ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/sm_geom.c
(Generate patch)

Comparing ray/src/hd/sm_geom.c (file contents):
Revision 3.3 by gwlarson, Tue Aug 25 11:03:28 1998 UTC vs.
Revision 3.8 by gwlarson, Wed Nov 11 12:05:38 1998 UTC

# Line 27 | Line 27 | FVECT v1,v2;
27   {
28     return(EQUAL(v1[0],v2[0]) && EQUAL(v1[1],v2[1])&& EQUAL(v1[2],v2[2]));
29   }
30 + #if 0
31 + extern FVECT Norm[500];
32 + extern int Ncnt;
33 + #endif
34  
31
35   int
36   convex_angle(v0,v1,v2)
37   FVECT v0,v1,v2;
38   {
39 <    FVECT cp01,cp12,cp;
40 <    
39 >    FVECT cp,cp01,cp12,v10,v02;
40 >    double dp;
41 >
42      /* test sign of (v0Xv1)X(v1Xv2). v1 */
43      VCROSS(cp01,v0,v1);
44      VCROSS(cp12,v1,v2);
45      VCROSS(cp,cp01,cp12);
46 <    if(DOT(cp,v1) < 0)
47 <       return(FALSE);
46 >        
47 >    dp = DOT(cp,v1);
48 > #if 0
49 >    VCOPY(Norm[Ncnt++],cp01);
50 >    VCOPY(Norm[Ncnt++],cp12);
51 >    VCOPY(Norm[Ncnt++],cp);
52 > #endif
53 >    if(ZERO(dp) || dp < 0.0)
54 >      return(FALSE);
55      return(TRUE);
56   }
57  
58   /* calculates the normal of a face contour using Newell's formula. e
59  
60 <               a =  SUMi (yi - yi+1)(zi + zi+1)
60 >               a =  SUMi (yi - yi+1)(zi + zi+1)smMesh->samples->max_samp+4);
61                 b =  SUMi (zi - zi+1)(xi + xi+1)
62                 c =  SUMi (xi - xi+1)(yi + yi+1)
63   */
64   double
65   tri_normal(v0,v1,v2,n,norm)
66   FVECT v0,v1,v2,n;
67 < char norm;
67 > int norm;
68   {
69    double mag;
70  
# Line 64 | Line 75 | char norm;
75    n[1] = (v0[2] - v1[2]) * (v0[0] + v1[0]) +
76             (v1[2] - v2[2]) * (v1[0] + v2[0]) +
77             (v2[2] - v0[2]) * (v2[0] + v0[0]);
67
78    
79    n[2] = (v0[1] + v1[1]) * (v0[0] - v1[0]) +
80           (v1[1] + v2[1]) * (v1[0] - v2[0]) +
# Line 72 | Line 82 | char norm;
82  
83    if(!norm)
84       return(0);
75
85    
86    mag = normalize(n);
87  
# Line 80 | Line 89 | char norm;
89   }
90  
91  
92 < tri_plane_equation(v0,v1,v2,n,nd,norm)
93 <   FVECT v0,v1,v2,n;
94 <   double *nd;
95 <   char norm;
92 > tri_plane_equation(v0,v1,v2,peqptr,norm)
93 >   FVECT v0,v1,v2;
94 >   FPEQ *peqptr;
95 >   int norm;
96   {
97 <    tri_normal(v0,v1,v2,n,norm);
97 >    tri_normal(v0,v1,v2,FP_N(*peqptr),norm);
98  
99 <    *nd = -(DOT(n,v0));
99 >    FP_D(*peqptr) = -(DOT(FP_N(*peqptr),v0));
100   }
101  
93 int
94 point_relative_to_plane(p,n,nd)
95   FVECT p,n;
96   double nd;
97 {
98    double d;
99    
100    d = p[0]*n[0] + p[1]*n[1] + p[2]*n[2] + nd;
101    if(d < 0)
102       return(-1);
103    if(ZERO(d))
104       return(0);
105    else
106       return(1);
107 }
108
102   /* From quad_edge-code */
103   int
104   point_in_circle_thru_origin(p,p0,p1)
# Line 135 | Line 128 | FVECT ps,p,c;
128   }
129  
130  
131 + /* returns TRUE if ray from origin in direction v intersects plane defined
132 +  * by normal plane_n, and plane_d. If plane is not parallel- returns
133 +  * intersection point if r != NULL. If tptr!= NULL returns value of
134 +  * t, if parallel, returns t=FHUGE
135 +  */
136   int
137 < intersect_vector_plane(v,plane_n,plane_d,tptr,r)
138 <   FVECT v,plane_n;
139 <   double plane_d;
137 > intersect_vector_plane(v,peq,tptr,r)
138 >   FVECT v;
139 >   FPEQ peq;
140     double *tptr;
141     FVECT r;
142   {
143 <  double t;
143 >  double t,d;
144    int hit;
145      /*
146        Plane is Ax + By + Cz +D = 0:
# Line 152 | Line 150 | intersect_vector_plane(v,plane_n,plane_d,tptr,r)
150      /* line is  l = p1 + (p2-p1)t, p1=origin */
151  
152      /* Solve for t: */
153 <    t =  plane_d/-(DOT(plane_n,v));
154 <    if(t >0 || ZERO(t))
155 <       hit = 1;
156 <    else
157 <       hit = 0;
158 <    r[0] = v[0]*t;
159 <    r[1] = v[1]*t;
160 <    r[2] = v[2]*t;
153 >  d = -(DOT(FP_N(peq),v));
154 >  if(ZERO(d))
155 >  {
156 >      t = FHUGE;
157 >      hit = 0;
158 >  }
159 >  else
160 >  {
161 >      t =  FP_D(peq)/d;
162 >      if(t < 0 )
163 >         hit = 0;
164 >      else
165 >         hit = 1;
166 >      if(r)
167 >         {
168 >             r[0] = v[0]*t;
169 >             r[1] = v[1]*t;
170 >             r[2] = v[2]*t;
171 >         }
172 >  }
173      if(tptr)
174         *tptr = t;
175    return(hit);
176   }
177  
178   int
179 < intersect_ray_plane(orig,dir,plane_n,plane_d,pd,r)
179 > intersect_ray_plane(orig,dir,peq,pd,r)
180     FVECT orig,dir;
181 <   FVECT plane_n;
172 <   double plane_d;
181 >   FPEQ peq;
182     double *pd;
183     FVECT r;
184   {
185 <  double t;
185 >  double t,d;
186    int hit;
187      /*
188        Plane is Ax + By + Cz +D = 0:
# Line 184 | Line 193 | intersect_ray_plane(orig,dir,plane_n,plane_d,pd,r)
193         line is  l = p1 + (p2-p1)t
194       */
195      /* Solve for t: */
196 <    t =  -(DOT(plane_n,orig) + plane_d)/(DOT(plane_n,dir));
197 <    if(ZERO(t) || t >0)
196 >  d = DOT(FP_N(peq),dir);
197 >  if(ZERO(d))
198 >     return(0);
199 >  t =  -(DOT(FP_N(peq),orig) + FP_D(peq))/d;
200 >
201 >  if(t < 0)
202 >       hit = 0;
203 >    else
204         hit = 1;
205 +
206 +  if(r)
207 +     VSUM(r,orig,dir,t);
208 +
209 +    if(pd)
210 +       *pd = t;
211 +  return(hit);
212 + }
213 +
214 +
215 + int
216 + intersect_ray_oplane(orig,dir,n,pd,r)
217 +   FVECT orig,dir;
218 +   FVECT n;
219 +   double *pd;
220 +   FVECT r;
221 + {
222 +  double t,d;
223 +  int hit;
224 +    /*
225 +      Plane is Ax + By + Cz +D = 0:
226 +      plane[0] = A,plane[1] = B,plane[2] = C,plane[3] = D
227 +    */
228 +     /*  A(orig[0] + dxt) + B(orig[1] + dyt) + C(orig[2] + dzt) + pd = 0
