
| 222 |
switch(i){
|
| 223 |
case 0:
|
| 224 |
VCOPY(r0,v0); VCOPY(r1,a); VCOPY(r2,c);
|
| 225 |
break;
|
| 226 |
case 1:
|
| 227 |
VCOPY(r0,a); VCOPY(r1,v1); VCOPY(r2,b);
|
| 228 |
break;
|
| 229 |
case 2:
|
| 230 |
VCOPY(r0,c); VCOPY(r1,b); VCOPY(r2,v2);
|
| 231 |
break;
|
| 232 |
case 3:
|
| 233 |
VCOPY(r0,b); VCOPY(r1,c); VCOPY(r2,a);
|
| 234 |
break;
|
| 235 |
}
|
| 236 |
}
|
| 237 |
}
|
| 238 |
|
| 239 |
/* Add triangle "id" to all leaf level cells that are children of
|
| 240 |
quadtree pointed to by "qtptr" with cell vertices "t1,t2,t3"
|
| 241 |
that it overlaps (vertex and edge adjacencies do not count
|
| 242 |
as overlapping). If the addition of the triangle causes the cell to go over
|
| 243 |
threshold- the cell is split- and the triangle must be recursively inserted
|
| 244 |
into the new child cells: it is assumed that "v1,v2,v3" are normalized
|
| 245 |
*/
|
| 246 |
|
| 247 |
QUADTREE
|
| 248 |
qtRoot_add_tri(qt,q0,q1,q2,t0,t1,t2,id,n)
|
| 249 |
QUADTREE qt;
|
| 250 |
FVECT q0,q1,q2;
|
| 251 |
FVECT t0,t1,t2;
|
| 252 |
int id,n;
|
| 253 |
{
|
| 254 |
if(stri_intersect(q0,q1,q2,t0,t1,t2))
|
| 255 |
qt = qtAdd_tri(qt,q0,q1,q2,t0,t1,t2,id,n);
|
| 256 |
|
| 257 |
return(qt);
|
| 258 |
}
|
| 259 |
|
| 260 |
QUADTREE
|
| 261 |
qtRoot_remove_tri(qt,q0,q1,q2,t0,t1,t2,id,n)
|
| 262 |
QUADTREE qt;
|
| 263 |
FVECT q0,q1,q2;
|
| 264 |
FVECT t0,t1,t2;
|
| 265 |
int id,n;
|
| 266 |
{
|
| 267 |
|
| 268 |
if(stri_intersect(q0,q1,q2,t0,t1,t2))
|
| 269 |
qt = qtRemove_tri(qt,q0,q1,q2,t0,t1,t2,id,n);
|
| 270 |
return(qt);
|
| 271 |
}
|
| 272 |
|
| 273 |
|
| 274 |
QUADTREE
|
| 275 |
qtAdd_tri(qt,q0,q1,q2,t0,t1,t2,id,n)
|
| 276 |
QUADTREE qt;
|
| 277 |
FVECT q0,q1,q2;
|
| 278 |
FVECT t0,t1,t2;
|
| 279 |
int id;
|
| 280 |
int n;
|
| 281 |
{
|
| 282 |
FVECT a,b,c;
|
| 283 |
OBJECT tset[QT_MAXSET+1],*optr,*tptr;
|
| 284 |
FVECT r0,r1,r2;
|
| 285 |
int i;
|
| 286 |
|
| 287 |
/* if this is tree: recurse */
|
| 288 |
if(QT_IS_TREE(qt))
|
| 289 |
{
|
| 290 |
QT_SET_FLAG(qt);
|
| 291 |
n++;
|
| 292 |
qtSubdivide_tri(q0,q1,q2,a,b,c);
|
| 293 |
|
| 294 |
if(stri_intersect(t0,t1,t2,q0,a,c))
|
| 295 |
QT_NTH_CHILD(qt,0) = qtAdd_tri(QT_NTH_CHILD(qt,0),q0,a,c,t0,t1,t2,id,n);
|
| 296 |
if(stri_intersect(t0,t1,t2,a,q1,b))
|
| 297 |
QT_NTH_CHILD(qt,1) = qtAdd_tri(QT_NTH_CHILD(qt,1),a,q1,b,t0,t1,t2,id,n);
