| 1 |
gwlarson |
3.1 |
/* Copyright (c) 1998 Silicon Graphics, Inc. */
|
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint
|
| 4 |
|
|
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
|
|
#endif
|
| 6 |
|
|
|
| 7 |
|
|
/*
|
| 8 |
|
|
* sm_geom.c
|
| 9 |
|
|
*/
|
| 10 |
|
|
|
| 11 |
|
|
#include "standard.h"
|
| 12 |
|
|
#include "sm_geom.h"
|
| 13 |
|
|
|
| 14 |
|
|
tri_centroid(v0,v1,v2,c)
|
| 15 |
|
|
FVECT v0,v1,v2,c;
|
| 16 |
|
|
{
|
| 17 |
|
|
/* Average three triangle vertices to give centroid: return in c */
|
| 18 |
|
|
c[0] = (v0[0] + v1[0] + v2[0])/3.0;
|
| 19 |
|
|
c[1] = (v0[1] + v1[1] + v2[1])/3.0;
|
| 20 |
|
|
c[2] = (v0[2] + v1[2] + v2[2])/3.0;
|
| 21 |
|
|
}
|
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
int
|
| 25 |
|
|
vec3_equal(v1,v2)
|
| 26 |
|
|
FVECT v1,v2;
|
| 27 |
|
|
{
|
| 28 |
|
|
return(EQUAL(v1[0],v2[0]) && EQUAL(v1[1],v2[1])&& EQUAL(v1[2],v2[2]));
|
| 29 |
|
|
}
|
| 30 |
gwlarson |
3.8 |
#if 0
|
| 31 |
|
|
extern FVECT Norm[500];
|
| 32 |
|
|
extern int Ncnt;
|
| 33 |
|
|
#endif
|
| 34 |
gwlarson |
3.1 |
|
| 35 |
|
|
int
|
| 36 |
|
|
convex_angle(v0,v1,v2)
|
| 37 |
|
|
FVECT v0,v1,v2;
|
| 38 |
|
|
{
|
| 39 |
gwlarson |
3.7 |
FVECT cp,cp01,cp12,v10,v02;
|
| 40 |
|
|
double dp;
|
| 41 |
gwlarson |
3.8 |
|
| 42 |
|
|
/* test sign of (v0Xv1)X(v1Xv2). v1 */
|
| 43 |
gwlarson |
3.1 |
VCROSS(cp01,v0,v1);
|
| 44 |
|
|
VCROSS(cp12,v1,v2);
|
| 45 |
|
|
VCROSS(cp,cp01,cp12);
|
| 46 |
gwlarson |
3.7 |
|
| 47 |
|
|
dp = DOT(cp,v1);
|
| 48 |
gwlarson |
3.8 |
#if 0
|
| 49 |
|
|
VCOPY(Norm[Ncnt++],cp01);
|
| 50 |
|
|
VCOPY(Norm[Ncnt++],cp12);
|
| 51 |
|
|
VCOPY(Norm[Ncnt++],cp);
|
| 52 |
|
|
#endif
|
| 53 |
gwlarson |
3.7 |
if(ZERO(dp) || dp < 0.0)
|
| 54 |
gwlarson |
3.8 |
return(FALSE);
|
| 55 |
gwlarson |
3.1 |
return(TRUE);
|
| 56 |
|
|
}
|
| 57 |
|
|
|
| 58 |
|
|
/* calculates the normal of a face contour using Newell's formula. e
|
| 59 |
|
|
|
| 60 |
gwlarson |
3.9 |
a = SUMi (yi - yi+1)(zi + zi+1);
|
| 61 |
gwlarson |
3.1 |
b = SUMi (zi - zi+1)(xi + xi+1)
|
| 62 |
|
|
c = SUMi (xi - xi+1)(yi + yi+1)
|
| 63 |
|
|
*/
|
| 64 |
|
|
double
|
| 65 |
|
|
tri_normal(v0,v1,v2,n,norm)
|
| 66 |
|
|
FVECT v0,v1,v2,n;
|
| 67 |
gwlarson |
3.4 |
int norm;
|
| 68 |
gwlarson |
3.1 |
{
|
| 69 |
|
|
double mag;
|
| 70 |
|
|
|
| 71 |
|
|
n[0] = (v0[2] + v1[2]) * (v0[1] - v1[1]) +
|
| 72 |
|
|
(v1[2] + v2[2]) * (v1[1] - v2[1]) +
|
| 73 |
|
|
(v2[2] + v0[2]) * (v2[1] - v0[1]);
|
| 74 |
|
|
|
| 75 |
|
|
n[1] = (v0[2] - v1[2]) * (v0[0] + v1[0]) +
|
| 76 |
|
|
(v1[2] - v2[2]) * (v1[0] + v2[0]) +
|
| 77 |
gwlarson |
3.9 |
(v2[2] - v0[2]) * (v2[0] + v0[0]);
|
| 78 |
gwlarson |
3.1 |
|
| 79 |
|
|
n[2] = (v0[1] + v1[1]) * (v0[0] - v1[0]) +
|
| 80 |
|
|
(v1[1] + v2[1]) * (v1[0] - v2[0]) +
|
| 81 |
|
|
(v2[1] + v0[1]) * (v2[0] - v0[0]);
|
| 82 |
|
|
|
| 83 |
|
|
if(!norm)
|
| 84 |
|
|
return(0);
|
| 85 |
|
|
|
| 86 |
|
|
mag = normalize(n);
|
| 87 |
|
|
|
| 88 |
|
|
return(mag);
|
| 89 |
|
|
}
|
| 90 |
|
|
|
| 91 |
|
|
|
| 92 |
gwlarson |
3.7 |
tri_plane_equation(v0,v1,v2,peqptr,norm)
|
| 93 |
|
|
FVECT v0,v1,v2;
|
| 94 |
|
|
FPEQ *peqptr;
|
| 95 |
gwlarson |
3.4 |
int norm;
|
| 96 |
gwlarson |
3.1 |
{
|
| 97 |
gwlarson |
3.7 |
tri_normal(v0,v1,v2,FP_N(*peqptr),norm);
|
| 98 |
gwlarson |
3.1 |
|
| 99 |
gwlarson |
3.7 |
FP_D(*peqptr) = -(DOT(FP_N(*peqptr),v0));
|
| 100 |
gwlarson |
3.1 |
}
|
| 101 |
|
|
|
| 102 |
|
|
/* From quad_edge-code */
|
| 103 |
|
|
int
|
| 104 |
|
|
point_in_circle_thru_origin(p,p0,p1)
|
| 105 |
|
|
FVECT p;
|
| 106 |
|
|
FVECT p0,p1;
|
| 107 |
|
|
{
|
| 108 |
|
|
|
| 109 |
|
|
double dp0,dp1;
|
| 110 |
|
|
double dp,det;
|
| 111 |
|
|
|
| 112 |
|
|
dp0 = DOT_VEC2(p0,p0);
|
| 113 |
|
|
dp1 = DOT_VEC2(p1,p1);
|
| 114 |
|
|
dp = DOT_VEC2(p,p);
|
| 115 |
|
|
|
| 116 |
|
|
det = -dp0*CROSS_VEC2(p1,p) + dp1*CROSS_VEC2(p0,p) - dp*CROSS_VEC2(p0,p1);
|
| 117 |
|
|
|
| 118 |
|
|
return (det > 0);
|
| 119 |
|
|
}
|
| 120 |
|
|
|
| 121 |
|
|
|
| 122 |
gwlarson |
3.9 |
double
|
| 123 |
gwlarson |
3.1 |
point_on_sphere(ps,p,c)
|
| 124 |
|
|
FVECT ps,p,c;
|
| 125 |
|
|
{
|
| 126 |
gwlarson |
3.9 |
double d;
|
| 127 |
gwlarson |
3.1 |
VSUB(ps,p,c);
|
| 128 |
gwlarson |
3.9 |
d= normalize(ps);
|
| 129 |
|
|
return(d);
|
| 130 |
gwlarson |
3.1 |
}
|
| 131 |
|
|
|
| 132 |
|
|
|
| 133 |
gwlarson |
3.4 |
/* returns TRUE if ray from origin in direction v intersects plane defined
|
| 134 |
|
|
* by normal plane_n, and plane_d. If plane is not parallel- returns
|
| 135 |
|
|
* intersection point if r != NULL. If tptr!= NULL returns value of
|
| 136 |
|
|
* t, if parallel, returns t=FHUGE
|
| 137 |
|
|
*/
|
| 138 |
gwlarson |
3.1 |
int
|
| 139 |
gwlarson |
3.7 |
intersect_vector_plane(v,peq,tptr,r)
|
| 140 |
|
|
FVECT v;
|
| 141 |
|
|
FPEQ peq;
|
| 142 |
gwlarson |
3.2 |