229 +         t = -(DOT(plane_n,orig)+ plane_d)/(DOT(plane_n,d))
230 +       line is  l = p1 + (p2-p1)t
231 +     */
232 +    /* Solve for t: */
233 +    d= DOT(n,dir);
234 +    if(ZERO(d))
235 +       return(0);
236 +    t =  -(DOT(n,orig))/d;
237 +    if(t < 0)
238 +       hit = 0;
239      else
240 +       hit = 1;
241 +
242 +  if(r)
243 +     VSUM(r,orig,dir,t);
244 +
245 +    if(pd)
246 +       *pd = t;
247 +  return(hit);
248 + }
249 +
250 +
251 + int
252 + intersect_edge_plane(e0,e1,peq,pd,r)
253 +   FVECT e0,e1;
254 +   FPEQ peq;
255 +   double *pd;
256 +   FVECT r;
257 + {
258 +  double t;
259 +  int hit;
260 +  FVECT d;
261 +  /*
262 +      Plane is Ax + By + Cz +D = 0:
263 +      plane[0] = A,plane[1] = B,plane[2] = C,plane[3] = D
264 +    */
265 +     /*  A(orig[0] + dxt) + B(orig[1] + dyt) + C(orig[2] + dzt) + pd = 0
266 +         t = -(DOT(plane_n,orig)+ plane_d)/(DOT(plane_n,d))
267 +       line is  l = p1 + (p2-p1)t
268 +     */
269 +    /* Solve for t: */
270 +  VSUB(d,e1,e0);
271 +  t =  -(DOT(FP_N(peq),e0) + FP_D(peq))/(DOT(FP_N(peq),d));
272 +    if(t < 0)
273         hit = 0;
274 +    else
275 +       hit = 1;
276  
277 <  VSUM(r,orig,dir,t);
277 >  VSUM(r,e0,d,t);
278  
279      if(pd)
280         *pd = t;
# Line 203 | Line 287 | point_in_cone(p,p0,p1,p2)
287   FVECT p;
288   FVECT p0,p1,p2;
289   {
206    FVECT n;
290      FVECT np,x_axis,y_axis;
291 <    double d1,d2,d;
291 >    double d1,d2;
292 >    FPEQ peq;
293      
294      /* Find the equation of the circle defined by the intersection
295         of the cone with the plane defined by p1,p2,p3- project p into
296         that plane and do an in-circle test in the plane
297       */
298      
299 <    /* find the equation of the plane defined by p1-p3 */
300 <    tri_plane_equation(p0,p1,p2,n,&d,FALSE);
299 >    /* find the equation of the plane defined by p0-p2 */
300 >    tri_plane_equation(p0,p1,p2,&peq,FALSE);
301  
302      /* define a coordinate system on the plane: the x axis is in
303         the direction of np2-np1, and the y axis is calculated from
304         n cross x-axis
305       */
306      /* Project p onto the plane */
307 <    if(!intersect_vector_plane(p,n,d,NULL,np))
307 >    /* NOTE: check this: does sideness check?*/
308 >    if(!intersect_vector_plane(p,peq,NULL,np))
309          return(FALSE);
310  
311 <    /* create coordinate system on  plane: p2-p1 defines the x_axis*/
311 >    /* create coordinate system on  plane: p1-p0 defines the x_axis*/
312      VSUB(x_axis,p1,p0);
313      normalize(x_axis);
314      /* The y axis is  */
315 <    VCROSS(y_axis,n,x_axis);
315 >    VCROSS(y_axis,FP_N(peq),x_axis);
316      normalize(y_axis);
317  
318      VSUB(p1,p1,p0);
# Line 252 | Line 337 | FVECT p0,p1,p2;
337   }
338  
339   int
340 < test_point_against_spherical_tri(v0,v1,v2,p,n,nset,which,sides)
340 > point_set_in_stri(v0,v1,v2,p,n,nset,sides)
341   FVECT v0,v1,v2,p;
342   FVECT n[3];
343 < char *nset;
344 < char *which;
260 < char sides[3];
343 > int *nset;
344 > int sides[3];
345  
346   {
347 <    float d;
264 <
347 >    double d;
348      /* Find the normal to the triangle ORIGIN:v0:v1 */
349      if(!NTH_BIT(*nset,0))
350      {
351 <        VCROSS(n[0],v1,v0);
351 >        VCROSS(n[0],v0,v1);
352          SET_NTH_BIT(*nset,0);
353      }
354      /* Test the point for sidedness */
355      d  = DOT(n[0],p);
356  
357 <    if(ZERO(d))
358 <       sides[0] = GT_EDGE;
359 <    else
360 <       if(d > 0)
361 <      {
279 <          sides[0] =  GT_OUT;
280 <          sides[1] = sides[2] = GT_INVALID;
281 <          return(FALSE);
357 >    if(d > 0.0)
358 >     {
359 >       sides[0] =  GT_OUT;
360 >       sides[1] = sides[2] = GT_INVALID;
361 >       return(FALSE);
362        }
363      else
364         sides[0] = GT_INTERIOR;
# Line 286 | Line 366 | char sides[3];
366      /* Test next edge */
367      if(!NTH_BIT(*nset,1))
368      {
369 <        VCROSS(n[1],v2,v1);
369 >        VCROSS(n[1],v1,v2);
370          SET_NTH_BIT(*nset,1);
371      }
372      /* Test the point for sidedness */
373      d  = DOT(n[1],p);
374 <    if(ZERO(d))
374 >    if(d > 0.0)
375      {
296        sides[1] = GT_EDGE;
297        /* If on plane 0-and on plane 1: lies on edge */
298        if(sides[0] == GT_EDGE)
299        {
300            *which = 1;
301            sides[2] = GT_INVALID;
302            return(GT_EDGE);
303        }
304    }
305    else if(d > 0)
306    {
376          sides[1] = GT_OUT;
377          sides[2] = GT_INVALID;
378          return(FALSE);
# Line 313 | Line 382 | char sides[3];
382      /* Test next edge */
383      if(!NTH_BIT(*nset,2))
384      {
385 <
317 <        VCROSS(n[2],v0,v2);
385 >        VCROSS(n[2],v2,v0);
386          SET_NTH_BIT(*nset,2);
387      }
388      /* Test the point for sidedness */
389      d  = DOT(n[2],p);
390 <    if(ZERO(d))
390 >    if(d > 0.0)
391      {
392 <        sides[2] = GT_EDGE;
393 <
326 <        /* If on plane 0 and 2: lies on edge 0*/
327 <        if(sides[0] == GT_EDGE)
328 <           {
329 <               *which = 0;
330 <               return(GT_EDGE);
331 <           }
332 <        /* If on plane 1 and 2: lies on edge  2*/
333 <        if(sides[1] == GT_EDGE)
334 <           {
335 <               *which = 2;
336 <               return(GT_EDGE);
337 <           }
338 <        /* otherwise: on face 2 */
339 <        else
340 <           {
341 <               *which = 2;
342 <               return(GT_FACE);
343 <           }
392 >      sides[2] = GT_OUT;
393 >      return(FALSE);
394      }
