/* Copyright (c) 1998 Silicon Graphics, Inc. */ /* SCCSid "$SunId$ SGI" */ /* * sm.h */ #ifndef _SM_H_ #define _SM_H_ #include "rhd_sample.h" #define NEWSETS #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif #define ON_V 1 #define ON_P 2 #define ON_E 3 #define IN_T 4 #define S_REPLACE_EPS 0.04 /* if (distance on sphere between sample and a base point) < S_REPLACE_EPS, replace base: */ #define S_REPLACE_SCALE (5.*5.) /* if (distance to new point squared) is > (triangle edge length squared* S_REPLACE_SCALE):for all edges/triangle vertices: new point is puncture point: dont add */ #define S_REPLACE_TRI 2e-8 /* .052 radians to the sixth power */ #define SQRT3_2 0.8660254 #define SM_DEFAULT 0 #define SM_EXTRA_POINTS 162 #define SM_BASE_TRIS 320 #define SM_EXTRA_VERTS SM_EXTRA_POINTS #define SM_INC_PERCENT 0.60 /* If number of new triangles added since last full redraw is > (SM_INC_PERCENT * total triangles) do full redraw instead of incremental */ #define SM_VIEW_FRAC 0.1 typedef int VERT; /* One triangle that vertex belongs to- the rest are derived by traversing neighbors */ typedef struct _EDGE { int verts[2]; int tris[2]; } EDGE; #define E_NTH_VERT(e,i) ((e>0)?Edges[(e)].verts[(i)]:Edges[-(e)].verts[(1-i)]) #define SET_E_NTH_VERT(e,i,v) if(e>0) Edges[(e)].verts[(i)]=(v); \ else Edges[-(e)].verts[(1-i)]=(v) #define E_NTH_TRI(e,i) ((e>0)?Edges[(e)].tris[(i)]:Edges[-(e)].tris[(1-i)]) #define SET_E_NTH_TRI(e,i,v) if(e>0) Edges[(e)].tris[(i)]=(v); \ else Edges[-(e)].tris[(1-i)]=(v) #define eClear_edges() (Ecnt = 0) #define FOR_ALL_EDGES(i) for((i)=1; (i) <= Ecnt; i++) #define FOR_ALL_EDGES_FROM(e,i) for((i)=++e; (i) <= Ecnt; i++) typedef struct _TRI { int verts[3]; /* Ids into sample and vertex array for each vertex*/ int nbrs[3]; /* Ids for neighboring triangles: -1 if invalid */ }TRI; #define T_NTH_NBR(t,i) ((t)->nbrs[(i)]) #define T_CLEAR_NBRS(t) (T_NTH_NBR(t,0)=T_NTH_NBR(t,1)=T_NTH_NBR(t,2)=-1) #define T_NTH_NBR_PTR(t,n) \ (T_NTH_NBR(n,0)==(t)?0:T_NTH_NBR(n,1)==(t)?1:T_NTH_NBR(n,2)==(t)?2:-1) #define T_NTH_V(t,i) ((t)->verts[(i)]) #define T_WHICH_V(t,i) \ (T_NTH_V(t,0)==(i)?0:T_NTH_V(t,1)==(i)?1:T_NTH_V(t,2)==(i)?2:-1) #define T_NEXT_FREE(t) ((t)->nbrs[0]) #define T_NEXT_AVAILABLE(t) ((t)->nbrs[0]) #define T_VALID_FLAG(t) ((t)->nbrs[1]) #define T_IS_VALID(t) (T_VALID_FLAG(t)!=-1) #define T_FLAGS 3 typedef struct _SM { FVECT view_center; /* Canonical view center defining unit sphere */ SAMP *samples; /* Sample point information */ STREE locator; /* spherical quadtree for point/triangle location */ int max_tris; /* Maximum number of triangles */ int num_tri; /* Current number of triangles */ int sample_tris; /* Current number of non-base triangles*/ int free_tris; /* pointer to free_list */ int available_tris; /* pointer to available_list */ int max_verts; /* Maximum number of vertices in the mesh */ TRI *tris; /* Pointer to list of triangle structs */ VERT *verts; /* List of vertices */ int4 *flags[T_FLAGS]; /* Bit 0 set if active(in current frustum) */ /* Bit 1 set if not rendered since created */ /* Bit 2 set if base triangle */ }SM; #define T_ACTIVE_FLAG 0 #define T_NEW_FLAG 1 #define T_BASE_FLAG 2 #define