double *tptr;
|
| 143 |
gwlarson |
3.1 |
FVECT r;
|
| 144 |
|
|
{
|
| 145 |
gwlarson |
3.4 |
double t,d;
|
| 146 |
gwlarson |
3.1 |
int hit;
|
| 147 |
|
|
/*
|
| 148 |
|
|
Plane is Ax + By + Cz +D = 0:
|
| 149 |
|
|
plane[0] = A,plane[1] = B,plane[2] = C,plane[3] = D
|
| 150 |
|
|
*/
|
| 151 |
|
|
|
| 152 |
|
|
/* line is l = p1 + (p2-p1)t, p1=origin */
|
| 153 |
|
|
|
| 154 |
|
|
/* Solve for t: */
|
| 155 |
gwlarson |
3.7 |
d = -(DOT(FP_N(peq),v));
|
| 156 |
gwlarson |
3.4 |
if(ZERO(d))
|
| 157 |
|
|
{
|
| 158 |
|
|
t = FHUGE;
|
| 159 |
|
|
hit = 0;
|
| 160 |
|
|
}
|
| 161 |
|
|
else
|
| 162 |
|
|
{
|
| 163 |
gwlarson |
3.7 |
t = FP_D(peq)/d;
|
| 164 |
gwlarson |
3.4 |
if(t < 0 )
|
| 165 |
|
|
hit = 0;
|
| 166 |
|
|
else
|
| 167 |
|
|
hit = 1;
|
| 168 |
|
|
if(r)
|
| 169 |
|
|
{
|
| 170 |
|
|
r[0] = v[0]*t;
|
| 171 |
|
|
r[1] = v[1]*t;
|
| 172 |
|
|
r[2] = v[2]*t;
|
| 173 |
|
|
}
|
| 174 |
|
|
}
|
| 175 |
gwlarson |
3.2 |
if(tptr)
|
| 176 |
|
|
*tptr = t;
|
| 177 |
gwlarson |
3.1 |
return(hit);
|
| 178 |
|
|
}
|
| 179 |
|
|
|
| 180 |
|
|
int
|
| 181 |
gwlarson |
3.7 |
intersect_ray_plane(orig,dir,peq,pd,r)
|
| 182 |
gwlarson |
3.1 |
FVECT orig,dir;
|
| 183 |
gwlarson |
3.7 |
FPEQ peq;
|
| 184 |
gwlarson |
3.1 |
double *pd;
|
| 185 |
|
|
FVECT r;
|
| 186 |
|
|
{
|
| 187 |
gwlarson |
3.8 |
double t,d;
|
| 188 |
gwlarson |
3.1 |
int hit;
|
| 189 |
|
|
/*
|
| 190 |
|
|
Plane is Ax + By + Cz +D = 0:
|
| 191 |
|
|
plane[0] = A,plane[1] = B,plane[2] = C,plane[3] = D
|
| 192 |
|
|
*/
|
| 193 |
gwlarson |
3.2 |
/* A(orig[0] + dxt) + B(orig[1] + dyt) + C(orig[2] + dzt) + pd = 0
|
| 194 |
|
|
t = -(DOT(plane_n,orig)+ plane_d)/(DOT(plane_n,d))
|
| 195 |
|
|
line is l = p1 + (p2-p1)t
|
| 196 |
|
|
*/
|
| 197 |
gwlarson |
3.1 |
/* Solve for t: */
|
| 198 |
gwlarson |
3.8 |
d = DOT(FP_N(peq),dir);
|
| 199 |
|
|
if(ZERO(d))
|
| 200 |
|
|
return(0);
|
| 201 |
|
|
t = -(DOT(FP_N(peq),orig) + FP_D(peq))/d;
|
| 202 |
|
|
|
| 203 |
|
|
if(t < 0)
|
| 204 |
gwlarson |
3.4 |
hit = 0;
|
| 205 |
|
|
else
|
| 206 |
gwlarson |
3.1 |
hit = 1;
|
| 207 |
gwlarson |
3.4 |
|
| 208 |
|
|
if(r)
|
| 209 |
|
|
VSUM(r,orig,dir,t);
|
| 210 |
|
|
|
| 211 |
|
|
if(pd)
|
| 212 |
|
|
*pd = t;
|
| 213 |
|
|
return(hit);
|
| 214 |
|
|
}
|
| 215 |
|
|
|
| 216 |
|
|
|
| 217 |
|
|
int
|
| 218 |
gwlarson |
3.7 |
intersect_ray_oplane(orig,dir,n,pd,r)
|
| 219 |
|
|
FVECT orig,dir;
|
| 220 |
|
|
FVECT n;
|
| 221 |
|
|
double *pd;
|
| 222 |
|
|
FVECT r;
|
| 223 |
|
|
{
|
| 224 |
gwlarson |
3.8 |
double t,d;
|
| 225 |
gwlarson |
3.7 |
int hit;
|
| 226 |
|
|
/*
|
| 227 |
|
|
Plane is Ax + By + Cz +D = 0:
|
| 228 |
|
|
plane[0] = A,plane[1] = B,plane[2] = C,plane[3] = D
|
| 229 |
|
|
*/
|
| 230 |
|
|
/* A(orig[0] + dxt) + B(orig[1] + dyt) + C(orig[2] + dzt) + pd = 0
|
| 231 |
|
|
t = -(DOT(plane_n,orig)+ plane_d)/(DOT(plane_n,d))
|
| 232 |
|
|
line is l = p1 + (p2-p1)t
|
| 233 |
|
|
*/
|
| 234 |
|
|
/* Solve for t: */
|
| 235 |
gwlarson |
3.8 |
d= DOT(n,dir);
|
| 236 |
|
|
if(ZERO(d))
|
| 237 |
|
|
return(0);
|
| 238 |
|
|
t = -(DOT(n,orig))/d;
|
| 239 |
gwlarson |
3.7 |
if(t < 0)
|
| 240 |
|
|
hit = 0;
|
| 241 |
|
|
else
|
| 242 |
|
|
hit = 1;
|
| 243 |
|
|
|
| 244 |
|
|
if(r)
|
| 245 |
|
|
VSUM(r,orig,dir,t);
|
| 246 |
|
|
|
| 247 |
|
|
if(pd)
|
| 248 |
|
|
*pd = t;
|
| 249 |
|
|
return(hit);
|
| 250 |
|
|
}
|
| 251 |
|
|
|
| 252 |
gwlarson |
3.9 |
/* Assumption: know crosses plane:dont need to check for 'on' case */
|
| 253 |
|
|
intersect_edge_coord_plane(v0,v1,w,r)
|
| 254 |
|
|
FVECT v0,v1;
|
| 255 |
|
|
int w;
|
| 256 |
|
|
FVECT r;
|
| 257 |
|
|
{
|
| 258 |
|
|
FVECT dv;
|
| 259 |
|
|
int wnext;
|
| 260 |
|
|
double t;
|
| 261 |
gwlarson |
3.7 |
|
| 262 |
gwlarson |
3.9 |
VSUB(dv,v1,v0);
|
| 263 |
|
|
t = -v0[w]/dv[w];
|
| 264 |
|
|
r[w] = 0.0;
|
| 265 |
|
|
wnext = (w+1)%3;
|
| 266 |
|
|
r[wnext] = v0[wnext] + dv[wnext]*t;
|
| 267 |
|
|
wnext = (w+2)%3;
|
| 268 |
|
|
r[wnext] = v0[wnext] + dv[wnext]*t;
|
| 269 |
|
|
}
|
| 270 |
|
|
|
| 271 |
gwlarson |
3.7 |
int
|
| 272 |
|
|
intersect_edge_plane(e0,e1,peq,pd,r)
|
| 273 |
gwlarson |
3.4 |
FVECT e0,e1;
|
| 274 |
gwlarson |
3.7 |
FPEQ peq;
|
| 275 |
gwlarson |
3.4 |
double *pd;
|
| 276 |
|
|
FVECT r;
|
| 277 |
|
|
{
|
| 278 |
|
|
double t;
|
| 279 |
|
|
int hit;
|
| 280 |
|
|
FVECT d;
|
| 281 |
|
|
/*
|
| 282 |
|
|
Plane is Ax + By + Cz +D = 0:
|
| 283 |
|
|
plane[0] = A,plane[1] = B,plane[2] = C,plane[3] = D
|
| 284 |
|
|
*/
|
| 285 |
|
|
/* A(orig[0] + dxt) + B(orig[1] + dyt) + C(orig[2] + dzt) + pd = 0
|
| 286 |
|
|
t = -(DOT(plane_n,orig)+ plane_d)/(DOT(plane_n,d))
|
| 287 |
|
|
line is l = p1 + (p2-p1)t
|
| 288 |
|
|
*/
|
| 289 |
|
|
/* Solve for t: */
|
| 290 |
|
|
VSUB(d,e1,e0);
|
| 291 |
gwlarson |
3.7 |
t = -(DOT(FP_N(peq),e0) + FP_D(peq))/(DOT(FP_N(peq),d));
|
| 292 |