345    else if(d > 0)
346      {
347        sides[2] = GT_OUT;
348        return(FALSE);
349      }
350    /* If on edge */
395      else
396         sides[2] = GT_INTERIOR;
353    
354    /* If on plane 0 only: on face 0 */
355    if(sides[0] == GT_EDGE)
356    {
357        *which = 0;
358        return(GT_FACE);
359    }
360    /* If on plane 1 only: on face 1 */
361    if(sides[1] == GT_EDGE)
362    {
363        *which = 1;
364        return(GT_FACE);
365    }
397      /* Must be interior to the pyramid */
398      return(GT_INTERIOR);
399   }
400  
401  
402  
403 <
403 >
404   int
405 < test_single_point_against_spherical_tri(v0,v1,v2,p,which)
405 > point_in_stri(v0,v1,v2,p)
406   FVECT v0,v1,v2,p;
376 char *which;
407   {
408 <    float d;
408 >    double d;
409      FVECT n;  
380    char sides[3];
410  
411 <    /* First test if point coincides with any of the vertices */
383 <    if(EQUAL_VEC3(p,v0))
384 <    {
385 <        *which = 0;
386 <        return(GT_VERTEX);
387 <    }
388 <    if(EQUAL_VEC3(p,v1))
389 <    {
390 <        *which = 1;
391 <        return(GT_VERTEX);
392 <    }
393 <    if(EQUAL_VEC3(p,v2))
394 <    {
395 <        *which = 2;
396 <        return(GT_VERTEX);
397 <    }
398 <    VCROSS(n,v1,v0);
411 >    VCROSS(n,v0,v1);
412      /* Test the point for sidedness */
413      d  = DOT(n,p);
414 <    if(ZERO(d))
415 <       sides[0] = GT_EDGE;
416 <    else
404 <       if(d > 0)
405 <          return(FALSE);
406 <       else
407 <          sides[0] = GT_INTERIOR;
414 >    if(d > 0.0)
415 >      return(FALSE);
416 >
417      /* Test next edge */
418 <    VCROSS(n,v2,v1);
418 >    VCROSS(n,v1,v2);
419      /* Test the point for sidedness */
420      d  = DOT(n,p);
421 <    if(ZERO(d))
413 <    {
414 <        sides[1] = GT_EDGE;
415 <        /* If on plane 0-and on plane 1: lies on edge */
416 <        if(sides[0] == GT_EDGE)
417 <        {
418 <            *which = 1;
419 <            return(GT_VERTEX);
420 <        }
421 <    }
422 <    else if(d > 0)
421 >    if(d > 0.0)
422         return(FALSE);
424    else
425       sides[1] = GT_INTERIOR;
423  
424      /* Test next edge */
425 <    VCROSS(n,v0,v2);
425 >    VCROSS(n,v2,v0);
426      /* Test the point for sidedness */
427      d  = DOT(n,p);
428 <    if(ZERO(d))
432 <    {
433 <        sides[2] = GT_EDGE;
434 <        
435 <        /* If on plane 0 and 2: lies on edge 0*/
436 <        if(sides[0] == GT_EDGE)
437 <        {
438 <            *which = 0;
439 <            return(GT_VERTEX);
440 <        }
441 <        /* If on plane 1 and 2: lies on edge  2*/
442 <        if(sides[1] == GT_EDGE)
443 <        {
444 <            *which = 2;
445 <            return(GT_VERTEX);
446 <        }
447 <        /* otherwise: on face 2 */
448 <        else
449 <       {
450 <           return(GT_FACE);
451 <       }
452 <    }
453 <    else if(d > 0)
428 >    if(d > 0.0)
429         return(FALSE);
430      /* Must be interior to the pyramid */
431 <    return(GT_FACE);
431 >    return(GT_INTERIOR);
432   }
433  
434   int
435 < test_vertices_for_tri_inclusion(t0,t1,t2,p0,p1,p2,nset,n,avg,pt_sides)
435 > vertices_in_stri(t0,t1,t2,p0,p1,p2,nset,n,avg,pt_sides)
436   FVECT t0,t1,t2,p0,p1,p2;
437 < char *nset;
437 > int *nset;
438   FVECT n[3];
439   FVECT avg;
440 < char pt_sides[3][3];
440 > int pt_sides[3][3];
441  
442   {
443 <    char below_plane[3],on_edge,test;
469 <    char which;
443 >    int below_plane[3],test;
444  
445      SUM_3VEC3(avg,t0,t1,t2);
472    on_edge = 0;
446      *nset = 0;
447      /* Test vertex v[i] against triangle j*/
448      /* Check if v[i] lies below plane defined by avg of 3 vectors
# Line 477 | Line 450 | char pt_sides[3][3];
450         */
451  
452      /* test point 0 */
453 <    if(DOT(avg,p0) < 0)
453 >    if(DOT(avg,p0) < 0.0)
454        below_plane[0] = 1;
455      else
456 <      below_plane[0]=0;
456 >      below_plane[0] = 0;
457      /* Test if b[i] lies in or on triangle a */
458 <    test = test_point_against_spherical_tri(t0,t1,t2,p0,
486 <                                                 n,nset,&which,pt_sides[0]);
458 >    test = point_set_in_stri(t0,t1,t2,p0,n,nset,pt_sides[0]);
459      /* If pts[i] is interior: done */
460      if(!below_plane[0])
461        {
462          if(test == GT_INTERIOR)
463            return(TRUE);
492        /* Remember if b[i] fell on one of the 3 defining planes */
493        if(test)
494          on_edge++;
464        }
465      /* Now test point 1*/
466  
467 <    if(DOT(avg,p1) < 0)
467 >    if(DOT(avg,p1) < 0.0)
468        below_plane[1] = 1;
469      else
470        below_plane[1]=0;
471      /* Test if b[i] lies in or on triangle a */
472 <    test = test_point_against_spherical_tri(t0,t1,t2,p1,
504 <                                                 n,nset,&which,pt_sides[1]);
472 >    test = point_set_in_stri(t0,t1,t2,p1,n,nset,pt_sides[1]);
473      /* If pts[i] is interior: done */
474      if(!below_plane[1])
475      {
476        if(test == GT_INTERIOR)
477          return(TRUE);
510      /* Remember if b[i] fell on one of the 3 defining planes */
511      if(test)
512        on_edge++;
478      }
479      
480      /* Now test point 2 */
481 <    if(DOT(avg,p2) < 0)
481 >    if(DOT(avg,p2) < 0.0)
482        below_plane[2] = 1;
483      else
484 <      below_plane[2]=0;
484 >      below_plane[2] = 0;
485          /* Test if b[i] lies in or on triangle a */
486 <    test = test_point_against_spherical_tri(t0,t1,t2,p2,
522 <                                                 n,nset,&which,pt_sides[2]);
