| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: sm_geom.c,v 3.13 2003/02/22 02:07:25 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* sm_geom.c
|
| 6 |
* some geometric utility routines
|
| 7 |
*/
|
| 8 |
|
| 9 |
#include "standard.h"
|
| 10 |
#include "sm_geom.h"
|
| 11 |
|
| 12 |
/*
|
| 13 |
* int
|
| 14 |
* pt_in_cone(p,a,b,c)
|
| 15 |
* : test if point p lies in cone defined by a,b,c and origin
|
| 16 |
* double p[3]; : point to test
|
| 17 |
* double a[3],b[3],c[3]; : points forming triangle
|
| 18 |
*
|
| 19 |
* Assumes apex at origin, a,b,c are unit vectors defining the
|
| 20 |
* triangle which the cone circumscribes. Assumes p is also normalized
|
| 21 |
* Test is implemented as:
|
| 22 |
* r = (b-a)X(c-a)
|
| 23 |
* in = (p.r) > (a.r)
|
| 24 |
* The center of the cone is r, and corresponds to the triangle normal.
|
| 25 |
* p.r is the proportional to the cosine of the angle between p and the
|
| 26 |
* the cone center ray, and a.r to the radius of the cone. If the cosine
|
| 27 |
* of the angle for p is greater than that for a, the angle between p
|
| 28 |
* and r is smaller, and p lies in the cone.
|
| 29 |
*/
|
| 30 |
int
|
| 31 |
pt_in_cone(p,a,b,c)
|
| 32 |
double p[3],a[3],b[3],c[3];
|
| 33 |
{
|
| 34 |
double r[3];
|
| 35 |
double pr,ar;
|
| 36 |
double ab[3],ac[3];
|
| 37 |
|
| 38 |
#ifdef DEBUG
|
| 39 |
#if DEBUG > 1
|
| 40 |
{
|
| 41 |
double l;
|
| 42 |
VSUB(ab,b,a);
|
| 43 |
normalize(ab);
|
| 44 |
VSUB(ac,c,a);
|
| 45 |
normalize(ac);
|
| 46 |
VCROSS(r,ab,ac);
|
| 47 |
l = normalize(r);
|
| 48 |
/* l = sin@ between ab,ac - if 0 vectors are colinear */
|
| 49 |
if( l <= COLINEAR_EPS)
|
| 50 |
{
|
| 51 |
eputs("pt in cone: null triangle:returning FALSE\n");
|
| 52 |
return(FALSE);
|
| 53 |
}
|
| 54 |
}
|
| 55 |
#endif
|
| 56 |
#endif
|
| 57 |
|
| 58 |
VSUB(ab,b,a);
|
| 59 |
VSUB(ac,c,a);
|
| 60 |
VCROSS(r,ab,ac);
|
| 61 |
|
| 62 |
pr = DOT(p,r);
|
| 63 |
ar = DOT(a,r);
|
| 64 |
/* Need to check for equality for degeneracy of 4 points on circle */
|
| 65 |
if( pr > ar *( 1.0 + EQUALITY_EPS))
|
| 66 |
return(TRUE);
|
| 67 |
else
|
| 68 |
return(FALSE);
|
| 69 |
}
|
| 70 |
|
| 71 |
/*
|
| 72 |
* tri_centroid(v0,v1,v2,c)
|
| 73 |
* : Average triangle vertices to give centroid: return in c
|
| 74 |
*FVECT v0,v1,v2,c; : triangle vertices(v0,v1,v2) and vector to hold result(c)
|
| 75 |
*/
|
| 76 |
tri_centroid(v0,v1,v2,c)
|
| 77 |
FVECT v0,v1,v2,c;
|
| 78 |
{
|
| 79 |
c[0] = (v0[0] + v1[0] + v2[0])/3.0;
|
| 80 |
c[1] = (v0[1] + v1[1] + v2[1])/3.0;
|
| 81 |
c[2] = (v0[2] + v1[2] + v2[2])/3.0;
|
| 82 |
}
|
| 83 |
|
| 84 |
|
| 85 |
/*
|
| 86 |
* double
|
| 87 |
* tri_normal(v0,v1,v2,n,norm) : Calculates the normal of a face contour using
|
| 88 |
* Newell's formula.