gwlarson |
3.4 |
if(t < 0)
|
| 293 |
|
|
hit = 0;
|
| 294 |
gwlarson |
3.1 |
else
|
| 295 |
gwlarson |
3.4 |
hit = 1;
|
| 296 |
gwlarson |
3.1 |
|
| 297 |
gwlarson |
3.4 |
VSUM(r,e0,d,t);
|
| 298 |
gwlarson |
3.1 |
|
| 299 |
|
|
if(pd)
|
| 300 |
|
|
*pd = t;
|
| 301 |
|
|
return(hit);
|
| 302 |
|
|
}
|
| 303 |
|
|
|
| 304 |
|
|
|
| 305 |
|
|
int
|
| 306 |
|
|
point_in_cone(p,p0,p1,p2)
|
| 307 |
|
|
FVECT p;
|
| 308 |
|
|
FVECT p0,p1,p2;
|
| 309 |
|
|
{
|
| 310 |
|
|
FVECT np,x_axis,y_axis;
|
| 311 |
gwlarson |
3.7 |
double d1,d2;
|
| 312 |
|
|
FPEQ peq;
|
| 313 |
gwlarson |
3.1 |
|
| 314 |
|
|
/* Find the equation of the circle defined by the intersection
|
| 315 |
|
|
of the cone with the plane defined by p1,p2,p3- project p into
|
| 316 |
|
|
that plane and do an in-circle test in the plane
|
| 317 |
|
|
*/
|
| 318 |
|
|
|
| 319 |
gwlarson |
3.8 |
/* find the equation of the plane defined by p0-p2 */
|
| 320 |
gwlarson |
3.7 |
tri_plane_equation(p0,p1,p2,&peq,FALSE);
|
| 321 |
gwlarson |
3.1 |
|
| 322 |
|
|
/* define a coordinate system on the plane: the x axis is in
|
| 323 |
|
|
the direction of np2-np1, and the y axis is calculated from
|
| 324 |
|
|
n cross x-axis
|
| 325 |
|
|
*/
|
| 326 |
|
|
/* Project p onto the plane */
|
| 327 |
gwlarson |
3.4 |
/* NOTE: check this: does sideness check?*/
|
| 328 |
gwlarson |
3.7 |
if(!intersect_vector_plane(p,peq,NULL,np))
|
| 329 |
gwlarson |
3.1 |
return(FALSE);
|
| 330 |
|
|
|
| 331 |
gwlarson |
3.8 |
/* create coordinate system on plane: p1-p0 defines the x_axis*/
|
| 332 |
gwlarson |
3.1 |
VSUB(x_axis,p1,p0);
|
| 333 |
|
|
normalize(x_axis);
|
| 334 |
|
|
/* The y axis is */
|
| 335 |
gwlarson |
3.7 |
VCROSS(y_axis,FP_N(peq),x_axis);
|
| 336 |
gwlarson |
3.1 |
normalize(y_axis);
|
| 337 |
|
|
|
| 338 |
|
|
VSUB(p1,p1,p0);
|
| 339 |
|
|
VSUB(p2,p2,p0);
|
| 340 |
|
|
VSUB(np,np,p0);
|
| 341 |
|
|
|
| 342 |
gwlarson |
3.9 |
p1[0] = DOT(p1,x_axis);
|
| 343 |
gwlarson |
3.1 |
p1[1] = 0;
|
| 344 |
|
|
|
| 345 |
|
|
d1 = DOT(p2,x_axis);
|
| 346 |
|
|
d2 = DOT(p2,y_axis);
|
| 347 |
|
|
p2[0] = d1;
|
| 348 |
|
|
p2[1] = d2;
|
| 349 |
|
|
|
| 350 |
|
|
d1 = DOT(np,x_axis);
|
| 351 |
|
|
d2 = DOT(np,y_axis);
|
| 352 |
|
|
np[0] = d1;
|
| 353 |
|
|
np[1] = d2;
|
| 354 |
|
|
|
| 355 |
|
|
/* perform the in-circle test in the new coordinate system */
|
| 356 |
|
|
return(point_in_circle_thru_origin(np,p1,p2));
|
| 357 |
|
|
}
|
| 358 |
|
|
|
| 359 |
|
|
int
|
| 360 |
gwlarson |
3.4 |
point_set_in_stri(v0,v1,v2,p,n,nset,sides)
|
| 361 |
gwlarson |
3.1 |
FVECT v0,v1,v2,p;
|
| 362 |
|
|
FVECT n[3];
|
| 363 |
gwlarson |
3.4 |
int *nset;
|
| 364 |
|
|
int sides[3];
|
| 365 |
gwlarson |
3.1 |
|
| 366 |
|
|
{
|
| 367 |
gwlarson |
3.4 |
double d;
|
| 368 |
gwlarson |
3.1 |
/* Find the normal to the triangle ORIGIN:v0:v1 */
|
| 369 |
|
|
if(!NTH_BIT(*nset,0))
|
| 370 |
|
|
{
|
| 371 |
gwlarson |
3.8 |
VCROSS(n[0],v0,v1);
|
| 372 |
gwlarson |
3.1 |
SET_NTH_BIT(*nset,0);
|
| 373 |
|
|
}
|
| 374 |
|
|
/* Test the point for sidedness */
|
| 375 |
|
|
d = DOT(n[0],p);
|
| 376 |
|
|
|
| 377 |
gwlarson |
3.4 |
if(d > 0.0)
|
| 378 |
|
|
{
|
| 379 |
|
|
sides[0] = GT_OUT;
|
| 380 |
|
|
sides[1] = sides[2] = GT_INVALID;
|
| 381 |
|
|
return(FALSE);
|
| 382 |
gwlarson |
3.1 |
}
|
| 383 |
|
|
else
|
| 384 |
|
|
sides[0] = GT_INTERIOR;
|
| 385 |
|
|
|
| 386 |
|
|
/* Test next edge */
|
| 387 |
|
|
if(!NTH_BIT(*nset,1))
|
| 388 |
|
|
{
|
| 389 |
gwlarson |
3.8 |
VCROSS(n[1],v1,v2);
|
| 390 |
gwlarson |
3.1 |
SET_NTH_BIT(*nset,1);
|
| 391 |
|
|
}
|
| 392 |
|
|
/* Test the point for sidedness */
|
| 393 |
|
|
d = DOT(n[1],p);
|
| 394 |
gwlarson |
3.4 |
if(d > 0.0)
|
| 395 |
gwlarson |
3.1 |
{
|
| 396 |
|
|
sides[1] = GT_OUT;
|
| 397 |
|
|
sides[2] = GT_INVALID;
|
| 398 |
|
|
return(FALSE);
|
| 399 |
|
|
}
|
| 400 |
|
|
else
|
| 401 |
|
|
sides[1] = GT_INTERIOR;
|
| 402 |
|
|
/* Test next edge */
|
| 403 |
|
|
if(!NTH_BIT(*nset,2))
|
| 404 |
|
|
{
|
| 405 |
gwlarson |
3.8 |
VCROSS(n[2],v2,v0);
|
| 406 |
gwlarson |
3.1 |
SET_NTH_BIT(*nset,2);
|
| 407 |
|
|
}
|
| 408 |
|
|
/* Test the point for sidedness */
|
| 409 |
|
|
d = DOT(n[2],p);
|
| 410 |
gwlarson |
3.4 |
if(d > 0.0)
|
| 411 |
gwlarson |
3.1 |
{
|
| 412 |
gwlarson |
3.4 |
sides[2] = GT_OUT;
|
| 413 |
|
|
return(FALSE);
|
| 414 |
gwlarson |
3.1 |
}
|
| 415 |
|
|
else
|
| 416 |
|
|
sides[2] = GT_INTERIOR;
|
| 417 |
|
|
/* Must be interior to the pyramid */
|
| 418 |
|
|
return(GT_INTERIOR);
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
|
| 422 |
|
|
|
| 423 |
gwlarson |
3.7 |
|
| 424 |
gwlarson |
3.1 |
int
|
| 425 |
gwlarson |
3.4 |
point_in_stri(v0,v1,v2,p)
|
| 426 |
gwlarson |
3.1 |
FVECT v0,v1,v2,p;
|
| 427 |
|
|
{
|
| 428 |
gwlarson |
3.4 |
double d;
|
| 429 |
gwlarson |
3.1 |
FVECT n;
|
| 430 |
|
|
|