|
| 298 |
if(stri_intersect(t0,t1,t2,c,b,q2))
|
| 299 |
QT_NTH_CHILD(qt,2) = qtAdd_tri(QT_NTH_CHILD(qt,2),c,b,q2,t0,t1,t2,id,n);
|
| 300 |
if(stri_intersect(t0,t1,t2,b,c,a))
|
| 301 |
QT_NTH_CHILD(qt,3) = qtAdd_tri(QT_NTH_CHILD(qt,3),b,c,a,t0,t1,t2,id,n);
|
| 302 |
return(qt);
|
| 303 |
}
|
| 304 |
else
|
| 305 |
{
|
| 306 |
/* If this leave node emptry- create a new set */
|
| 307 |
if(QT_IS_EMPTY(qt))
|
| 308 |
qt = qtaddelem(qt,id);
|
| 309 |
else
|
| 310 |
{
|
| 311 |
/* If the set is too large: subdivide */
|
| 312 |
optr = qtqueryset(qt);
|
| 313 |
|
| 314 |
if(QT_SET_CNT(optr) < QT_SET_THRESHOLD)
|
| 315 |
qt = qtaddelem(qt,id);
|
| 316 |
else
|
| 317 |
{
|
| 318 |
if (n < QT_MAX_LEVELS)
|
| 319 |
{
|
| 320 |
/* If set size exceeds threshold: subdivide cell and
|
| 321 |
reinsert set tris into cell
|
| 322 |
*/
|
| 323 |
/* CAUTION:If QT_SET_THRESHOLD << QT_MAXSET, and dont add
|
| 324 |
more than a few triangles before expanding: then are safe here
|
| 325 |
otherwise must check to make sure set size is < MAXSET,
|
| 326 |
or qtgetset could overflow os.
|
| 327 |
*/
|
| 328 |
tptr = qtqueryset(qt);
|
| 329 |
if(QT_SET_CNT(tptr) > QT_MAXSET)
|
| 330 |
tptr = (OBJECT *)malloc((QT_SET_CNT(tptr)+1)*sizeof(OBJECT));
|
| 331 |
else
|
| 332 |
tptr = tset;
|
| 333 |
if(!tptr)
|
| 334 |
goto memerr;
|
| 335 |
|
| 336 |
qtgetset(tptr,qt);
|
| 337 |
n++;
|
| 338 |
qtfreeleaf(qt);
|
| 339 |
qtSubdivide(qt);
|
| 340 |
qt = qtAdd_tri(qt,q0,q1,q2,t0,t1,t2,id,n);
|
| 341 |
|
| 342 |
for(optr = QT_SET_PTR(tptr),i = QT_SET_CNT(tptr); i > 0; i--)
|
| 343 |
{
|
| 344 |
id = QT_SET_NEXT_ELEM(optr);
|
| 345 |
if(!qtTri_from_id(id,r0,r1,r2))
|
| 346 |
continue;
|
| 347 |
qt = qtAdd_tri(qt,q0,q1,q2,r0,r1,r2,id,n);
|
| 348 |
}
|
| 349 |
if(tptr != tset)
|
| 350 |
free(tptr);
|
| 351 |
}
|
| 352 |
else
|
| 353 |
qt = qtaddelem(qt,id);
|
| 354 |
}
|
| 355 |
}
|
| 356 |
}
|
| 357 |
return(qt);
|
| 358 |
memerr:
|
| 359 |
error(SYSTEM,"qtAdd_tri():Unable to allocate memory");
|
| 360 |
}
|
| 361 |
|
| 362 |
|
| 363 |
QUADTREE
|
| 364 |
qtRemove_tri(qt,id,q0,q1,q2,t0,t1,t2)
|
| 365 |
QUADTREE qt;
|
| 366 |
int id;
|
| 367 |
FVECT q0,q1,q2;
|
| 368 |
FVECT t0,t1,t2;
|
| 369 |
{
|
| 370 |
FVECT a,b,c;
|
| 371 |
|
| 372 |
/* test if triangle (t0,t1,t2) overlaps cell triangle (v0,v1,v2) */
|