|
| 89 |
* FVECT v0,v1,v2,n; : Triangle vertices(v0,v1,v2) and vector for result(n)
|
| 90 |
* int norm; : If true result is normalized
|
| 91 |
*
|
| 92 |
* Triangle normal is calculated using the following:
|
| 93 |
* A = SUMi (yi - yi+1)(zi + zi+1);
|
| 94 |
* B = SUMi (zi - zi+1)(xi + xi+1)
|
| 95 |
* C = SUMi (xi - xi+1)(yi + yi+1)
|
| 96 |
*/
|
| 97 |
double
|
| 98 |
tri_normal(v0,v1,v2,n,norm)
|
| 99 |
FVECT v0,v1,v2,n;
|
| 100 |
int norm;
|
| 101 |
{
|
| 102 |
double mag;
|
| 103 |
|
| 104 |
n[0] = (v0[2] + v1[2]) * (v0[1] - v1[1]) +
|
| 105 |
(v1[2] + v2[2]) * (v1[1] - v2[1]) +
|
| 106 |
(v2[2] + v0[2]) * (v2[1] - v0[1]);
|
| 107 |
n[1] = (v0[2] - v1[2]) * (v0[0] + v1[0]) +
|
| 108 |
(v1[2] - v2[2]) * (v1[0] + v2[0]) +
|
| 109 |
(v2[2] - v0[2]) * (v2[0] + v0[0]);
|
| 110 |
n[2] = (v0[1] + v1[1]) * (v0[0] - v1[0]) +
|
| 111 |
(v1[1] + v2[1]) * (v1[0] - v2[0]) +
|
| 112 |
(v2[1] + v0[1]) * (v2[0] - v0[0]);
|
| 113 |
if(!norm)
|
| 114 |
return(0);
|
| 115 |
mag = normalize(n);
|
| 116 |
return(mag);
|
| 117 |
}
|
| 118 |
|
| 119 |
/*
|
| 120 |
* tri_plane_equation(v0,v1,v2,peqptr,norm)
|
| 121 |
* : Calculates the plane equation (A,B,C,D) for triangle
|
| 122 |
* v0,v1,v2 ( Ax + By + Cz = D)
|
| 123 |
* FVECT v0,v1,v2; : Triangle vertices
|
| 124 |
* FPEQ *peqptr; : ptr to structure to hold result
|
| 125 |
* int norm; : if TRUE, return unit normal
|
| 126 |
*/
|
| 127 |
tri_plane_equation(v0,v1,v2,peqptr,norm)
|
| 128 |
FVECT v0,v1,v2;
|
| 129 |
FPEQ *peqptr;
|
| 130 |
int norm;
|
| 131 |
{
|
| 132 |
tri_normal(v0,v1,v2,FP_N(*peqptr),norm);
|
| 133 |
FP_D(*peqptr) = -(DOT(FP_N(*peqptr),v0));
|
| 134 |
}
|
| 135 |
|
| 136 |
/*
|
| 137 |
* int
|
| 138 |
* intersect_ray_plane(orig,dir,peq,pd,r)
|
| 139 |
* : Intersects ray (orig,dir) with plane (peq). Returns TRUE
|
| 140 |
* if intersection occurs. If r!=NULL, sets with resulting i
|
| 141 |
* intersection point, and pd is set with parametric value of the
|
| 142 |
* intersection.