486 >    test = point_set_in_stri(t0,t1,t2,p2,n,nset,pt_sides[2]);
487  
488      /* If pts[i] is interior: done */
489      if(!below_plane[2])
490        {
491          if(test == GT_INTERIOR)
492            return(TRUE);
529        /* Remember if b[i] fell on one of the 3 defining planes */
530        if(test)
531          on_edge++;
493        }
494  
495      /* If all three points below separating plane: trivial reject */
496      if(below_plane[0] && below_plane[1] && below_plane[2])
497         return(FALSE);
537    /* Accept if all points lie on a triangle vertex/edge edge- accept*/
538    if(on_edge == 3)
539       return(TRUE);
498      /* Now check vertices in a against triangle b */
499      return(FALSE);
500   }
# Line 544 | Line 502 | char pt_sides[3][3];
502  
503   set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,n)
504     FVECT t0,t1,t2,p0,p1,p2;
505 <   char test[3];
506 <   char sides[3][3];
507 <   char nset;
505 >   int test[3];
506 >   int sides[3][3];
507 >   int nset;
508     FVECT n[3];
509   {
510 <    char t;
510 >    int t;
511      double d;
512  
513      
# Line 558 | Line 516 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
516      if(sides[0][0] == GT_INVALID)
517      {
518        if(!NTH_BIT(nset,0))
519 <        VCROSS(n[0],t1,t0);
519 >        VCROSS(n[0],t0,t1);
520        /* Test the point for sidedness */
521        d  = DOT(n[0],p0);
522 <      if(d >= 0)
522 >      if(d >= 0.0)
523          SET_NTH_BIT(test[0],0);
524      }
525      else
# Line 571 | Line 529 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
529      if(sides[0][1] == GT_INVALID)
530      {
531        if(!NTH_BIT(nset,1))
532 <        VCROSS(n[1],t2,t1);
532 >        VCROSS(n[1],t1,t2);
533          /* Test the point for sidedness */
534          d  = DOT(n[1],p0);
535 <        if(d >= 0)
535 >        if(d >= 0.0)
536            SET_NTH_BIT(test[0],1);
537      }
538      else
# Line 584 | Line 542 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
542      if(sides[0][2] == GT_INVALID)
543      {
544        if(!NTH_BIT(nset,2))
545 <        VCROSS(n[2],t0,t2);
545 >        VCROSS(n[2],t2,t0);
546        /* Test the point for sidedness */
547        d  = DOT(n[2],p0);
548 <      if(d >= 0)
548 >      if(d >= 0.0)
549          SET_NTH_BIT(test[0],2);
550      }
551      else
# Line 600 | Line 558 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
558      if(sides[1][0] == GT_INVALID)
559      {
560        if(!NTH_BIT(nset,0))
561 <        VCROSS(n[0],t1,t0);
561 >        VCROSS(n[0],t0,t1);
562        /* Test the point for sidedness */
563        d  = DOT(n[0],p1);
564 <      if(d >= 0)
564 >      if(d >= 0.0)
565          SET_NTH_BIT(test[1],0);
566      }
567      else
# Line 614 | Line 572 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
572      if(sides[1][1] == GT_INVALID)
573      {
574        if(!NTH_BIT(nset,1))
575 <        VCROSS(n[1],t2,t1);
575 >        VCROSS(n[1],t1,t2);
576        /* Test the point for sidedness */
577        d  = DOT(n[1],p1);
578 <      if(d >= 0)
578 >      if(d >= 0.0)
579          SET_NTH_BIT(test[1],1);
580      }
581      else
# Line 628 | Line 586 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
586      if(sides[1][2] == GT_INVALID)
587      {
588        if(!NTH_BIT(nset,2))
589 <        VCROSS(n[2],t0,t2);
589 >        VCROSS(n[2],t2,t0);
590        /* Test the point for sidedness */
591        d  = DOT(n[2],p1);
592 <      if(d >= 0)
592 >      if(d >= 0.0)
593          SET_NTH_BIT(test[1],2);
594      }
595      else
# Line 644 | Line 602 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
602      if(sides[2][0] == GT_INVALID)
603      {
604        if(!NTH_BIT(nset,0))
605 <        VCROSS(n[0],t1,t0);
605 >        VCROSS(n[0],t0,t1);
606        /* Test the point for sidedness */
607        d  = DOT(n[0],p2);
608 <      if(d >= 0)
608 >      if(d >= 0.0)
609          SET_NTH_BIT(test[2],0);
610      }
611      else
# Line 657 | Line 615 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
615      if(sides[2][1] == GT_INVALID)
616      {
617        if(!NTH_BIT(nset,1))
618 <        VCROSS(n[1],t2,t1);
618 >        VCROSS(n[1],t1,t2);
619        /* Test the point for sidedness */
620        d  = DOT(n[1],p2);
621 <      if(d >= 0)
621 >      if(d >= 0.0)
622          SET_NTH_BIT(test[2],1);
623      }
624      else
# Line 670 | Line 628 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
628      if(sides[2][2] == GT_INVALID)
629      {
630        if(!NTH_BIT(nset,2))
631 <        VCROSS(n[2],t0,t2);
631 >        VCROSS(n[2],t2,t0);
632        /* Test the point for sidedness */
633        d  = DOT(n[2],p2);
634 <      if(d >= 0)
634 >      if(d >= 0.0)
635          SET_NTH_BIT(test[2],2);
636      }
637      else
# Line 683 | Line 641 | set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,
641  
642  
643   int
644 < spherical_tri_intersect(a1,a2,a3,b1,b2,b3)
644 > stri_intersect(a1,a2,a3,b1,b2,b3)
645   FVECT a1,a2,a3,b1,b2,b3;
646   {
647 <  char which,test,n_set[2];
648 <  char sides[2][3][3],i,j,inext,jnext;
649 <  char tests[2][3];
647 >  int which,test,n_set[2];
648 >  int sides[2][3][3],i,j,inext,jnext;
649 >  int tests[2][3];
650    FVECT n[2][3],p,avg[2];
651  
652    /* Test the vertices of triangle a against the pyramid formed by triangle
# Line 696 | Line 654 | FVECT a1,a2,a3,b1,b2,b3;
654       if all 3 vertices of a are ON the edges of b,return TRUE. Remember
655       the results of the edge normal and sidedness tests for later.