| 373 |
if(!stri_intersect(t0,t1,t2,q0,q1,q2))
|
| 374 |
return(qt);
|
| 375 |
|
| 376 |
/* if this is tree: recurse */
|
| 377 |
if(QT_IS_TREE(qt))
|
| 378 |
{
|
| 379 |
qtSubdivide_tri(q0,q1,q2,a,b,c);
|
| 380 |
QT_NTH_CHILD(qt,0) = qtRemove_tri(QT_NTH_CHILD(qt,0),id,t0,t1,t2,q0,a,c);
|
| 381 |
QT_NTH_CHILD(qt,1) = qtRemove_tri(QT_NTH_CHILD(qt,1),id,t0,t1,t2,a,q1,b);
|
| 382 |
QT_NTH_CHILD(qt,2) = qtRemove_tri(QT_NTH_CHILD(qt,2),id,t0,t1,t2,c,b,q2);
|
| 383 |
QT_NTH_CHILD(qt,3) = qtRemove_tri(QT_NTH_CHILD(qt,3),id,t0,t1,t2,b,c,a);
|
| 384 |
return(qt);
|
| 385 |
}
|
| 386 |
else
|
| 387 |
{
|
| 388 |
if(QT_IS_EMPTY(qt))
|
| 389 |
{
|
| 390 |
#ifdef DEBUG
|
| 391 |
eputs("qtRemove_tri(): triangle not found\n");
|
| 392 |
#endif
|
| 393 |
}
|
| 394 |
/* remove id from set */
|
| 395 |
else
|
| 396 |
{
|
| 397 |
if(!qtinset(qt,id))
|
| 398 |
{
|
| 399 |
#ifdef DEBUG
|
| 400 |
eputs("qtRemove_tri(): tri not in set\n");
|
| 401 |
#endif
|
| 402 |
}
|
| 403 |
else
|
| 404 |
qt = qtdelelem(qt,id);
|
| 405 |
}
|
| 406 |
}
|
| 407 |
return(qt);
|
| 408 |
}
|
| 409 |
|
| 410 |
|
| 411 |
QUADTREE
|
| 412 |
qtVisit_tri_interior(qt,q0,q1,q2,t0,t1,t2,n0,n1,n2,n,func,f,argptr)
|
| 413 |
QUADTREE qt;
|
| 414 |
FVECT q0,q1,q2;
|
| 415 |
FVECT t0,t1,t2;
|
| 416 |
FVECT n0,n1,n2;
|
| 417 |
int n;
|
| 418 |
int (*func)(),*f;
|
| 419 |
int *argptr;
|
| 420 |
{
|
| 421 |
FVECT a,b,c;
|
| 422 |
|
| 423 |
/* If qt Flag set, or qt vertices interior to t0t1t2-descend */
|
| 424 |
tree_modified:
|
| 425 |
|
| 426 |
if(QT_IS_TREE(qt))
|
| 427 |
{
|
| 428 |
if(QT_IS_FLAG(qt) || point_in_stri_n(n0,n1,n2,q0))
|
| 429 |
{
|
| 430 |
QT_SET_FLAG(qt);
|
| 431 |
qtSubdivide_tri(q0,q1,q2,a,b,c);
|
| 432 |
/* descend to children */
|
| 433 |
QT_NTH_CHILD(qt,0) = qtVisit_tri_interior(QT_NTH_CHILD(qt,0),
|
| 434 |
q0,a,c,t0,t1,t2,n0,n1,n2,n+1,func,f,argptr);
|
| 435 |
QT_NTH_CHILD(qt,1) = qtVisit_tri_interior(QT_NTH_CHILD(qt,1),
|
| 436 |
a,q1,b,t0,t1,t2,n0,n1,n2,n+1,func,f,argptr);
|
| 437 |
QT_NTH_CHILD(qt,2) = qtVisit_tri_interior(QT_NTH_CHILD(qt,2),
|
| 438 |
c,b,q2,t0,t1,t2,n0,n1,n2,n+1,func,f,argptr);
|
| 439 |
QT_NTH_CHILD(qt,3) = qtVisit_tri_interior(QT_NTH_CHILD(qt,3),
|
| 440 |
b,c,a,t0,t1,t2,n0,n1,n2,n+1,func,f,argptr);
|
| 441 |
}
|
| 442 |
}
|
| 443 |
else
|
| 444 |
if((!QT_IS_EMPTY(qt) && QT_LEAF_IS_FLAG(qt)) ||