| 431 |
gwlarson |
3.8 |
VCROSS(n,v0,v1);
|
| 432 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 433 |
|
|
d = DOT(n,p);
|
| 434 |
gwlarson |
3.4 |
if(d > 0.0)
|
| 435 |
|
|
return(FALSE);
|
| 436 |
|
|
|
| 437 |
gwlarson |
3.1 |
/* Test next edge */
|
| 438 |
gwlarson |
3.8 |
VCROSS(n,v1,v2);
|
| 439 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 440 |
|
|
d = DOT(n,p);
|
| 441 |
gwlarson |
3.4 |
if(d > 0.0)
|
| 442 |
gwlarson |
3.1 |
return(FALSE);
|
| 443 |
|
|
|
| 444 |
|
|
/* Test next edge */
|
| 445 |
gwlarson |
3.8 |
VCROSS(n,v2,v0);
|
| 446 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 447 |
|
|
d = DOT(n,p);
|
| 448 |
gwlarson |
3.4 |
if(d > 0.0)
|
| 449 |
gwlarson |
3.1 |
return(FALSE);
|
| 450 |
|
|
/* Must be interior to the pyramid */
|
| 451 |
gwlarson |
3.4 |
return(GT_INTERIOR);
|
| 452 |
gwlarson |
3.1 |
}
|
| 453 |
|
|
|
| 454 |
|
|
int
|
| 455 |
gwlarson |
3.4 |
vertices_in_stri(t0,t1,t2,p0,p1,p2,nset,n,avg,pt_sides)
|
| 456 |
gwlarson |
3.1 |
FVECT t0,t1,t2,p0,p1,p2;
|
| 457 |
gwlarson |
3.4 |
int *nset;
|
| 458 |
gwlarson |
3.1 |
FVECT n[3];
|
| 459 |
|
|
FVECT avg;
|
| 460 |
gwlarson |
3.4 |
int pt_sides[3][3];
|
| 461 |
gwlarson |
3.1 |
|
| 462 |
|
|
{
|
| 463 |
gwlarson |
3.4 |
int below_plane[3],test;
|
| 464 |
gwlarson |
3.1 |
|
| 465 |
|
|
SUM_3VEC3(avg,t0,t1,t2);
|
| 466 |
|
|
*nset = 0;
|
| 467 |
|
|
/* Test vertex v[i] against triangle j*/
|
| 468 |
|
|
/* Check if v[i] lies below plane defined by avg of 3 vectors
|
| 469 |
|
|
defining triangle
|
| 470 |
|
|
*/
|
| 471 |
|
|
|
| 472 |
|
|
/* test point 0 */
|
| 473 |
gwlarson |
3.4 |
if(DOT(avg,p0) < 0.0)
|
| 474 |
gwlarson |
3.1 |
below_plane[0] = 1;
|
| 475 |
|
|
else
|
| 476 |
gwlarson |
3.4 |
below_plane[0] = 0;
|
| 477 |
gwlarson |
3.1 |
/* Test if b[i] lies in or on triangle a */
|
| 478 |
gwlarson |
3.4 |
test = point_set_in_stri(t0,t1,t2,p0,n,nset,pt_sides[0]);
|
| 479 |
gwlarson |
3.1 |
/* If pts[i] is interior: done */
|
| 480 |
|
|
if(!below_plane[0])
|
| 481 |
|
|
{
|
| 482 |
|
|
if(test == GT_INTERIOR)
|
| 483 |
|
|
return(TRUE);
|
| 484 |
|
|
}
|
| 485 |
|
|
/* Now test point 1*/
|
| 486 |
|
|
|
| 487 |
gwlarson |
3.4 |
if(DOT(avg,p1) < 0.0)
|
| 488 |
gwlarson |
3.1 |
below_plane[1] = 1;
|
| 489 |
|
|
else
|
| 490 |
|
|
below_plane[1]=0;
|
| 491 |
|
|
/* Test if b[i] lies in or on triangle a */
|
| 492 |
gwlarson |
3.4 |
test = point_set_in_stri(t0,t1,t2,p1,n,nset,pt_sides[1]);
|
| 493 |
gwlarson |
3.1 |
/* If pts[i] is interior: done */
|
| 494 |
|
|
if(!below_plane[1])
|
| 495 |
|
|
{
|
| 496 |
|
|
if(test == GT_INTERIOR)
|
| 497 |
|
|
return(TRUE);
|
| 498 |
|
|
}
|
| 499 |
|
|
|
| 500 |
|
|
/* Now test point 2 */
|
| 501 |
gwlarson |
3.4 |
if(DOT(avg,p2) < 0.0)
|
| 502 |
gwlarson |
3.1 |
below_plane[2] = 1;
|
| 503 |
|
|
else
|
| 504 |
gwlarson |
3.4 |
below_plane[2] = 0;
|
| 505 |
gwlarson |
3.1 |
/* Test if b[i] lies in or on triangle a */
|
| 506 |
gwlarson |
3.4 |
test = point_set_in_stri(t0,t1,t2,p2,n,nset,pt_sides[2]);
|
| 507 |
gwlarson |
3.1 |
|
| 508 |
|
|
/* If pts[i] is interior: done */
|
| 509 |
|
|
if(!below_plane[2])
|
| 510 |
|
|
{
|
| 511 |
|
|
if(test == GT_INTERIOR)
|
| 512 |
|
|
return(TRUE);
|
| 513 |
|
|
}
|
| 514 |
|
|
|
| 515 |
|
|
/* If all three points below separating plane: trivial reject */
|
| 516 |
|
|
if(below_plane[0] && below_plane[1] && below_plane[2])
|
| 517 |
|
|
return(FALSE);
|
| 518 |
|
|
/* Now check vertices in a against triangle b */
|
| 519 |
|
|
return(FALSE);
|
| 520 |
|
|
}
|
| 521 |
|
|
|
| 522 |
|
|
|
| 523 |
|
|
set_sidedness_tests(t0,t1,t2,p0,p1,p2,test,sides,nset,n)
|
| 524 |
|
|
FVECT t0,t1,t2,p0,p1,p2;
|
| 525 |
gwlarson |
3.4 |
int test[3];
|
| 526 |
|
|
int sides[3][3];
|
| 527 |
|
|
int nset;
|
| 528 |
gwlarson |
3.1 |
FVECT n[3];
|
| 529 |
|
|
{
|
| 530 |
gwlarson |
3.4 |
int t;
|
| 531 |
gwlarson |
3.1 |
double d;
|
| 532 |
|
|
|
| 533 |
|
|
|
| 534 |
|
|
/* p=0 */
|
| 535 |
|
|
test[0] = 0;
|
| 536 |
|
|
if(sides[0][0] == GT_INVALID)
|
| 537 |
|
|
{
|
| 538 |
|
|
if(!NTH_BIT(nset,0))
|
| 539 |
gwlarson |
3.8 |
VCROSS(n[0],t0,t1);
|
| 540 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 541 |
|
|
d = DOT(n[0],p0);
|
| 542 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 543 |
gwlarson |
3.1 |
SET_NTH_BIT(test[0],0);
|
| 544 |
|
|
}
|
| 545 |
|
|
else
|
| 546 |
|
|
if(sides[0][0] != GT_INTERIOR)
|
| 547 |
|
|
SET_NTH_BIT(test[0],0);
|
| 548 |
|
|
|
| 549 |
|
|
if(sides[0][1] == GT_INVALID)
|
| 550 |
|
|
{
|
| 551 |
|
|
if(!NTH_BIT(nset,1))
|
| 552 |
gwlarson |
3.8 |
VCROSS(n[1],t1,t2);
|
| 553 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 554 |
|
|
d = DOT(n[1],p0);
|
| 555 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 556 |
gwlarson |
3.1 |
SET_NTH_BIT(test[0],1);
|
| 557 |
|
|