|
| 143 |
* FVECT orig,dir; : vectors defining the ray
|
| 144 |
* FPEQ peq; : plane equation
|
| 145 |
* double *pd; : holds resulting parametric intersection point
|
| 146 |
* FVECT r; : holds resulting intersection point
|
| 147 |
*
|
| 148 |
* Plane is Ax + By + Cz +D = 0:
|
| 149 |
* A(orig[0] + dxt) + B(orig[1] + dyt) + C(orig[2] + dzt) + pd = 0
|
| 150 |
* t = -(DOT(plane_n,orig)+ plane_d)/(DOT(plane_n,d))
|
| 151 |
* line is l = p1 + (p2-p1)t
|
| 152 |
* Solve for t
|
| 153 |
*/
|
| 154 |
int
|
| 155 |
intersect_ray_plane(orig,dir,peq,pd,r)
|
| 156 |
FVECT orig,dir;
|
| 157 |
FPEQ peq;
|
| 158 |
double *pd;
|
| 159 |
FVECT r;
|
| 160 |
{
|
| 161 |
double t,d;
|
| 162 |
int hit;
|
| 163 |
|
| 164 |
d = DOT(FP_N(peq),dir);
|
| 165 |
if(ZERO(d))
|
| 166 |
return(0);
|
| 167 |
t = -(DOT(FP_N(peq),orig) + FP_D(peq))/d;
|
| 168 |
|
| 169 |
if(t < 0)
|
| 170 |
hit = 0;
|
| 171 |
else
|
| 172 |
hit = 1;
|
| 173 |
if(r)
|
| 174 |
VSUM(r,orig,dir,t);
|
| 175 |
|
| 176 |
if(pd)
|
| 177 |
*pd = t;
|
| 178 |
return(hit);
|
| 179 |
}
|
| 180 |
|
| 181 |
/*
|
| 182 |
* double
|
| 183 |
* point_on_sphere(ps,p,c) : normalize p relative to sphere with center c
|
| 184 |
* FVECT ps,p,c; : ps Holds result vector,p is the original point,
|
| 185 |
* and c is the sphere center
|
| 186 |
*/
|
| 187 |
double
|
| 188 |
point_on_sphere(ps,p,c)
|
| 189 |
FVECT ps,p,c;
|
| 190 |
{
|
| 191 |
double d;
|
| 192 |
|
| 193 |
VSUB(ps,p,c);
|
| 194 |
d = normalize(ps);
|
| 195 |
return(d);
|
| 196 |
}
|
| 197 |
|
| 198 |
/*
|
| 199 |
* int
|
| 200 |
* point_in_stri(v0,v1,v2,p) : Return TRUE if p is in pyramid defined by
|
| 201 |
* tri v0,v1,v2 and origin
|
| 202 |
* FVECT v0,v1,v2,p; :Triangle vertices(v0,v1,v2) and point in question(p)
|
| 203 |
*
|
| 204 |
* Tests orientation of p relative to each edge (v0v1,v1v2,v2v0), if it is
|
| 205 |
* inside of all 3 edges, returns TRUE, else FALSE.