|
| 445 |
point_in_stri_n(n0,n1,n2,q0))
|
| 446 |
{
|
| 447 |
func(&qt,f,argptr,q0,q1,q2,t0,t1,t2,n);
|
| 448 |
if(QT_FLAG_IS_MODIFIED(*f))
|
| 449 |
{
|
| 450 |
QT_SET_FLAG(qt);
|
| 451 |
goto tree_modified;
|
| 452 |
}
|
| 453 |
if(QT_IS_LEAF(qt))
|
| 454 |
QT_LEAF_SET_FLAG(qt);
|
| 455 |
else
|
| 456 |
if(QT_IS_TREE(qt))
|
| 457 |
QT_SET_FLAG(qt);
|
| 458 |
}
|
| 459 |
return(qt);
|
| 460 |
}
|
| 461 |
|
| 462 |
|
| 463 |
|
| 464 |
int
|
| 465 |
move_to_nbri(b,db0,db1,db2,tptr)
|
| 466 |
BCOORD b[3];
|
| 467 |
BDIR db0,db1,db2;
|
| 468 |
TINT *tptr;
|
| 469 |
{
|
| 470 |
TINT t,dt;
|
| 471 |
BCOORD bc;
|
| 472 |
int nbr;
|
| 473 |
|
| 474 |
nbr = -1;
|
| 475 |
*tptr = 0;
|
| 476 |
/* Advance to next node */
|
| 477 |
if(b[0]==0 && db0 < 0)
|
| 478 |
return(0);
|
| 479 |
if(b[1]==0 && db1 < 0)
|
| 480 |
return(1);
|
| 481 |
if(b[2]==0 && db2 < 0)
|
| 482 |
return(2);
|
| 483 |
|
| 484 |
if(db0 < 0)
|
| 485 |
{
|
| 486 |
bc = b[0]<<SHIFT_MAXBCOORD;
|
| 487 |
t = bc/-db0;
|
| 488 |
nbr = 0;
|
| 489 |
}
|
| 490 |
else
|
| 491 |
t = HUGET;
|
| 492 |
if(db1 < 0)
|
| 493 |
{
|
| 494 |
bc = b[1] <<SHIFT_MAXBCOORD;
|
| 495 |
dt = bc/-db1;
|
| 496 |
if( dt < t)
|
| 497 |
{
|
| 498 |
t = dt;
|
| 499 |
nbr = 1;
|
| 500 |
}
|
| 501 |
}
|
| 502 |
if(db2 < 0)
|
| 503 |
{
|
| 504 |
bc = b[2] << SHIFT_MAXBCOORD;
|
| 505 |
dt = bc/-db2;
|
| 506 |
if( dt < t)
|
| 507 |
{
|
| 508 |
t = dt;
|
| 509 |
nbr = 2;
|
| 510 |
}
|
| 511 |
}
|
| 512 |
*tptr = t;
|
| 513 |
return(nbr);
|
| 514 |
}
|
| 515 |
|
| 516 |
QUADTREE
|
| 517 |
qtVisit_tri_edges(qt,b,db0,db1,db2,db,wptr,nextptr,t,sign,sfactor,func,f,argptr)
|
| 518 |
QUADTREE qt;
|
| 519 |
BCOORD b[3];
|
| 520 |
BDIR db0,db1,db2,db[3][3];
|
| 521 |
int *wptr,*nextptr;
|
| 522 |
TINT t[3];
|
| 523 |
int sign,sfactor;
|
| 524 |
int (*func)();
|
| 525 |
int *f,*argptr;
|
| 526 |
{
|
| 527 |
int i,found;
|
| 528 |
QUADTREE child;
|
| 529 |
int nbr,next,w;
|
| 530 |
TINT t_g,t_l,t_i,l;
|
| 531 |
|
| 532 |
if(QT_IS_TREE(qt))
|
| 533 |
{
|
| 534 |
/* Find the appropriate child and reset the coord */
|
| 535 |
i = baryi_child(b);
|
| 536 |
|
| 537 |
QT_SET_FLAG(qt);
|
| 538 |
|
| 539 |
for(;;)
|
| 540 |
{
|
| 541 |
w = *wptr;
|
| 542 |
child = QT_NTH_CHILD(qt,i);
|
| 543 |
if(i != 3)
|
| 544 |
QT_NTH_CHILD(qt,i) =
|
| 545 |