656     */
657 < if(test_vertices_for_tri_inclusion(a1,a2,a3,b1,b2,b3,
700 <                                    &(n_set[0]),n[0],avg[0],sides[1]))
657 > if(vertices_in_stri(a1,a2,a3,b1,b2,b3,&(n_set[0]),n[0],avg[0],sides[1]))
658       return(TRUE);
659    
660 < if(test_vertices_for_tri_inclusion(b1,b2,b3,a1,a2,a3,
704 <                                    &(n_set[1]),n[1],avg[1],sides[0]))
660 > if(vertices_in_stri(b1,b2,b3,a1,a2,a3,&(n_set[1]),n[1],avg[1],sides[0]))
661       return(TRUE);
662  
663  
# Line 749 | Line 705 | FVECT a1,a2,a3,b1,b2,b3;
705   }
706  
707   int
708 < ray_intersect_tri(orig,dir,v0,v1,v2,pt,wptr)
708 > ray_intersect_tri(orig,dir,v0,v1,v2,pt)
709   FVECT orig,dir;
710   FVECT v0,v1,v2;
711   FVECT pt;
756 char *wptr;
712   {
713 <  FVECT p0,p1,p2,p,n;
714 <  char type,which;
715 <  double pd;
761 <  
762 <  point_on_sphere(p0,v0,orig);
763 <  point_on_sphere(p1,v1,orig);
764 <  point_on_sphere(p2,v2,orig);
765 <  type = test_single_point_against_spherical_tri(p0,p1,p2,dir,&which);
713 >  FVECT p0,p1,p2,p;
714 >  FPEQ peq;
715 >  int type;
716  
717 <  if(type)
717 >  VSUB(p0,v0,orig);
718 >  VSUB(p1,v1,orig);
719 >  VSUB(p2,v2,orig);
720 >
721 >  if(point_in_stri(p0,p1,p2,dir))
722    {
723        /* Intersect the ray with the triangle plane */
724 <      tri_plane_equation(v0,v1,v2,n,&pd,FALSE);
725 <      intersect_ray_plane(orig,dir,n,pd,NULL,pt);        
724 >      tri_plane_equation(v0,v1,v2,&peq,FALSE);
725 >      return(intersect_ray_plane(orig,dir,peq,NULL,pt));
726    }
727 <  if(wptr)
774 <    *wptr = which;
775 <
776 <  return(type);
727 >  return(FALSE);
728   }
729  
730  
# Line 832 | Line 783 | FVECT fnear[4],ffar[4];
783      ffar[3][2] =  width*nhv[2] - height*nvv[2] + far*ndv[2] + vp[2] ;
784   }
785  
786 + int
787 + max_index(v,r)
788 + FVECT v;
789 + double *r;
790 + {
791 +  double p[3];
792 +  int i;
793  
794 +  p[0] = fabs(v[0]);
795 +  p[1] = fabs(v[1]);
796 +  p[2] = fabs(v[2]);
797 +  i = (p[0]>=p[1])?((p[0]>=p[2])?0:2):((p[1]>=p[2])?1:2);  
798 +  if(r)
799 +    *r = p[i];
800 +  return(i);
801 + }
802  
803 + int
804 + closest_point_in_tri(p0,p1,p2,p,p0id,p1id,p2id)
805 + FVECT p0,p1,p2,p;
806 + int p0id,p1id,p2id;
807 + {
808 +    double d,d1;
809 +    int i;
810 +    
811 +    d =  DIST_SQ(p,p0);
812 +    d1 = DIST_SQ(p,p1);
813 +    if(d < d1)
814 +    {
815 +      d1 = DIST_SQ(p,p2);
816 +      i = (d1 < d)?p2id:p0id;
817 +    }
818 +    else
819 +    {
820 +      d = DIST_SQ(p,p2);
821 +      i = (d < d1)? p2id:p1id;
822 +    }
823 +    return(i);
824 + }
825  
826 +
827   int
828 < spherical_polygon_edge_intersect(a0,a1,b0,b1)
828 > sedge_intersect(a0,a1,b0,b1)
829   FVECT a0,a1,b0,b1;
830   {
831      FVECT na,nb,avga,avgb,p;
# Line 896 | Line 885 | double coord[3];
885    a =  (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
886    coord[0] = ((x2 - px) * (y3 - py) - (x3 - px) * (y2 - py)) / a;
887    coord[1] = ((x3 - px) * (y1 - py) - (x1 - px) * (y3 - py)) / a;
888 <  coord[2]  = 1.0 - coord[0] - coord[1];
888 >  coord[2] = ((x1 - px) * (y2 - py) - (x2 - px) * (y1 - py)) / a;
889  
890   }
891  
892 + bary_ith_child(coord,i)
893 + double coord[3];
894 + int i;
895 + {
896 +
897 +  switch(i){
898 +  case 0:
899 +      /* update bary for child */
900 +      coord[0] = 2.0*coord[0]- 1.0;
901 +      coord[1] *= 2.0;
902 +      coord[2] *= 2.0;
903 +      break;
904 +  case 1:
905 +    coord[0] *= 2.0;
906 +    coord[1] = 2.0*coord[1]- 1.0;
907 +    coord[2] *= 2.0;
908 +    break;
909 +  case 2:
910 +    coord[0] *= 2.0;
911 +    coord[1] *= 2.0;
912 +    coord[2] = 2.0*coord[2]- 1.0;
913 +    break;
914 +  case 3:
915 +    coord[0] = 1.0 - 2.0*coord[0];
916 +    coord[1] = 1.0 - 2.0*coord[1];
917 +    coord[2] = 1.0 - 2.0*coord[2];
918 +    break;
919 + #ifdef DEBUG
920 +  default:
921 +    eputs("bary_ith_child():Invalid child\n");
922 +    break;
923 + #endif
924 +  }
925 + }
926 +
927 +
928   int
929 < bary2d_child(coord)
929 > bary_child(coord)
930   double coord[3];
931   {
932    int i;
933  
909  /* First check if one of the original vertices */
910  for(i=0;i<3;i++)
911    if(EQUAL(coord[i],1.0))
912      return(i);
913
914  /* Check if one of the new vertices: for all return center child */
915  if(ZERO(coord[0]) && EQUAL(coord[1],0.5))
916  {
917    coord[0] = 1.0f;
918    coord[1] = 0.0f;
919    coord[2] = 0.0f;
920    return(3);
921  }
922  if(ZERO(coord[1]) && EQUAL(coord[0],0.5))
923  {
924    coord[0] = 0.0f;
925    coord[1] = 1.0f;
926    coord[2] = 0.0f;
927    return(3);
928  }
929  if(ZERO(coord[2]) && EQUAL(coord[0],0.5))
930    {
931      coord[0] = 0.0f;
932      coord[1] = 0.0f;
933      coord[2] = 1.0f;