|
| 206 |
*/
|
| 207 |
int
|
| 208 |
point_in_stri(v0,v1,v2,p)
|
| 209 |
FVECT v0,v1,v2,p;
|
| 210 |
{
|
| 211 |
double d;
|
| 212 |
FVECT n;
|
| 213 |
|
| 214 |
VCROSS(n,v0,v1);
|
| 215 |
/* Test the point for sidedness */
|
| 216 |
d = DOT(n,p);
|
| 217 |
if(d > 0.0)
|
| 218 |
return(FALSE);
|
| 219 |
/* Test next edge */
|
| 220 |
VCROSS(n,v1,v2);
|
| 221 |
/* Test the point for sidedness */
|
| 222 |
d = DOT(n,p);
|
| 223 |
if(d > 0.0)
|
| 224 |
return(FALSE);
|
| 225 |
/* Test next edge */
|
| 226 |
VCROSS(n,v2,v0);
|
| 227 |
/* Test the point for sidedness */
|
| 228 |
d = DOT(n,p);
|
| 229 |
if(d > 0.0)
|
| 230 |
return(FALSE);
|
| 231 |
/* Must be interior to the pyramid */
|
| 232 |
return(TRUE);
|
| 233 |
}
|
| 234 |
|
| 235 |
/*
|
| 236 |
* int
|
| 237 |
* ray_intersect_tri(orig,dir,v0,v1,v2,pt)
|
| 238 |
* : test if ray orig-dir intersects triangle v0v1v2, result in pt
|
| 239 |
* FVECT orig,dir; : Vectors defining ray origin and direction
|
| 240 |
* FVECT v0,v1,v2; : Triangle vertices
|
| 241 |
* FVECT pt; : Intersection point (if any)
|
| 242 |
*/
|
| 243 |
int
|
| 244 |
ray_intersect_tri(orig,dir,v0,v1,v2,pt)
|
| 245 |
FVECT orig,dir;
|
| 246 |
FVECT v0,v1,v2;
|
| 247 |
FVECT pt;
|
| 248 |
{
|
| 249 |
FVECT p0,p1,p2,p;
|
| 250 |
FPEQ peq;
|
| 251 |
int type;
|
| 252 |
|
| 253 |
VSUB(p0,v0,orig);
|
| 254 |
VSUB(p1,v1,orig);
|
| 255 |
VSUB(p2,v2,orig);
|
| 256 |
|
| 257 |
if(point_in_stri(p0,p1,p2,dir))
|
| 258 |
{
|
| 259 |
/* Intersect the ray with the triangle plane */
|
| 260 |
tri_plane_equation(v0,v1,v2,&peq,FALSE);
|
| 261 |
return(intersect_ray_plane(orig,dir,peq,NULL,pt));
|
| 262 |
}
|
| 263 |
return(FALSE);
|
| 264 |
}
|
| 265 |
|
| 266 |
/*
|
| 267 |
* calculate_view_frustum(vp,hv,vv,horiz,vert,near,far,fnear,ffar)
|
| 268 |
* : Calculate vertices defining front and rear clip rectangles of
|
| 269 |
* view frustum defined by vp,hv,vv,horiz,vert,near, and far and
|
| 270 |
* return in fnear and ffar.
|
| 271 |
* FVECT vp,hv,vv; : Viewpoint(vp),hv and vv are the horizontal and
|
| 272 |
* vertical vectors in the view frame-magnitude is
|
| 273 |
* the dimension of the front frustum face at z =1
|
| 274 |
* double horiz,vert,near,far; : View angle horizontal and vertical(horiz,vert)
|
| 275 |
* and distance to the near,far clipping planes
|
| 276 |
* FVECT fnear[4],ffar[4]; : holds results
|
| 277 |
*
|
| 278 |
*/
|
| 279 |
calculate_view_frustum(vp,hv,vv,horiz,vert,near,far,fnear,ffar)
|
| 280 |
FVECT vp,hv,vv;
|
| 281 |
double horiz,vert,near,far;
|
| 282 |
FVECT fnear[4],ffar[4];
|
| 283 |
{
|
| 284 |
double height,width;
|
| 285 |
FVECT t,nhv,nvv,ndv;
|
| 286 |
double w2,h2;
|
| 287 |
/* Calculate the x and y dimensions of the near face */
|
| 288 |
VCOPY(nhv,hv);
|
| 289 |
VCOPY(nvv,vv);
|
| 290 |
w2 = normalize(nhv);
|
| 291 |
h2 = normalize(nvv);
|
| 292 |
/* Use similar triangles to calculate the dimensions at z=near */
|
| 293 |
width = near*0.5*w2;
|
| 294 |
height = near*0.5*h2;
|
| 295 |
|
| 296 |
VCROSS(ndv,nvv,nhv);
|
| 297 |
/* Calculate the world space points corresponding to the 4 corners
|
| 298 |
of the front face of the view frustum
|
| 299 |
*/
|
| 300 |