}
|
| 558 |
|
|
else
|
| 559 |
|
|
if(sides[0][1] != GT_INTERIOR)
|
| 560 |
|
|
SET_NTH_BIT(test[0],1);
|
| 561 |
|
|
|
| 562 |
|
|
if(sides[0][2] == GT_INVALID)
|
| 563 |
|
|
{
|
| 564 |
|
|
if(!NTH_BIT(nset,2))
|
| 565 |
gwlarson |
3.8 |
VCROSS(n[2],t2,t0);
|
| 566 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 567 |
|
|
d = DOT(n[2],p0);
|
| 568 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 569 |
gwlarson |
3.1 |
SET_NTH_BIT(test[0],2);
|
| 570 |
|
|
}
|
| 571 |
|
|
else
|
| 572 |
|
|
if(sides[0][2] != GT_INTERIOR)
|
| 573 |
|
|
SET_NTH_BIT(test[0],2);
|
| 574 |
|
|
|
| 575 |
|
|
/* p=1 */
|
| 576 |
|
|
test[1] = 0;
|
| 577 |
|
|
/* t=0*/
|
| 578 |
|
|
if(sides[1][0] == GT_INVALID)
|
| 579 |
|
|
{
|
| 580 |
|
|
if(!NTH_BIT(nset,0))
|
| 581 |
gwlarson |
3.8 |
VCROSS(n[0],t0,t1);
|
| 582 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 583 |
|
|
d = DOT(n[0],p1);
|
| 584 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 585 |
gwlarson |
3.1 |
SET_NTH_BIT(test[1],0);
|
| 586 |
|
|
}
|
| 587 |
|
|
else
|
| 588 |
|
|
if(sides[1][0] != GT_INTERIOR)
|
| 589 |
|
|
SET_NTH_BIT(test[1],0);
|
| 590 |
|
|
|
| 591 |
|
|
/* t=1 */
|
| 592 |
|
|
if(sides[1][1] == GT_INVALID)
|
| 593 |
|
|
{
|
| 594 |
|
|
if(!NTH_BIT(nset,1))
|
| 595 |
gwlarson |
3.8 |
VCROSS(n[1],t1,t2);
|
| 596 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 597 |
|
|
d = DOT(n[1],p1);
|
| 598 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 599 |
gwlarson |
3.1 |
SET_NTH_BIT(test[1],1);
|
| 600 |
|
|
}
|
| 601 |
|
|
else
|
| 602 |
|
|
if(sides[1][1] != GT_INTERIOR)
|
| 603 |
|
|
SET_NTH_BIT(test[1],1);
|
| 604 |
|
|
|
| 605 |
|
|
/* t=2 */
|
| 606 |
|
|
if(sides[1][2] == GT_INVALID)
|
| 607 |
|
|
{
|
| 608 |
|
|
if(!NTH_BIT(nset,2))
|
| 609 |
gwlarson |
3.8 |
VCROSS(n[2],t2,t0);
|
| 610 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 611 |
|
|
d = DOT(n[2],p1);
|
| 612 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 613 |
gwlarson |
3.1 |
SET_NTH_BIT(test[1],2);
|
| 614 |
|
|
}
|
| 615 |
|
|
else
|
| 616 |
|
|
if(sides[1][2] != GT_INTERIOR)
|
| 617 |
|
|
SET_NTH_BIT(test[1],2);
|
| 618 |
|
|
|
| 619 |
|
|
/* p=2 */
|
| 620 |
|
|
test[2] = 0;
|
| 621 |
|
|
/* t = 0 */
|
| 622 |
|
|
if(sides[2][0] == GT_INVALID)
|
| 623 |
|
|
{
|
| 624 |
|
|
if(!NTH_BIT(nset,0))
|
| 625 |
gwlarson |
3.8 |
VCROSS(n[0],t0,t1);
|
| 626 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 627 |
|
|
d = DOT(n[0],p2);
|
| 628 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 629 |
gwlarson |
3.1 |
SET_NTH_BIT(test[2],0);
|
| 630 |
|
|
}
|
| 631 |
|
|
else
|
| 632 |
|
|
if(sides[2][0] != GT_INTERIOR)
|
| 633 |
|
|
SET_NTH_BIT(test[2],0);
|
| 634 |
|
|
/* t=1 */
|
| 635 |
|
|
if(sides[2][1] == GT_INVALID)
|
| 636 |
|
|
{
|
| 637 |
|
|
if(!NTH_BIT(nset,1))
|
| 638 |
gwlarson |
3.8 |
VCROSS(n[1],t1,t2);
|
| 639 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 640 |
|
|
d = DOT(n[1],p2);
|
| 641 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 642 |
gwlarson |
3.1 |
SET_NTH_BIT(test[2],1);
|
| 643 |
|
|
}
|
| 644 |
|
|
else
|
| 645 |
|
|
if(sides[2][1] != GT_INTERIOR)
|
| 646 |
|
|
SET_NTH_BIT(test[2],1);
|
| 647 |
|
|
/* t=2 */
|
| 648 |
|
|
if(sides[2][2] == GT_INVALID)
|
| 649 |
|
|
{
|
| 650 |
|
|
if(!NTH_BIT(nset,2))
|
| 651 |
gwlarson |
3.8 |
VCROSS(n[2],t2,t0);
|
| 652 |
gwlarson |
3.1 |
/* Test the point for sidedness */
|
| 653 |
|
|
d = DOT(n[2],p2);
|
| 654 |
gwlarson |
3.4 |
if(d >= 0.0)
|
| 655 |
gwlarson |
3.1 |
SET_NTH_BIT(test[2],2);
|
| 656 |
|
|
}
|
| 657 |
|
|
else
|
| 658 |
|
|
if(sides[2][2] != GT_INTERIOR)
|
| 659 |
|
|
SET_NTH_BIT(test[2],2);
|
| 660 |
|
|
}
|
| 661 |
|
|
|
| 662 |
|
|
|
| 663 |
|
|
int
|
| 664 |
gwlarson |
3.4 |
stri_intersect(a1,a2,a3,b1,b2,b3)
|
| 665 |
gwlarson |
3.1 |
FVECT a1,a2,a3,b1,b2,b3;
|
| 666 |
|
|
{
|
| 667 |
gwlarson |
3.4 |
int which,test,n_set[2];
|
| 668 |
|
|
int sides[2][3][3],i,j,inext,jnext;
|
| 669 |
|
|
int tests[2][3];
|
| 670 |
gwlarson |
3.9 |
FVECT n[2][3],p,avg[2],t1,t2,t3;
|
| 671 |
gwlarson |
3.1 |
|
| 672 |
gwlarson |
3.9 |
#ifdef DEBUG
|
| 673 |
|
|
tri_normal(b1,b2,b3,p,FALSE);
|
| 674 |
|
|
if(DOT(p,b1) > 0)
|
| 675 |
|
|
{
|
| 676 |
|
|
VCOPY(t3,b1);
|
| 677 |
|
|
VCOPY(t2,b2);
|
| 678 |
|
|
VCOPY(t1,b3);
|
| 679 |
|
|
}
|
| 680 |
|
|
else
|
| 681 |
|
|
#endif
|
| 682 |
|
|
{
|
| 683 |
|
|
VCOPY(t1,b1);
|
| 684 |
|
|
VCOPY(t2,b2);
|
| 685 |
|
|
VCOPY(t3,b3);
|
| 686 |
|
|
}
|
| 687 |
|
|
|
| 688 |
gwlarson |
3.1 |
/* Test the vertices of triangle a against the pyramid formed by triangle
|
| 689 |
|
|
b and the origin. If any vertex of a is interior to triangle b, or
|
| 690 |
|
|
if all 3 vertices of a are ON the edges of b,return TRUE. Remember
|
| 691 |
|
|
the results of the edge normal and sidedness tests for later.