934      return(3);
935    }
936
937  /* Otherwise return child */
934    if(coord[0] > 0.5)
935    {
936        /* update bary for child */
# Line 968 | Line 964 | double coord[3];
964           }
965   }
966  
967 < int
968 < max_index(v)
969 < FVECT v;
967 > /* Coord was the ith child of the parent: set the coordinate
968 >   relative to the parent
969 > */
970 > bary_parent(coord,i)
971 > double coord[3];
972 > int i;
973   {
975  double a,b,c;
976  int i;
974  
975 <  a = fabs(v[0]);
976 <  b = fabs(v[1]);
977 <  c = fabs(v[2]);
978 <  i = (a>=b)?((a>=c)?0:2):((b>=c)?1:2);  
979 <  return(i);
975 >  switch(i) {
976 >  case 0:
977 >    /* update bary for child */
978 >    coord[0] = coord[0]*0.5 + 0.5;
979 >    coord[1] *= 0.5;
980 >    coord[2] *= 0.5;
981 >    break;
982 >  case 1:
983 >    coord[0] *= 0.5;
984 >    coord[1]  = coord[1]*0.5 + 0.5;
985 >    coord[2] *= 0.5;
986 >    break;
987 >    
988 >  case 2:
989 >    coord[0] *= 0.5;
990 >    coord[1] *= 0.5;
991 >    coord[2] = coord[2]*0.5 + 0.5;
992 >    break;
993 >    
994 >  case 3:
995 >    coord[0] = 0.5 - 0.5*coord[0];
996 >    coord[1] = 0.5 - 0.5*coord[1];
997 >    coord[2] = 0.5 - 0.5*coord[2];
998 >    break;
999 > #ifdef DEBUG
1000 >  default:
1001 >    eputs("bary_parent():Invalid child\n");
1002 >    break;
1003 > #endif
1004 >  }
1005   }
1006  
1007 + bary_from_child(coord,child,next)
1008 + double coord[3];
1009 + int child,next;
1010 + {
1011 + #ifdef DEBUG
1012 +  if(child <0 || child > 3)
1013 +  {
1014 +    eputs("bary_from_child():Invalid child\n");
1015 +    return;
1016 +  }
1017 +  if(next <0 || next > 3)
1018 +  {
1019 +    eputs("bary_from_child():Invalid next\n");
1020 +    return;
1021 +  }
1022 + #endif
1023 +  if(next == child)
1024 +    return;
1025  
1026 +  switch(child){
1027 +  case 0:
1028 +    switch(next){
1029 +    case 1:
1030 +      coord[0] += 1.0;
1031 +      coord[1] -= 1.0;
1032 +      break;
1033 +    case 2:
1034 +      coord[0] += 1.0;
1035 +      coord[2] -= 1.0;
1036 +      break;
1037 +    case 3:
1038 +      coord[0] *= -1.0;
1039 +      coord[1] = 1 - coord[1];
1040 +      coord[2] = 1 - coord[2];
1041 +      break;
1042  
1043 < /*
1044 < * int
1045 < * smRay(FVECT orig, FVECT dir,FVECT v0,FVECT v1,FVECT v2,FVECT r)
1046 < *
1047 < *   Intersect the ray with triangle v0v1v2, return intersection point in r
1048 < *
1049 < *    Assumes orig,v0,v1,v2 are in spherical coordinates, and orig is
1050 < *    unit
1051 < */
1043 >    }
1044 >    break;
1045 >  case 1:
1046 >    switch(next){
1047 >    case 0:
1048 >      coord[0] -= 1.0;
1049 >      coord[1] += 1.0;
1050 >      break;
1051 >    case 2:
1052 >      coord[1] += 1.0;
1053 >      coord[2] -= 1.0;
1054 >      break;
1055 >    case 3:
1056 >      coord[0] = 1 - coord[0];
1057 >      coord[1] *= -1.0;
1058 >      coord[2] = 1 - coord[2];
1059 >      break;
1060 >    }
1061 >    break;
1062 >  case 2:
1063 >    switch(next){
1064 >    case 0:
1065 >      coord[0] -= 1.0;
1066 >      coord[2] += 1.0;
1067 >      break;
1068 >    case 1:
1069 >      coord[1] -= 1.0;
1070 >      coord[2] += 1.0;
1071 >      break;
1072 >    case 3:
1073 >      coord[0] = 1 - coord[0];
1074 >      coord[1] = 1 - coord[1];
1075 >      coord[2] *= -1.0;
1076 >      break;
1077 >    }
1078 >    break;
1079 >  case 3:
1080 >    switch(next){
1081 >    case 0:
1082 >      coord[0] *= -1.0;
1083 >      coord[1] = 1 - coord[1];
1084 >      coord[2] = 1 - coord[2];
1085 >      break;
1086 >    case 1:
1087 >      coord[0] = 1 - coord[0];
1088 >      coord[1] *= -1.0;
1089 >      coord[2] = 1 - coord[2];
1090 >      break;
1091 >    case 2:
1092 >      coord[0] = 1 - coord[0];
1093 >      coord[1] = 1 - coord[1];
1094 >      coord[2] *= -1.0;
1095 >      break;
1096 >    }
1097 >    break;
1098 >  }
1099 > }
1100 >
1101 >
1102 > baryi_parent(coord,i)
1103 > BCOORD coord[3];
1104 > int i;
1105 > {
1106 >
1107 >  switch(i) {
1108 >  case 0:
1109 >    /* update bary for child */
1110 >    coord[0] = (coord[0] >> 1) + MAXBCOORD2;
1111 >    coord[1] >>= 1;
1112 >    coord[2] >>= 1;
1113 >    break;
1114 >  case 1:
1115 >    coord[0] >>= 1;
1116 >    coord[1]  = (coord[1] >> 1) + MAXBCOORD2;
1117 >    coord[2] >>= 1;
1118 >    break;
1119 >    
1120 >  case 2:
1121 >    coord[0] >>= 1;
1122 >    coord[1] >>= 1;
1123 >    coord[2] = (coord[2] >> 1) + MAXBCOORD2;
1124 >    break;
1125 >    
1126 >  case 3:
1127 >    coord[0] = MAXBCOORD2 - (coord[0] >> 1);
1128 >    coord[1] = MAXBCOORD2 - (coord[1] >> 1);
1129 >    coord[2] = MAXBCOORD2 - (coord[2] >> 1);
1130 >    break;
1131 > #ifdef DEBUG
1132 >  default:
1133 >    eputs("baryi_parent():Invalid child\n");
1134 >    break;