qtVisit_tri_edges(child,b,db0,db1,db2,db,wptr,nextptr,t,sign,
|
| 546 |
sfactor+1,func,f,argptr);
|
| 547 |
else
|
| 548 |
/* If the center cell- must flip direction signs */
|
| 549 |
QT_NTH_CHILD(qt,i) =
|
| 550 |
qtVisit_tri_edges(child,b,-db0,-db1,-db2,db,wptr,nextptr,t,1-sign,
|
| 551 |
sfactor+1,func,f,argptr);
|
| 552 |
|
| 553 |
if(QT_FLAG_IS_DONE(*f))
|
| 554 |
return(qt);
|
| 555 |
if(*wptr != w)
|
| 556 |
{
|
| 557 |
w = *wptr;
|
| 558 |
db0 = db[w][0];db1 = db[w][1];db2 = db[w][2];
|
| 559 |
if(sign)
|
| 560 |
{ db0 *= -1;db1 *= -1; db2 *= -1;}
|
| 561 |
}
|
| 562 |
/* If in same block: traverse */
|
| 563 |
if(i==3)
|
| 564 |
next = *nextptr;
|
| 565 |
else
|
| 566 |
if(*nextptr == i)
|
| 567 |
next = 3;
|
| 568 |
else
|
| 569 |
{
|
| 570 |
/* reset the barycentric coordinates in the parents*/
|
| 571 |
baryi_parent(b,i);
|
| 572 |
/* Else pop up to parent and traverse from there */
|
| 573 |
return(qt);
|
| 574 |
}
|
| 575 |
baryi_from_child(b,i,next);
|
| 576 |
i = next;
|
| 577 |
}
|
| 578 |
}
|
| 579 |
else
|
| 580 |
{
|
| 581 |
func(&qt,f,argptr);
|
| 582 |
if(QT_FLAG_IS_DONE(*f))
|
| 583 |
{
|
| 584 |
if(!QT_IS_EMPTY(qt))
|
| 585 |
QT_LEAF_SET_FLAG(qt);
|
| 586 |
return(qt);
|
| 587 |
}
|
| 588 |
|
| 589 |
if(!QT_IS_EMPTY(qt))
|
| 590 |
QT_LEAF_SET_FLAG(qt);
|
| 591 |
/* Advance to next node */
|
| 592 |
w = *wptr;
|
| 593 |
while(1)
|
| 594 |
{
|
| 595 |
nbr = move_to_nbri(b,db0,db1,db2,&t_i);
|
| 596 |
|
| 597 |
t_g = t_i >> sfactor;
|
| 598 |
|
| 599 |
if(t_g >= t[w])
|
| 600 |
{
|
| 601 |
if(w == 2)
|
| 602 |
{
|
| 603 |
QT_FLAG_SET_DONE(*f);
|
| 604 |
return(qt);
|
| 605 |
}
|
| 606 |
/* The edge fits in the cell- therefore the result of shifting
|
| 607 |
db by sfactor is guaranteed to be less than MAXBCOORD
|
| 608 |
*/
|
| 609 |
/* Caution: (t[w]*db) must occur before divide by MAXBCOORD
|
| 610 |
since t[w] will always be < MAXBCOORD
|
| 611 |
*/
|
| 612 |
l = t[w] << sfactor;
|
| 613 |
/* NOTE: Change divides to Shift and multiply by sign*/
|
| 614 |
b[0] += (l*db0)/MAXBCOORD;
|
| 615 |
b[1] += (l*db1)/MAXBCOORD;
|
| 616 |
b[2] += (l*db2)/MAXBCOORD;
|
| 617 |
w++;
|
| 618 |
db0 = db[w][0]; db1 = db[w][1]; db2 = db[w][2];
|
| 619 |
if(sign)
|
| 620 |
{ db0 *= -1;db1 *= -1; db2 *= -1;}
|
| 621 |
}
|
| 622 |
else
|
| 623 |
{
|
| 624 |
/* Caution: (t_i*db) must occur before divide by MAXBCOORD