|
| 692 |
|
|
*/
|
| 693 |
gwlarson |
3.9 |
if(vertices_in_stri(a1,a2,a3,t1,t2,t3,&(n_set[0]),n[0],avg[0],sides[1]))
|
| 694 |
gwlarson |
3.1 |
return(TRUE);
|
| 695 |
|
|
|
| 696 |
gwlarson |
3.9 |
if(vertices_in_stri(t1,t2,t3,a1,a2,a3,&(n_set[1]),n[1],avg[1],sides[0]))
|
| 697 |
gwlarson |
3.1 |
return(TRUE);
|
| 698 |
|
|
|
| 699 |
|
|
|
| 700 |
gwlarson |
3.9 |
set_sidedness_tests(t1,t2,t3,a1,a2,a3,tests[0],sides[0],n_set[1],n[1]);
|
| 701 |
gwlarson |
3.1 |
if(tests[0][0]&tests[0][1]&tests[0][2])
|
| 702 |
|
|
return(FALSE);
|
| 703 |
|
|
|
| 704 |
gwlarson |
3.9 |
set_sidedness_tests(a1,a2,a3,t1,t2,t3,tests[1],sides[1],n_set[0],n[0]);
|
| 705 |
gwlarson |
3.1 |
if(tests[1][0]&tests[1][1]&tests[1][2])
|
| 706 |
|
|
return(FALSE);
|
| 707 |
|
|
|
| 708 |
|
|
for(j=0; j < 3;j++)
|
| 709 |
|
|
{
|
| 710 |
|
|
jnext = (j+1)%3;
|
| 711 |
|
|
/* IF edge b doesnt cross any great circles of a, punt */
|
| 712 |
|
|
if(tests[1][j] & tests[1][jnext])
|
| 713 |
|
|
continue;
|
| 714 |
|
|
for(i=0;i<3;i++)
|
| 715 |
|
|
{
|
| 716 |
|
|
inext = (i+1)%3;
|
| 717 |
|
|
/* IF edge a doesnt cross any great circles of b, punt */
|
| 718 |
|
|
if(tests[0][i] & tests[0][inext])
|
| 719 |
|
|
continue;
|
| 720 |
|
|
/* Now find the great circles that cross and test */
|
| 721 |
|
|
if((NTH_BIT(tests[0][i],j)^(NTH_BIT(tests[0][inext],j)))
|
| 722 |
|
|
&& (NTH_BIT(tests[1][j],i)^NTH_BIT(tests[1][jnext],i)))
|
| 723 |
|
|
{
|
| 724 |
|
|
VCROSS(p,n[0][i],n[1][j]);
|
| 725 |
|
|
|
| 726 |
|
|
/* If zero cp= done */
|
| 727 |
|
|
if(ZERO_VEC3(p))
|
| 728 |
|
|
continue;
|
| 729 |
|
|
/* check above both planes */
|
| 730 |
|
|
if(DOT(avg[0],p) < 0 || DOT(avg[1],p) < 0)
|
| 731 |
|
|
{
|
| 732 |
|
|
NEGATE_VEC3(p);
|
| 733 |
|
|
if(DOT(avg[0],p) < 0 || DOT(avg[1],p) < 0)
|
| 734 |
|
|
continue;
|
| 735 |
|
|
}
|
| 736 |
|
|
return(TRUE);
|
| 737 |
|
|
}
|
| 738 |
|
|
}
|
| 739 |
|
|
}
|
| 740 |
|
|
return(FALSE);
|
| 741 |
|
|
}
|
| 742 |
|
|
|
| 743 |
|
|
int
|
| 744 |
gwlarson |
3.4 |
ray_intersect_tri(orig,dir,v0,v1,v2,pt)
|
| 745 |
gwlarson |
3.1 |
FVECT orig,dir;
|
| 746 |
|
|
FVECT v0,v1,v2;
|
| 747 |
|
|
FVECT pt;
|
| 748 |
|
|
{
|
| 749 |
gwlarson |
3.7 |
FVECT p0,p1,p2,p;
|
| 750 |
|
|
FPEQ peq;
|
| 751 |
gwlarson |
3.4 |
int type;
|
| 752 |
|
|
|
| 753 |
gwlarson |
3.5 |
VSUB(p0,v0,orig);
|
| 754 |
|
|
VSUB(p1,v1,orig);
|
| 755 |
|
|
VSUB(p2,v2,orig);
|
| 756 |
|
|
|
| 757 |
gwlarson |
3.4 |
if(point_in_stri(p0,p1,p2,dir))
|
| 758 |
gwlarson |
3.1 |
{
|
| 759 |
|
|
/* Intersect the ray with the triangle plane */
|
| 760 |
gwlarson |
3.7 |
tri_plane_equation(v0,v1,v2,&peq,FALSE);
|
| 761 |
|
|
return(intersect_ray_plane(orig,dir,peq,NULL,pt));
|
| 762 |
gwlarson |
3.1 |
}
|
| 763 |
gwlarson |
3.4 |
return(FALSE);
|
| 764 |
gwlarson |
3.1 |
}
|
| 765 |
|
|
|
| 766 |
|
|
|
| 767 |
|
|
calculate_view_frustum(vp,hv,vv,horiz,vert,near,far,fnear,ffar)
|
| 768 |
|
|
FVECT vp,hv,vv;
|
| 769 |
|
|
double horiz,vert,near,far;
|
| 770 |
|
|
FVECT fnear[4],ffar[4];
|
| 771 |
|
|
{
|
| 772 |
|
|
double height,width;
|
| 773 |
|
|
FVECT t,nhv,nvv,ndv;
|
| 774 |
|
|
double w2,h2;
|
| 775 |
|
|
/* Calculate the x and y dimensions of the near face */
|
| 776 |
|
|
/* hv and vv are the horizontal and vertical vectors in the
|
| 777 |
|
|
view frame-the magnitude is the dimension of the front frustum
|
| 778 |
|
|
face at z =1
|
| 779 |
|
|
*/
|
| 780 |
|
|
VCOPY(nhv,hv);
|
| 781 |
|
|
VCOPY(nvv,vv);
|
| 782 |
|
|
w2 = normalize(nhv);
|
| 783 |
|
|
h2 = normalize(nvv);
|
| 784 |
|
|
/* Use similar triangles to calculate the dimensions at z=near */
|
| 785 |
|
|
width = near*0.5*w2;
|
| 786 |
|
|
height = near*0.5*h2;
|
| 787 |
|
|
|
| 788 |
|
|
VCROSS(ndv,nvv,nhv);
|
| 789 |
|
|
/* Calculate the world space points corresponding to the 4 corners
|
| 790 |
|
|
of the front face of the view frustum
|
| 791 |
|
|
*/
|
| 792 |
|
|
fnear[0][0] = width*nhv[0] + height*nvv[0] + near*ndv[0] + vp[0] ;
|
| 793 |
|
|
fnear[0][1] = width*nhv[1] + height*nvv[1] + near*ndv[1] + vp[1];
|
| 794 |
|
|
fnear[0][2] = width*nhv[2] + height*nvv[2] + near*ndv[2] + vp[2];
|
| 795 |
|
|
fnear[1][0] = -width*nhv[0] + height*nvv[0] + near*ndv[0] + vp[0];
|
| 796 |
|
|
fnear[1][1] = -width*nhv[1] + height*nvv[1] + near*ndv[1] + vp[1];
|
| 797 |
|
|
fnear[1][2] = -width*nhv[2] + height*nvv[2] + near*ndv[2] + vp[2];
|
| 798 |
|
|
fnear[2][0] = -width*nhv[0] - height*nvv[0] + near*ndv[0] + vp[0];
|
| 799 |
|
|
fnear[2][1] = -width*nhv[1] - height*nvv[1] + near*ndv[1] + vp[1];
|
| 800 |
|
|
fnear[2][2] = -width*nhv[2] - height*nvv[2] + near*ndv[2] + vp[2];
|
| 801 |
|
|
fnear[3][0] = width*nhv[0] - height*nvv[0] + near*ndv[0] + vp[0];
|
| 802 |
|
|
fnear[3][1] = width*nhv[1] - height*nvv[1] + near*ndv[1] + vp[1];
|
| 803 |
|
|
fnear[3][2] = width*nhv[2] - height*nvv[2] + near*ndv[2] + vp[2];
|
| 804 |
|
|
|
| 805 |
|
|
/* Now do the far face */
|
| 806 |
|
|
width = far*0.5*w2;
|
| 807 |
|
|
height = far*0.5*h2;
|
| 808 |
|
|
ffar[0][0] = width*nhv[0] + height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 809 |
|
|
ffar[0][1] = width*nhv[1] + height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 810 |
|
|
ffar[0][2] = width*nhv[2] + height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 811 |
|
|