SM_VIEW_CENTER(m) ((m)->view_center) #define SM_SAMP(m) ((m)->samples) #define SM_LOCATOR(m) (&((m)->locator)) #define SM_MAX_TRIS(m) ((m)->max_tris) #define SM_NUM_TRI(m) ((m)->num_tri) #define SM_SAMPLE_TRIS(m) ((m)->sample_tris) #define SM_FREE_TRIS(m) ((m)->free_tris) #define SM_AVAILABLE_TRIS(m) ((m)->available_tris) #define SM_MAX_VERTS(m) ((m)->max_verts) #define SM_TRIS(m) ((m)->tris) #define SM_VERTS(m) ((m)->verts) #define SM_NTH_FLAGS(m,n) ((m)->flags[(n)]) #define SM_FLAGS(m) ((m)->flags) #define SM_IS_NTH_T_FLAG(sm,n,f) IS_FLAG(SM_NTH_FLAGS(sm,f),n) #define SM_SET_NTH_T_FLAG(sm,n,f) SET_FLAG(SM_NTH_FLAGS(sm,f),n) #define SM_CLR_NTH_T_FLAG(sm,n,f) CLR_FLAG(SM_NTH_FLAGS(sm,f),n) #define SM_IS_NTH_T_ACTIVE(sm,n) SM_IS_NTH_T_FLAG(sm,n,T_ACTIVE_FLAG) #define SM_IS_NTH_T_BASE(sm,n) SM_IS_NTH_T_FLAG(sm,n,T_BASE_FLAG) #define SM_IS_NTH_T_NEW(sm,n) SM_IS_NTH_T_FLAG(sm,n,T_NEW_FLAG) #define SM_SET_NTH_T_ACTIVE(sm,n) SM_SET_NTH_T_FLAG(sm,n,T_ACTIVE_FLAG) #define SM_SET_NTH_T_BASE(sm,n) SM_SET_NTH_T_FLAG(sm,n,T_BASE_FLAG) #define SM_SET_NTH_T_NEW(sm,n) SM_SET_NTH_T_FLAG(sm,n,T_NEW_FLAG) #define SM_CLR_NTH_T_ACTIVE(sm,n) SM_CLR_NTH_T_FLAG(sm,n,T_ACTIVE_FLAG) #define SM_CLR_NTH_T_BASE(sm,n) SM_CLR_NTH_T_FLAG(sm,n,T_BASE_FLAG) #define SM_CLR_NTH_T_NEW(sm,n) SM_CLR_NTH_T_FLAG(sm,n,T_NEW_FLAG) #define SM_NTH_TRI(m,n) (&(SM_TRIS(m)[(n)])) #define SM_NTH_VERT(m,n) (SM_VERTS(m)[(n)]) #define SM_T_ID_VALID(s,t_id) T_IS_VALID(SM_NTH_TRI(s,t_id)) #define SM_MAX_SAMP(m) S_MAX_SAMP(SM_SAMP(m)) #define SM_MAX_POINTS(m) S_MAX_POINTS(SM_SAMP(m)) #define SM_SAMP_BASE(m) S_BASE(SM_SAMP(m)) #define SM_NTH_WV(m,i) S_NTH_W_PT(SM_SAMP(m),i) #define SM_NTH_W_DIR(m,i) S_NTH_W_DIR(SM_SAMP(m),i) #define SM_DIR_ID(m,i) (SM_NTH_W_DIR(m,i)==-1) #define SM_NTH_RGB(m,i) S_NTH_RGB(SM_SAMP(m),i) #define SM_RGB(m) S_RGB(SM_SAMP(m)) #define SM_BRT(m) S_BRT(SM_SAMP(m)) #define SM_NTH_BRT(m,i) S_NTH_BRT(SM_SAMP(m),i) #define SM_CHR(m) S_CHR(SM_SAMP(m)) #define SM_NTH_CHR(m,i) S_NTH_CHR(SM_SAMP(m),i) #define SM_NUM_SAMP(m) S_NUM_SAMP(SM_SAMP(m)) #define SM_TONE_MAP(m) S_TONE_MAP(SM_SAMP(m)) #define SM_ALLOWED_VIEW_CHANGE(m) (SM_NUM_SAMP(m)/smDist_sum*SM_VIEW_FRAC) #define SM_FOR_ALL_FLAGGED_TRIS(m,i,w,b) for(i=smNext_tri_flag_set(m,0,w,b); \ i < SM_NUM_TRI(m); i=smNext_tri_flag_set(m,i+1,w,b)) #define SM_FOR_ALL_ACTIVE_TRIS(m,i) SM_FOR_ALL_FLAGGED_TRIS(m,i,T_ACTIVE_FLAG,0) #define SM_FOR_ALL_NEW_TRIS(m,i) SM_FOR_ALL_FLAGGED_TRIS(m,i,T_NEW_FLAG,0) #define SM_FOR_ALL_BASE_TRIS(m,i) SM_FOR_ALL_FLAGGED_TRIS(m,i,T_BASE_FLAG,0) #define SM_FOR_ALL_VALID_TRIS(m,i) for(i=smNext_valid_tri(m,0); \ i < SM_NUM_TRI(m); i=smNext_valid_tri(m,i+1)) #define SM_FOR_ALL_ACTIVE_FG_TRIS(m,i) SM_FOR_ALL_FLAGGED_TRIS(m,i,T_ACTIVE_FLAG,1) #define SM_FOR_ALL_ACTIVE_BG_TRIS(m,i) SM_FOR_ALL_FLAGGED_TRIS(m,i,T_ACTIVE_FLAG,2) #define SM_FOR_ALL_ADJACENT_TRIS(sm,id,t) for(t=smTri_next_ccw_nbr(sm,t,id); \ t!