|
| 625 |
since t_i will always be < MAXBCOORD*/
|
| 626 |
/* NOTE: Change divides to Shift and by sign*/
|
| 627 |
b[0] += (t_i *db0) / MAXBCOORD;
|
| 628 |
b[1] += (t_i *db1) / MAXBCOORD;
|
| 629 |
b[2] += (t_i *db2) / MAXBCOORD;
|
| 630 |
|
| 631 |
t[w] -= t_g;
|
| 632 |
*wptr = w;
|
| 633 |
*nextptr = nbr;
|
| 634 |
return(qt);
|
| 635 |
}
|
| 636 |
}
|
| 637 |
}
|
| 638 |
}
|
| 639 |
|
| 640 |
|
| 641 |
QUADTREE
|
| 642 |
qtRoot_visit_tri_edges(qt,q0,q1,q2,peq,tri,i_pt,wptr,nextptr,func,f,argptr)
|
| 643 |
QUADTREE qt;
|
| 644 |
FVECT q0,q1,q2;
|
| 645 |
FPEQ peq;
|
| 646 |
FVECT tri[3],i_pt;
|
| 647 |
int *wptr,*nextptr;
|
| 648 |
int (*func)();
|
| 649 |
int *f,*argptr;
|
| 650 |
{
|
| 651 |
int x,y,z,w,i,j,first;
|
| 652 |
QUADTREE child;
|
| 653 |
FVECT c,d,v[3];
|
| 654 |
double b[4][3],db[3][3],et[3],exit_pt;
|
| 655 |
BCOORD bi[3];
|
| 656 |
TINT t[3];
|
| 657 |
BDIR dbi[3][3];
|
| 658 |
|
| 659 |
first =0;
|
| 660 |
w = *wptr;
|
| 661 |
if(w==-1)
|
| 662 |
{
|
| 663 |
first = 1;
|
| 664 |
*wptr = w = 0;
|
| 665 |
}
|
| 666 |
/* Project the origin onto the root node plane */
|
| 667 |
|
| 668 |
t[0] = t[1] = t[2] = 0;
|
| 669 |
/* Find the intersection point of the origin */
|
| 670 |
/* map to 2d by dropping maximum magnitude component of normal */
|
| 671 |
|
| 672 |
x = FP_X(peq);
|
| 673 |
y = FP_Y(peq);
|
| 674 |
z = FP_Z(peq);
|
| 675 |
/* Calculate barycentric coordinates for current vertex */
|
| 676 |
if(!first)
|
| 677 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],i_pt[x],i_pt[y],b[3]);
|
| 678 |
else
|
| 679 |
/* Just starting: b[0] is the origin point: guaranteed to be valid b*/
|
| 680 |
{
|
| 681 |
intersect_vector_plane(tri[0],peq,&(et[0]),v[0]);
|
| 682 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],v[0][x],v[0][y],b[0]);
|
| 683 |
VCOPY(b[3],b[0]);
|
| 684 |
}
|
| 685 |
|
| 686 |
j = (w+1)%3;
|
| 687 |
intersect_vector_plane(tri[j],peq,&(et[j]),v[j]);
|
| 688 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],v[j][x],v[j][y],b[j]);
|
| 689 |
if(et[j] < 0.0)
|
| 690 |
{
|
| 691 |
VSUB(db[w],b[3],b[j]);
|
| 692 |
t[w] = HUGET;
|
| 693 |
}
|
| 694 |
else
|
| 695 |
{
|
| 696 |
/* NOTE: for stability: do not increment with ipt- use full dir and
|
| 697 |
calculate t: but for wrap around case: could get same problem?