ffar[1][0] = -width*nhv[0] + height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 812 |
|
|
ffar[1][1] = -width*nhv[1] + height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 813 |
|
|
ffar[1][2] = -width*nhv[2] + height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 814 |
|
|
ffar[2][0] = -width*nhv[0] - height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 815 |
|
|
ffar[2][1] = -width*nhv[1] - height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 816 |
|
|
ffar[2][2] = -width*nhv[2] - height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 817 |
|
|
ffar[3][0] = width*nhv[0] - height*nvv[0] + far*ndv[0] + vp[0] ;
|
| 818 |
|
|
ffar[3][1] = width*nhv[1] - height*nvv[1] + far*ndv[1] + vp[1] ;
|
| 819 |
|
|
ffar[3][2] = width*nhv[2] - height*nvv[2] + far*ndv[2] + vp[2] ;
|
| 820 |
|
|
}
|
| 821 |
|
|
|
| 822 |
gwlarson |
3.6 |
int
|
| 823 |
|
|
max_index(v,r)
|
| 824 |
|
|
FVECT v;
|
| 825 |
|
|
double *r;
|
| 826 |
|
|
{
|
| 827 |
|
|
double p[3];
|
| 828 |
|
|
int i;
|
| 829 |
gwlarson |
3.1 |
|
| 830 |
gwlarson |
3.6 |
p[0] = fabs(v[0]);
|
| 831 |
|
|
p[1] = fabs(v[1]);
|
| 832 |
|
|
p[2] = fabs(v[2]);
|
| 833 |
|
|
i = (p[0]>=p[1])?((p[0]>=p[2])?0:2):((p[1]>=p[2])?1:2);
|
| 834 |
|
|
if(r)
|
| 835 |
|
|
*r = p[i];
|
| 836 |
|
|
return(i);
|
| 837 |
|
|
}
|
| 838 |
gwlarson |
3.1 |
|
| 839 |
gwlarson |
3.6 |
int
|
| 840 |
|
|
closest_point_in_tri(p0,p1,p2,p,p0id,p1id,p2id)
|
| 841 |
|
|
FVECT p0,p1,p2,p;
|
| 842 |
|
|
int p0id,p1id,p2id;
|
| 843 |
|
|
{
|
| 844 |
|
|
double d,d1;
|
| 845 |
|
|
int i;
|
| 846 |
|
|
|
| 847 |
|
|
d = DIST_SQ(p,p0);
|
| 848 |
|
|
d1 = DIST_SQ(p,p1);
|
| 849 |
|
|
if(d < d1)
|
| 850 |
|
|
{
|
| 851 |
|
|
d1 = DIST_SQ(p,p2);
|
| 852 |
|
|
i = (d1 < d)?p2id:p0id;
|
| 853 |
|
|
}
|
| 854 |
|
|
else
|
| 855 |
|
|
{
|
| 856 |
|
|
d = DIST_SQ(p,p2);
|
| 857 |
|
|
i = (d < d1)? p2id:p1id;
|
| 858 |
|
|
}
|
| 859 |
|
|
return(i);
|
| 860 |
|
|
}
|
| 861 |
gwlarson |
3.1 |
|
| 862 |
gwlarson |
3.6 |
|
| 863 |
gwlarson |
3.1 |
int
|
| 864 |
gwlarson |
3.4 |
sedge_intersect(a0,a1,b0,b1)
|
| 865 |
gwlarson |
3.1 |
FVECT a0,a1,b0,b1;
|
| 866 |
|
|
{
|
| 867 |
|
|
FVECT na,nb,avga,avgb,p;
|
| 868 |
|
|
double d;
|
| 869 |
|
|
int sb0,sb1,sa0,sa1;
|
| 870 |
|
|
|
| 871 |
|
|
/* First test if edge b straddles great circle of a */
|
| 872 |
|
|
VCROSS(na,a0,a1);
|
| 873 |
|
|
d = DOT(na,b0);
|
| 874 |
|
|
sb0 = ZERO(d)?0:(d<0)? -1: 1;
|
| 875 |
|
|
d = DOT(na,b1);
|
| 876 |
|
|
sb1 = ZERO(d)?0:(d<0)? -1: 1;
|
| 877 |
|
|
/* edge b entirely on one side of great circle a: edges cannot intersect*/
|
| 878 |
|
|
if(sb0*sb1 > 0)
|
| 879 |
|
|
return(FALSE);
|
| 880 |
|
|
/* test if edge a straddles great circle of b */
|
| 881 |
|
|
VCROSS(nb,b0,b1);
|
| 882 |
|
|
d = DOT(nb,a0);
|
| 883 |
|
|
sa0 = ZERO(d)?0:(d<0)? -1: 1;
|
| 884 |
|
|
d = DOT(nb,a1);
|
| 885 |
|
|
sa1 = ZERO(d)?0:(d<0)? -1: 1;
|
| 886 |
|
|
/* edge a entirely on one side of great circle b: edges cannot intersect*/
|
| 887 |
|
|
if(sa0*sa1 > 0)
|
| 888 |
|
|
return(FALSE);
|
| 889 |
|
|
|
| 890 |
|
|
/* Find one of intersection points of the great circles */
|
| 891 |
|
|
VCROSS(p,na,nb);
|
| 892 |
|
|
/* If they lie on same great circle: call an intersection */
|
| 893 |
|
|
if(ZERO_VEC3(p))
|
| 894 |
|
|
return(TRUE);
|
| 895 |
|
|
|
| 896 |
|
|
VADD(avga,a0,a1);
|
| 897 |
|
|
VADD(avgb,b0,b1);
|
| 898 |
|
|
if(DOT(avga,p) < 0 || DOT(avgb,p) < 0)
|
| 899 |
|
|
{
|
| 900 |
|
|
NEGATE_VEC3(p);
|
| 901 |
|
|
if(DOT(avga,p) < 0 || DOT(avgb,p) < 0)
|
| 902 |
|
|
return(FALSE);
|
| 903 |
|
|
}
|
| 904 |
|
|
if((!sb0 || !sb1) && (!sa0 || !sa1))
|
| 905 |
|
|
return(FALSE);
|
| 906 |
|
|
return(TRUE);
|
| 907 |
|
|
}
|
| 908 |
gwlarson |
3.2 |
|
| 909 |
|
|
|
| 910 |
|
|
/* Find the normalized barycentric coordinates of p relative to
|
| 911 |
|
|
* triangle v0,v1,v2. Return result in coord
|
| 912 |
|
|
*/
|
| 913 |
|
|
bary2d(x1,y1,x2,y2,x3,y3,px,py,coord)
|
| 914 |
|
|
double x1,y1,x2,y2,x3,y3;
|
| 915 |
|
|
double px,py;
|
| 916 |
|
|
double coord[3];
|
| 917 |
|
|
{
|
| 918 |
|
|
double a;
|
| 919 |
|
|
|
| 920 |
|
|
a = (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
|
| 921 |
|
|
coord[0] = ((x2 - px) * (y3 - py) - (x3 - px) * (y2 - py)) / a;
|
| 922 |
|
|
coord[1] = ((x3 - px) * (y1 - py) - (x1 - px) * (y3 - py)) / a;
|
| 923 |
gwlarson |
3.6 |
coord[2] = ((x1 - px) * (y2 - py) - (x2 - px) * (y1 - py)) / a;
|
| 924 |
gwlarson |
3.2 |
|
| 925 |
|
|
}
|
| 926 |
|
|
|
| 927 |
gwlarson |
3.4 |
|
| 928 |
|
|
|
| 929 |
gwlarson |
3.2 |
|
| 930 |
gwlarson |
3.4 |
bary_parent(coord,i)
|
| 931 |
gwlarson |
3.6 |
BCOORD coord[3];
|
| 932 |
|
|
int i;
|
| 933 |
gwlarson |
3.2 |
{
|
| 934 |
gwlarson |
3.6 |
switch(i) {
|
| 935 |
|
|
case 0:
|
| 936 |
|
|
/* update bary for child */
|
| 937 |
gwlarson |
3.9 |
coord[0] = (coord[0] >> 1) + MAXBCOORD4;
|
| 938 |
gwlarson |
3.6 |
coord[1] >>= 1;
|
| 939 |
|
|
coord[2] >>= 1;
|
| 940 |
|
|
break;
|
| 941 |
|
|
case 1:
|
| 942 |
|
|
coord[0] >>= 1;
|
| 943 |
gwlarson |
3.9 |
coord[1] = (coord[1] >> 1) + MAXBCOORD4;
|
| 944 |
gwlarson |
3.6 |
coord[2] >>= 1;
|
| 945 |
|
|
break;
|
| 946 |
|
|
|
| 947 |
|
|
case 2:
|
| 948 |
|
|
coord[0] >>= 1;
|
| 949 |
|
|
coord[1] >>= 1;
|
| 950 |
gwlarson |
3.9 |