=SM_NTH_TRI(sm,SM_NTH_VERT(sm,id)); t=smTri_next_ccw_nbr(sm,t,id)) #define SM_INVALID_SAMP_ID(sm,id) (((id) < 0) || ((id) >= SM_MAX_SAMP(sm))) #define SM_INVALID_POINT_ID(sm,id) (((id) < 0) || ((id) >= SM_MAX_POINTS(sm))) #define SM_T_NTH_WV(sm,t,i) (SM_NTH_WV(sm,T_NTH_V(t,i))) #define SM_BASE_ID(s,i) \ ((i) >= S_MAX_SAMP(SM_SAMP(s)) && (i) < S_MAX_BASE_PT(SM_SAMP(s))) #define SM_BG_SAMPLE(sm,i) (SM_NTH_W_DIR(sm,i)==-1) #define SM_BG_TRI(sm,i) (SM_BG_SAMPLE(sm,T_NTH_V(SM_NTH_TRI(sm,i),0)) && \ SM_BG_SAMPLE(sm,T_NTH_V(SM_NTH_TRI(sm,i),1)) && \ SM_BG_SAMPLE(sm,T_NTH_V(SM_NTH_TRI(sm,i),2))) #define SM_MIXED_TRI(sm,i) (SM_BG_SAMPLE(sm,T_NTH_V(SM_NTH_TRI(sm,i),0)) || \ SM_BG_SAMPLE(sm,T_NTH_V(SM_NTH_TRI(sm,i),1)) || \ SM_BG_SAMPLE(sm,T_NTH_V(SM_NTH_TRI(sm,i),2))) #define SM_FOR_ALL_SAMPLES(sm,i) for((i)=0;i < SM_NUM_SAMP(sm);(i)++) #define smInit_locator(sm,c) (stInit(SM_LOCATOR(sm)), \ ST_SET_CENTER(SM_LOCATOR(sm),c)) #define smClear_locator(sm) stClear(SM_LOCATOR(sm)) #define smAlloc_locator(sm) stAlloc(SM_LOCATOR(sm)) #define smFree_locator(sm) stClear(SM_LOCATOR(sm)) #define smPointLocateCell(sm,pt) stPoint_locate(SM_LOCATOR(sm),pt) #define smUnalloc_samp(sm,id) sUnalloc_samp(SM_SAMP(sm),id) #define smFree_samples(sm) sFree(SM_SAMP(sm)) #define smClear_samples(sm) sClear(SM_SAMP(sm)) #define smInit_samples(sm) sInit(SM_SAMP(sm)) #define smClear_vert(sm,id) (SM_NTH_VERT(sm,id) = INVALID) #define SQRT3_INV 0.5773502692 typedef struct _T_DEPTH { int tri; double depth; }T_DEPTH; typedef struct _RT_ARGS_{ FVECT orig,dir; int t_id; OBJECT *os; }RT_ARGS; typedef struct _ADD_ARGS { int t_id; OBJECT *del_set; }ADD_ARGS; extern SM *smMesh; extern int smNew_tri_cnt; extern double smDist_sum; #ifdef TEST_DRIVER extern VIEW View; extern VIEW Current_View; extern int Pick_tri,Picking,Pick_samp; extern FVECT Pick_point[500],Pick_origin,Pick_dir; extern FVECT Pick_v0[500],Pick_v1[500],Pick_v2[500]; extern int Pick_q[500]; extern FVECT P0,P1,P2; extern int Pick_cnt; extern FVECT FrustumNear[4],FrustumFar[4]; #endif /* * int * smInit(n) : Initialize/clear data structures for n entries * int n; * * Initialize sampL and other data structures for at least n samples. * If n is 0, then free data structures. Return number actually allocated. * * * int * smNewSamp(c, p, v) : register new sample point and return index * COLR c; : pixel color (RGBE) * FVECT p; : world intersection point * FVECT v; : ray direction vector * * Add new sample point to data structures, removing old values as necessary. * New sample representation will be output in next call to smUpdate(). * * * int * smFindSamp(orig, dir): intersect ray with 3D rep. and find closest sample * FVECT orig, dir; * * Find the closest sample to the given ray. Return -1 on failure. * * * smClean() : display has been wiped clean * * Called after display has been effectively cleared, meaning that all * geometry must be resent down the pipeline in the next call to smUpdate(). * * * smUpdate(vp, qua) : update OpenGL output geometry for view vp * VIEW *vp; : desired view * int qua; : quality level (percentage on linear time scale) * * Draw new geometric representation using OpenGL calls. Assume that the * view has already been set up and the correct frame buffer has been * selected for drawing. The quality level is on a linear scale, where 100% * is full (final) quality. It is not necessary to redraw geometry that has * been output since the last call to smClean(). (The last view drawn will * be vp==&odev.v each time.) */ #endif