|
| 698 |
*/
|
| 699 |
VSUB(db[w],b[j],b[3]);
|
| 700 |
/* Check if the point is out side of the triangle: if so t[w] =HUGET */
|
| 701 |
if((fabs(b[j][0])>(FTINY+1.0)) ||(fabs(b[j][1])>(FTINY+1.0)) ||
|
| 702 |
(fabs(b[j][2])>(FTINY+1.0))||(b[j][0] <-FTINY) ||
|
| 703 |
(b[j][1]<-FTINY) ||(b[j][2]<-FTINY))
|
| 704 |
t[w] = HUGET;
|
| 705 |
else
|
| 706 |
{
|
| 707 |
/* The next point is in the triangle- so db values will be in valid
|
| 708 |
range and t[w]= MAXT
|
| 709 |
*/
|
| 710 |
t[w] = MAXT;
|
| 711 |
if(j != 0)
|
| 712 |
for(;j < 3;j++)
|
| 713 |
{
|
| 714 |
i = (j+1)%3;
|
| 715 |
if(!first || i != 0)
|
| 716 |
{
|
| 717 |
intersect_vector_plane(tri[i],peq,&(et[i]),v[i]);
|
| 718 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],v[i][x],
|
| 719 |
v[i][y],b[i]);
|
| 720 |
}
|
| 721 |
if(et[i] < 0.0)
|
| 722 |
{
|
| 723 |
VSUB(db[j],b[j],b[i]);
|
| 724 |
t[j] = HUGET;
|
| 725 |
break;
|
| 726 |
}
|
| 727 |
else
|
| 728 |
{
|
| 729 |
VSUB(db[j],b[i],b[j]);
|
| 730 |
if((fabs(b[j][0])>(FTINY+1.0))||(fabs(b[j][1])>(FTINY+1.0)) ||
|
| 731 |
(fabs(b[j][2])>(FTINY+1.0))||(b[i][0] <-FTINY) ||
|
| 732 |
(b[i][1]<-FTINY) ||(b[i][2]<-FTINY))
|
| 733 |
{
|
| 734 |
t[j] = HUGET;
|
| 735 |
break;
|
| 736 |
}
|
| 737 |
else
|
| 738 |
t[j] = MAXT;
|
| 739 |
}
|
| 740 |
}
|
| 741 |
}
|
| 742 |
}
|
| 743 |
bary_dtol(b[3],db,bi,dbi,t,w);
|
| 744 |
|
| 745 |
/* trace the ray starting with this node */
|
| 746 |
qt = qtVisit_tri_edges(qt,bi,dbi[w][0],dbi[w][1],dbi[w][2],
|
| 747 |
dbi,wptr,nextptr,t,0,0,func,f,argptr);
|
| 748 |
if(!QT_FLAG_IS_DONE(*f))
|
| 749 |
{
|
| 750 |
b[3][0] = (double)bi[0]/(double)MAXBCOORD;
|
| 751 |
b[3][1] = (double)bi[1]/(double)MAXBCOORD;
|
| 752 |
b[3][2] = (double)bi[2]/(double)MAXBCOORD;
|
| 753 |
i_pt[x] = b[3][0]*q0[x] + b[3][1]*q1[x] + b[3][2]*q2[x];
|
| 754 |
i_pt[y] = b[3][0]*q0[y] + b[3][1]*q1[y] + b[3][2]*q2[y];
|
| 755 |
i_pt[z] = (-FP_N(peq)[x]*i_pt[x] - FP_N(peq)[y]*i_pt[y]-FP_D(peq))/FP_N(peq)[z];
|
| 756 |
}
|
| 757 |
return(qt);
|
| 758 |
|
| 759 |
}
|
| 760 |
|
| 761 |
|
| 762 |
QUADTREE
|
| 763 |
qtRoot_trace_ray(qt,q0,q1,q2,peq,orig,dir,nextptr,func,f,argptr)
|
| 764 |
QUADTREE qt;
|
| 765 |
FVECT q0,q1,q2;
|
| 766 |
FPEQ peq;
|
| 767 |
FVECT orig,dir;
|
| 768 |
int *nextptr;
|
| 769 |
int (*func)();
|
| 770 |