coord[2] = (coord[2] >> 1) + MAXBCOORD4;
|
| 951 |
gwlarson |
3.6 |
break;
|
| 952 |
|
|
|
| 953 |
|
|
case 3:
|
| 954 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD4 - (coord[0] >> 1);
|
| 955 |
|
|
coord[1] = MAXBCOORD4 - (coord[1] >> 1);
|
| 956 |
|
|
coord[2] = MAXBCOORD4 - (coord[2] >> 1);
|
| 957 |
gwlarson |
3.6 |
break;
|
| 958 |
|
|
#ifdef DEBUG
|
| 959 |
|
|
default:
|
| 960 |
gwlarson |
3.9 |
eputs("bary_parent():Invalid child\n");
|
| 961 |
gwlarson |
3.6 |
break;
|
| 962 |
|
|
#endif
|
| 963 |
|
|
}
|
| 964 |
gwlarson |
3.2 |
}
|
| 965 |
|
|
|
| 966 |
gwlarson |
3.9 |
bary_from_child(coord,child,next)
|
| 967 |
gwlarson |
3.6 |
BCOORD coord[3];
|
| 968 |
|
|
int child,next;
|
| 969 |
|
|
{
|
| 970 |
|
|
#ifdef DEBUG
|
| 971 |
|
|
if(child <0 || child > 3)
|
| 972 |
|
|
{
|
| 973 |
gwlarson |
3.9 |
eputs("bary_from_child():Invalid child\n");
|
| 974 |
gwlarson |
3.6 |
return;
|
| 975 |
|
|
}
|
| 976 |
|
|
if(next <0 || next > 3)
|
| 977 |
|
|
{
|
| 978 |
gwlarson |
3.9 |
eputs("bary_from_child():Invalid next\n");
|
| 979 |
gwlarson |
3.6 |
return;
|
| 980 |
|
|
}
|
| 981 |
|
|
#endif
|
| 982 |
|
|
if(next == child)
|
| 983 |
|
|
return;
|
| 984 |
|
|
|
| 985 |
|
|
switch(child){
|
| 986 |
|
|
case 0:
|
| 987 |
|
|
coord[0] = 0;
|
| 988 |
gwlarson |
3.9 |
coord[1] = MAXBCOORD2 - coord[1];
|
| 989 |
|
|
coord[2] = MAXBCOORD2 - coord[2];
|
| 990 |
gwlarson |
3.6 |
break;
|
| 991 |
|
|
case 1:
|
| 992 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD2 - coord[0];
|
| 993 |
gwlarson |
3.6 |
coord[1] = 0;
|
| 994 |
gwlarson |
3.9 |
coord[2] = MAXBCOORD2 - coord[2];
|
| 995 |
gwlarson |
3.6 |
break;
|
| 996 |
|
|
case 2:
|
| 997 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD2 - coord[0];
|
| 998 |
|
|
coord[1] = MAXBCOORD2 - coord[1];
|
| 999 |
gwlarson |
3.6 |
coord[2] = 0;
|
| 1000 |
|
|
break;
|
| 1001 |
|
|
case 3:
|
| 1002 |
|
|
switch(next){
|
| 1003 |
|
|
case 0:
|
| 1004 |
|
|
coord[0] = 0;
|
| 1005 |
gwlarson |
3.9 |
coord[1] = MAXBCOORD2 - coord[1];
|
| 1006 |
|
|
coord[2] = MAXBCOORD2 - coord[2];
|
| 1007 |
gwlarson |
3.6 |
break;
|
| 1008 |
|
|
case 1:
|
| 1009 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD2 - coord[0];
|
| 1010 |
gwlarson |
3.6 |
coord[1] = 0;
|
| 1011 |
gwlarson |
3.9 |
coord[2] = MAXBCOORD2 - coord[2];
|
| 1012 |
gwlarson |
3.6 |
break;
|
| 1013 |
|
|
case 2:
|
| 1014 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD2 - coord[0];
|
| 1015 |
|
|
coord[1] = MAXBCOORD2 - coord[1];
|
| 1016 |
gwlarson |
3.6 |
coord[2] = 0;
|
| 1017 |
|
|
break;
|
| 1018 |
|
|
}
|
| 1019 |
|
|
break;
|
| 1020 |
|
|
}
|
| 1021 |
|
|
}
|
| 1022 |
|
|
|
| 1023 |
gwlarson |
3.4 |
int
|
| 1024 |
gwlarson |
3.9 |
bary_child(coord)
|
| 1025 |
gwlarson |
3.6 |
BCOORD coord[3];
|
| 1026 |
gwlarson |
3.4 |
{
|
| 1027 |
gwlarson |
3.6 |
int i;
|
| 1028 |
|
|
|
| 1029 |
gwlarson |
3.9 |
if(coord[0] > MAXBCOORD4)
|
| 1030 |
gwlarson |
3.6 |
{
|
| 1031 |
|
|
/* update bary for child */
|
| 1032 |
gwlarson |
3.9 |
coord[0] = (coord[0]<< 1) - MAXBCOORD2;
|
| 1033 |
gwlarson |
3.6 |
coord[1] <<= 1;
|
| 1034 |
|
|
coord[2] <<= 1;
|
| 1035 |
|
|
return(0);
|
| 1036 |
|
|
}
|
| 1037 |
|
|
else
|
| 1038 |
gwlarson |
3.9 |
if(coord[1] > MAXBCOORD4)
|
| 1039 |
gwlarson |
3.4 |
{
|
| 1040 |
gwlarson |
3.6 |
coord[0] <<= 1;
|
| 1041 |
gwlarson |
3.9 |
coord[1] = (coord[1] << 1) - MAXBCOORD2;
|
| 1042 |
gwlarson |
3.6 |
coord[2] <<= 1;
|
| 1043 |
|
|
return(1);
|
| 1044 |
gwlarson |
3.4 |
}
|
| 1045 |
|
|
else
|
| 1046 |
gwlarson |
3.9 |
if(coord[2] > MAXBCOORD4)
|
| 1047 |
gwlarson |
3.6 |
{
|
| 1048 |
|
|
coord[0] <<= 1;
|
| 1049 |
|
|
coord[1] <<= 1;
|
| 1050 |
gwlarson |
3.9 |
coord[2] = (coord[2] << 1) - MAXBCOORD2;
|
| 1051 |
gwlarson |
3.6 |
return(2);
|
| 1052 |
|
|
}
|
| 1053 |
|
|
else
|
| 1054 |
|
|
{
|
| 1055 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD2 - (coord[0] << 1);
|
| 1056 |
|
|
coord[1] = MAXBCOORD2 - (coord[1] << 1);
|
| 1057 |
|
|
coord[2] = MAXBCOORD2 - (coord[2] << 1);
|
| 1058 |
gwlarson |
3.6 |
return(3);
|
| 1059 |
|
|
}
|
| 1060 |
|
|
}
|
| 1061 |
|
|
|
| 1062 |
gwlarson |
3.7 |
int
|
| 1063 |
gwlarson |
3.9 |
bary_nth_child(coord,i)
|
| 1064 |
gwlarson |
3.7 |
BCOORD coord[3];
|
| 1065 |
|
|
int i;
|
| 1066 |
|
|
{
|
| 1067 |
|
|
|
| 1068 |
|
|
switch(i){
|
| 1069 |
|
|
case 0:
|
| 1070 |
|
|
/* update bary for child */
|
| 1071 |
gwlarson |
3.9 |
coord[0] = (coord[0]<< 1) - MAXBCOORD2;
|
| 1072 |
gwlarson |
3.7 |
coord[1] <<= 1;
|
| 1073 |
|
|
coord[2] <<= 1;
|
| 1074 |
|
|
break;
|
| 1075 |
|
|
case 1:
|
| 1076 |
|
|
coord[0] <<= 1;
|
| 1077 |
gwlarson |
3.9 |
coord[1] = (coord[1] << 1) - MAXBCOORD2;
|
| 1078 |
gwlarson |
3.7 |
coord[2] <<= 1;
|
| 1079 |
|
|
break;
|
| 1080 |
|
|
case 2:
|
| 1081 |
|
|
coord[0] <<= 1;
|
| 1082 |
|
|
coord[1] <<= 1;
|
| 1083 |
gwlarson |
3.9 |
coord[2] = (coord[2] << 1) - MAXBCOORD2;
|
| 1084 |
gwlarson |
3.7 |
break;
|
| 1085 |
|
|
case 3:
|
| 1086 |
gwlarson |
3.9 |
coord[0] = MAXBCOORD2 - (coord[0] << 1);
|
| 1087 |
|
|
coord[1] = MAXBCOORD2 - (coord[1] << 1);
|
| 1088 |
|
|
coord[2] = MAXBCOORD2 - (coord[2] << 1);
|
| 1089 |
gwlarson |
3.7 |
break;
|
| 1090 |
|
|
}
|
| 1091 |
|
|
}
|
| 1092 |
gwlarson |
3.2 |
|
| 1093 |
|
|
|
| 1094 |
gwlarson |
3.1 |
|