1135 > #endif
1136 >  }
1137 > }
1138 >
1139 > baryi_from_child(coord,child,next)
1140 > BCOORD coord[3];
1141 > int child,next;
1142 > {
1143 > #ifdef DEBUG
1144 >  if(child <0 || child > 3)
1145 >  {
1146 >    eputs("baryi_from_child():Invalid child\n");
1147 >    return;
1148 >  }
1149 >  if(next <0 || next > 3)
1150 >  {
1151 >    eputs("baryi_from_child():Invalid next\n");
1152 >    return;
1153 >  }
1154 > #endif
1155 >  if(next == child)
1156 >    return;
1157 >
1158 >  switch(child){
1159 >  case 0:
1160 >      coord[0] = 0;
1161 >      coord[1] = MAXBCOORD - coord[1];
1162 >      coord[2] = MAXBCOORD - coord[2];
1163 >      break;
1164 >  case 1:
1165 >      coord[0] = MAXBCOORD - coord[0];
1166 >      coord[1] = 0;
1167 >      coord[2] = MAXBCOORD - coord[2];
1168 >      break;
1169 >  case 2:
1170 >      coord[0] = MAXBCOORD - coord[0];
1171 >      coord[1] = MAXBCOORD - coord[1];
1172 >      coord[2] = 0;
1173 >    break;
1174 >  case 3:
1175 >    switch(next){
1176 >    case 0:
1177 >      coord[0] = 0;
1178 >      coord[1] = MAXBCOORD - coord[1];
1179 >      coord[2] = MAXBCOORD - coord[2];
1180 >      break;
1181 >    case 1:
1182 >      coord[0] = MAXBCOORD - coord[0];
1183 >      coord[1] = 0;
1184 >      coord[2] = MAXBCOORD - coord[2];
1185 >      break;
1186 >    case 2:
1187 >      coord[0] = MAXBCOORD - coord[0];
1188 >      coord[1] = MAXBCOORD - coord[1];
1189 >      coord[2] = 0;
1190 >      break;
1191 >    }
1192 >    break;
1193 >  }
1194 > }
1195 >
1196   int
1197 < traceRay(orig,dir,v0,v1,v2,r)
1198 <  FVECT orig,dir;
999 <  FVECT v0,v1,v2;
1000 <  FVECT r;
1197 > baryi_child(coord)
1198 > BCOORD coord[3];
1199   {
1200 <  FVECT n,p[3],d;
1003 <  double pt[3],r_eps;
1004 <  char i;
1005 <  int which;
1200 >  int i;
1201  
1202 <  /* Find the plane equation for the triangle defined by the edge v0v1 and
1203 <   the view center*/
1204 <  VCROSS(n,v0,v1);
1205 <  /* Intersect the ray with this plane */
1206 <  i = intersect_ray_plane(orig,dir,n,0.0,&(pt[0]),p[0]);
1207 <  if(i)
1208 <    which = 0;
1202 >  if(coord[0] > MAXBCOORD2)
1203 >  {
1204 >      /* update bary for child */
1205 >      coord[0] = (coord[0]<< 1) - MAXBCOORD;
1206 >      coord[1] <<= 1;
1207 >      coord[2] <<= 1;
1208 >      return(0);
1209 >  }
1210    else
1211 <    which = -1;
1211 >    if(coord[1] > MAXBCOORD2)
1212 >    {
1213 >      coord[0] <<= 1;
1214 >      coord[1] = (coord[1] << 1) - MAXBCOORD;
1215 >      coord[2] <<= 1;
1216 >      return(1);
1217 >    }
1218 >    else
1219 >      if(coord[2] > MAXBCOORD2)
1220 >      {
1221 >        coord[0] <<= 1;
1222 >        coord[1] <<= 1;
1223 >        coord[2] = (coord[2] << 1) - MAXBCOORD;
1224 >        return(2);
1225 >      }
1226 >      else
1227 >         {
1228 >           coord[0] = MAXBCOORD - (coord[0] << 1);
1229 >           coord[1] = MAXBCOORD - (coord[1] << 1);
1230 >           coord[2] = MAXBCOORD - (coord[2] << 1);
1231 >           return(3);
1232 >         }
1233 > }
1234  
1235 <  VCROSS(n,v1,v2);
1236 <  i = intersect_ray_plane(orig,dir,n,0.0,&(pt[1]),p[1]);
1237 <  if(i)
1238 <    if((which==-1) || pt[1] < pt[0])
1239 <      which = 1;
1235 > int
1236 > baryi_nth_child(coord,i)
1237 > BCOORD coord[3];
1238 > int i;
1239 > {
1240  
1241 <  VCROSS(n,v2,v0);
1242 <  i = intersect_ray_plane(orig,dir,n,0.0,&(pt[2]),p[2]);
1243 <  if(i)
1244 <    if((which==-1) || pt[2] < pt[which])
1245 <      which = 2;
1241 >  switch(i){
1242 >  case 0:
1243 >    /* update bary for child */
1244 >    coord[0] = (coord[0]<< 1) - MAXBCOORD;
1245 >    coord[1] <<= 1;
1246 >    coord[2] <<= 1;
1247 >    break;
1248 >  case 1:
1249 >    coord[0] <<= 1;
1250 >    coord[1] = (coord[1] << 1) - MAXBCOORD;
1251 >    coord[2] <<= 1;
1252 >    break;
1253 >  case 2:
1254 >    coord[0] <<= 1;
1255 >    coord[1] <<= 1;
1256 >    coord[2] = (coord[2] << 1) - MAXBCOORD;
1257 >    break;
1258 >  case 3:
1259 >    coord[0] = MAXBCOORD - (coord[0] << 1);
1260 >    coord[1] = MAXBCOORD - (coord[1] << 1);
1261 >    coord[2] = MAXBCOORD - (coord[2] << 1);
1262 >    break;
1263 >  }
1264 > }
1265  
1266 <  if(which != -1)
1266 >
1267 > baryi_children(coord,i,in_tri,rcoord,rin_tri)
1268 > BCOORD coord[3][3];
1269 > int i;
1270 > int in_tri[3];
1271 > BCOORD rcoord[3][3];
1272 > int rin_tri[3];
1273 > {
1274 >  int j;
1275 >
1276 >  for(j=0; j< 3; j++)
1277    {
1278 <      /* Return point that is K*eps along projection of the ray on
1279 <         the sphere to push intersection point p[which] into next cell
1280 <      */
1281 <      normalize(p[which]);
1282 <      /* Calculate the ray perpendicular to the intersection point: approx
1283 <       the direction moved along the sphere a distance of K*epsilon*/