int *f,*argptr;
|
| 771 |
{
|
| 772 |
int x,y,z,nbr,w,i;
|
| 773 |
QUADTREE child;
|
| 774 |
FVECT v,i_pt;
|
| 775 |
double b[2][3],db[3],et[2],d,br[3];
|
| 776 |
BCOORD bi[3];
|
| 777 |
TINT t[3];
|
| 778 |
BDIR dbi[3][3];
|
| 779 |
|
| 780 |
/* Project the origin onto the root node plane */
|
| 781 |
t[0] = t[1] = t[2] = 0;
|
| 782 |
|
| 783 |
VADD(v,orig,dir);
|
| 784 |
/* Find the intersection point of the origin */
|
| 785 |
/* map to 2d by dropping maximum magnitude component of normal */
|
| 786 |
x = FP_X(peq);
|
| 787 |
y = FP_Y(peq);
|
| 788 |
z = FP_Z(peq);
|
| 789 |
|
| 790 |
/* Calculate barycentric coordinates for current vertex */
|
| 791 |
intersect_vector_plane(orig,peq,&(et[0]),i_pt);
|
| 792 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],i_pt[x],i_pt[y],b[0]);
|
| 793 |
|
| 794 |
intersect_vector_plane(v,peq,&(et[1]),i_pt);
|
| 795 |
bary2d(q0[x],q0[y],q1[x],q1[y],q2[x],q2[y],i_pt[x],i_pt[y],b[1]);
|
| 796 |
if(et[1] < 0.0)
|
| 797 |
VSUB(db,b[0],b[1]);
|
| 798 |
else
|
| 799 |
VSUB(db,b[1],b[0]);
|
| 800 |
t[0] = HUGET;
|
| 801 |
convert_dtol(b[0],bi);
|
| 802 |
if(et[1]<0.0 || (fabs(b[1][0])>(FTINY+1.0)) ||(fabs(b[1][1])>(FTINY+1.0)) ||
|
| 803 |
(fabs(b[1][2])>(FTINY+1.0))||(b[1][0] <-FTINY) ||
|
| 804 |
(b[1][1]<-FTINY) ||(b[1][2]<-FTINY))
|
| 805 |
{
|
| 806 |
max_index(db,&d);
|
| 807 |
for(i=0; i< 3; i++)
|
| 808 |
dbi[0][i] = (BDIR)(db[i]/d*MAXBDIR);
|
| 809 |
}
|
| 810 |
else
|
| 811 |
for(i=0; i< 3; i++)
|
| 812 |
dbi[0][i] = (BDIR)(db[i]*MAXBDIR);
|
| 813 |
w=0;
|
| 814 |
/* trace the ray starting with this node */
|
| 815 |
qt = qtVisit_tri_edges(qt,bi,dbi[0][0],dbi[0][1],dbi[0][2], dbi,&w,
|
| 816 |
nextptr,t,0,0,func,f,argptr);
|
| 817 |
if(!QT_FLAG_IS_DONE(*f))
|
| 818 |
{
|
| 819 |
br[0] = (double)bi[0]/(double)MAXBCOORD;
|
| 820 |
br[1] = (double)bi[1]/(double)MAXBCOORD;
|
| 821 |
br[2] = (double)bi[2]/(double)MAXBCOORD;
|
| 822 |
orig[x] = br[0]*q0[x] + br[1]*q1[x] + br[2]*q2[x];
|
| 823 |
orig[y] = br[0]*q0[y] + br[1]*q1[y] + br[2]*q2[y];
|
| 824 |
orig[z]=(-FP_N(peq)[x]*orig[x] -
|
| 825 |
FP_N(peq)[y]*orig[y]-FP_D(peq))/FP_N(peq)[z];
|
| 826 |
}
|
| 827 |
return(qt);
|
| 828 |
|
| 829 |
}
|
| 830 |
|
| 831 |
|
| 832 |
|
| 833 |
|
| 834 |
|
| 835 |
|
| 836 |
|
| 837 |
|
| 838 |
|
| 839 |
|
| 840 |
|
| 841 |
|
| 842 |
|