fnear[0][0] = width*nhv[0] + height*nvv[0] + near*ndv[0] + vp[0] ;
|
| 301 |
fnear[0][1] = width*nhv[1] + height*nvv[1] + near*ndv[1] + vp[1];
|
| 302 |
fnear[0][2] = width*nhv[2] + height*nvv[2] + near*ndv[2] + vp[2];
|
| 303 |
fnear[1][0] = -width*nhv[0] + height*nvv[0] + near*ndv[0] + vp[0];
|
| 304 |
fnear[1][1] = -width*nhv[1] + height*nvv[1] + near*ndv[1] + vp[1];
|
| 305 |
fnear[1][2] = -width*nhv[2] + height*nvv[2] + near*ndv[2] + vp[2];
|
| 306 |
fnear[2][0] = -width*nhv[0] - height*nvv[0] + near*ndv[0] + vp[0];
|
| 307 |
fnear[2][1] = -width*nhv[1] - height*nvv[1] + near*ndv[1] + vp[1];
|
| 308 |
fnear[2][2] = -width*nhv[2] - height*nvv[2] + near*ndv[2] + vp[2];
|
| 309 |
fnear[3][0] = width*nhv[0] - height*nvv[0] + near*ndv[0] + vp[0];
|
| 310 |
fnear[3][1] = width*nhv[1] - height*nvv[1] + near*ndv[1] + vp[1];
|
| 311 |
fnear[3][2] = width*nhv[2] - height*nvv[2] + near*ndv[2] + vp[2];
|
| 312 |
|
| 313 |
/* Now do the far face */
|
| 314 |
width = far*0.5*w2;
|
| 315 |
height = far*0.5*h2;
|
| 316 |
ffar[0][0] = width*nhv[0] + height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 317 |
ffar[0][1] = width*nhv[1] + height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 318 |
ffar[0][2] = width*nhv[2] + height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 319 |
ffar[1][0] = -width*nhv[0] + height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 320 |
ffar[1][1] = -width*nhv[1] + height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 321 |
ffar[1][2] = -width*nhv[2] + height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 322 |
ffar[2][0] = -width*nhv[0] - height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 323 |
ffar[2][1] = -width*nhv[1] - height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 324 |
ffar[2][2] = -width*nhv[2] - height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 325 |
ffar[3][0] = width*nhv[0] - height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 326 |
ffar[3][1] = width*nhv[1] - height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 327 |
ffar[3][2] = width*nhv[2] - height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 328 |
}
|
| 329 |
|
| 330 |
|
| 331 |
/*
|
| 332 |
* bary2d(x1,y1,x2,y2,x3,y3,px,py,coord)
|
| 333 |
* : Find the normalized barycentric coordinates of p relative to
|
| 334 |
* triangle v0,v1,v2. Return result in coord
|
| 335 |
* double x1,y1,x2,y2,x3,y3; : defines triangle vertices 1,2,3
|
| 336 |
* double px,py; : coordinates of pt
|
| 337 |
* double coord[3]; : result
|
| 338 |
*/
|
| 339 |
bary2d(x1,y1,x2,y2,x3,y3,px,py,coord)
|
| 340 |
double x1,y1,x2,y2,x3,y3;
|
| 341 |
double px,py;
|
| 342 |
double coord[3];
|
| 343 |
{
|
| 344 |
double a;
|
| 345 |
|
| 346 |
a = (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
|
| 347 |
coord[0] = ((x2 - px) * (y3 - py) - (x3 - px) * (y2 - py)) / a;
|
| 348 |
coord[1] = ((x3 - px) * (y1 - py) - (x1 - px) * (y3 - py)) / a;
|
| 349 |
coord[2] = ((x1 - px) * (y2 - py) - (x2 - px) * (y1 - py)) / a;
|
| 350 |
|
| 351 |
}
|
| 352 |
|
| 353 |
|
| 354 |
|
| 355 |
|
| 356 |
|
| 357 |
|
| 358 |
|
| 359 |
|
| 360 |
|
| 361 |
|
| 362 |
|
| 363 |
|
| 364 |
|
| 365 |
|
| 366 |
|