1284 <      r_eps = -DOT(p[which],dir);
1285 <      VSUM(n,dir,p[which],r_eps);
1286 <     /* Calculate the length along ray p[which]-dir needed to move to
1287 <         cause a move along the sphere of k*epsilon
1288 <       */
1289 <       r_eps = DOT(n,dir);
1290 <      VSUM(r,p[which],dir,(20*FTINY)/r_eps);
1291 <      normalize(r);
1292 <      return(TRUE);
1278 >    if(!in_tri[j])
1279 >    {
1280 >      rin_tri[j]=0;
1281 >      continue;
1282 >    }
1283 >    
1284 >    if(i != 3)
1285 >    {
1286 >      if(coord[j][i] < MAXBCOORD2)
1287 >        {
1288 >          rin_tri[j] = 0;
1289 >          continue;
1290 >        }
1291 >    }
1292 >    else
1293 >      if( !(coord[j][0] <= MAXBCOORD2 && coord[j][1] <= MAXBCOORD2 &&
1294 >            coord[j][2] <= MAXBCOORD2))
1295 >        {
1296 >          rin_tri[j] = 0;
1297 >          continue;
1298 >        }
1299 >      
1300 >    rin_tri[j]=1;
1301 >    VCOPY(rcoord[j],coord[j]);
1302 >    baryi_nth_child(rcoord[j],i);
1303    }
1304 +
1305 + }
1306 +
1307 + convert_dtol(b,bi)
1308 + double b[3];
1309 + BCOORD bi[3];
1310 + {
1311 +  int i;
1312 +
1313 +  for(i=0; i < 2;i++)
1314 +  {
1315 +
1316 +    if(b[i] <= 0.0)
1317 +    {
1318 +      bi[i]= 0;
1319 +    }
1320 +    else
1321 +      if(b[i] >= 1.0)
1322 +      {
1323 +        bi[i]= MAXBCOORD;
1324 +      }
1325 +      else
1326 +        bi[i] = (BCOORD)(b[i]*MAXBCOORD);
1327 +  }
1328 +  bi[2] = bi[0] +  bi[1];
1329 +  if(bi[2] > MAXBCOORD)
1330 +  {
1331 +      bi[2] = 0;
1332 +      bi[1] = MAXBCOORD - bi[0];
1333 +  }
1334    else
1335 +    bi[2] = MAXBCOORD - bi[2];
1336 +
1337 + }
1338 +
1339 + /* convert barycentric coordinate b in [-eps,1+eps] to [0,MAXLONG],
1340 +   dir unbounded to [-MAXLONG,MAXLONG]
1341 + */
1342 + bary_dtol(b,db,bi,dbi,t,w)
1343 + double b[3],db[3][3];
1344 + BCOORD bi[3];
1345 + BDIR dbi[3][3];
1346 + TINT t[3];
1347 + int w;
1348 + {
1349 +  int i,id,j,k;
1350 +  double d;
1351 +
1352 +  convert_dtol(b,bi);
1353 +
1354 +  for(j=w; j< 3; j++)
1355    {
1356 <      /* Unable to find intersection: move along ray and try again */
1357 <      r_eps = -DOT(orig,dir);
1358 <      VSUM(n,dir,orig,r_eps);
1359 <      r_eps = DOT(n,dir);
1360 <      VSUM(r,orig,dir,(20*FTINY)/r_eps);
1361 <      normalize(r);
1362 < #ifdef DEBUG
1363 <      eputs("traceRay:Ray does not intersect triangle");
1364 < #endif
1365 <      return(FALSE);
1356 >    if(t[j] == HUGET)
1357 >    {
1358 >      max_index(db[j],&d);
1359 >      for(i=0; i< 3; i++)
1360 >        dbi[j][i] = (BDIR)(db[j][i]/d*MAXBDIR);
1361 >      break;
1362 >    }
1363 >    else
1364 >    {
1365 >      for(i=0; i< 3; i++)
1366 >          dbi[j][i] = (BDIR)(db[j][i]*MAXBDIR);
1367 >    }
1368    }
1369   }
1370 +
1371 +
1372 + /* convert barycentric coordinate b in [-eps,1+eps] to [0,MAXLONG],
1373 +   dir unbounded to [-MAXLONG,MAXLONG]
1374 + */
1375 + bary_dtol_new(b,db,bi,boi,dbi,t)
1376 + double b[4][3],db[3][3];
1377 + BCOORD bi[3],boi[3][3];
1378 + BDIR dbi[3][3];
1379 + int t[3];
1380 + {
1381 +  int i,id,j,k;
1382 +  double d;
1383 +
1384 +  convert_dtol(b[3],bi);
1385 +
1386 +  for(j=0; j<3;j++)
1387 +  {
1388 +    if(t[j] != 1)
1389 +      continue;
1390 +    convert_dtol(b[j],boi[j]);
1391 +  }
1392 +  for(j=0; j< 3; j++)
1393 +  {
1394 +    k = (j+1)%3;
1395 +    if(t[k]==0)
1396 +      continue;
1397 +    if(t[k] == -1)
1398 +      {
1399 +        max_index(db[j],&d);
1400 +        for(i=0; i< 3; i++)
1401 +          dbi[j][i] = (BDIR)(db[j][i]/d*MAXBDIR);
1402 +        t[k] = 0;
1403 +      }
1404 +    else
1405 +      if(t[j] != 1)
1406 +        for(i=0; i< 3; i++)
1407 +          dbi[j][i] = (BDIR)(db[j][i]*MAXBDIR);
1408 +    else
1409 +      for(i=0; i< 3; i++)
1410 +        dbi[j][i] = boi[k][i] - boi[j][i];
1411 +    
1412 +  }
1413 + }
1414 +
1415 +
1416 + bary_dtolb(b,bi,in_tri)
1417 + double b[3][3];
1418 + BCOORD bi[3][3];
1419 + int in_tri[3];
1420 + {
1421 +  int i,j;
1422 +
1423 +  for(j=0; j<3;j++)
1424 +  {
1425 +    if(!in_tri[j])
1426 +      continue;
1427 +    for(i=0; i < 2;i++)
1428 +    {
1429 +    if(b[j][i] <= 0.0)
1430 +    {
1431 +      bi[j][i]= 0;
1432 +    }
1433 +    else
1434 +      if(b[j][i] >= 1.0)
1435 +      {
1436 +        bi[j][i]= MAXBCOORD;
1437 +      }
1438 +      else
1439 +        bi[j][i] = (BCOORD)(b[j][i]*MAXBCOORD);
1440 +    }
1441 +    bi[j][2] = MAXBCOORD - bi[j][0] - bi[j][1];
1442 +    if(bi[j][2] < 0)
1443 +      {
1444 +        bi[j][2] = 0;
1445 +        bi[j][1] = MAXBCOORD - bi[j][0];
1446 +      }
1447 +  }
1448 + }
1449 +
1450 +
1451  
1452  
1453  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines