--- ray/src/hd/rhpict2.c 1999/03/04 10:30:04 3.1 +++ ray/src/hd/rhpict2.c 1999/03/05 17:03:38 3.2 @@ -11,13 +11,43 @@ static char SCCSid[] = "$SunId$ SGI"; #include "holo.h" #include "view.h" +#ifndef DEPS +#define DEPS 0.01 /* depth epsilon */ +#endif +#ifndef MAXRAD +#define MAXRAD 64 /* maximum kernel radius */ +#endif +#ifndef NNEIGH +#define NNEIGH 7 /* find this many neighbors */ +#endif + +#define NINF 16382 + +#define MAXRAD2 (MAXRAD*MAXRAD+1) + +#define G0NORM 0.286 /* ground zero normalization (1/x integral) */ + +#ifndef FL4OP +#define FL4OP(f,i,op) ((f)[(i)>>5] op (1L<<((i)&0x1f))) +#define CHK4(f,i) FL4OP(f,i,&) +#define SET4(f,i) FL4OP(f,i,|=) +#define CLR4(f,i) FL4OP(f,i,&=~) +#define TGL4(f,i) FL4OP(f,i,^=) +#define FL4NELS(n) (((n)+0x1f)>>5) +#define CLR4ALL(f,n) bzero((char *)(f),FL4NELS(n)*sizeof(int4)) +#endif + +static int4 *pixFlags; /* pixel occupancy flags */ +static float pixWeight[MAXRAD2]; /* pixel weighting function */ + extern VIEW myview; /* current output view */ extern COLOR *mypixel; /* pixels being rendered */ extern float *myweight; /* weights (used to compute final pixels) */ +extern float *mydepth; /* depth values (visibility culling) */ extern int hres, vres; /* current horizontal and vertical res. */ -render_beam(bp, hb) /* render a particular beam */ +pixBeam(bp, hb) /* render a particular beam */ BEAM *bp; register HDBEAMI *hb; { @@ -26,7 +56,8 @@ register HDBEAMI *hb; FVECT rorg, rdir, wp, ip; double d, prox; COLOR col; - int n, p; + int n; + register int4 p; if (!hdbcoord(gc, hb->h, hb->b)) error(CONSISTENCY, "bad beam in render_beam"); @@ -38,12 +69,13 @@ register HDBEAMI *hb; VSUM(wp, rorg, rdir, d); VSUB(ip, wp, myview.vp); d = DOT(ip,rdir); - prox = 1. - d*d/DOT(ip,ip); /* sin(diff_angle)^2 */ + prox = d*d/DOT(ip,ip); /* cos(diff_angle)^32 */ + prox *= prox; prox *= prox; prox *= prox; prox *= prox; } else { if (myview.type == VT_PAR || myview.vaft > FTINY) continue; /* inf. off view */ VSUM(wp, myview.vp, rdir, FHUGE); - prox = 0.; + prox = 1.; } viewloc(ip, &myview, wp); /* frustum clipping */ if (ip[2] < 0.) @@ -53,11 +85,211 @@ register HDBEAMI *hb; if (ip[1] < 0. || ip[1] >= 1.) continue; if (myview.vaft > FTINY && ip[2] > myview.vaft - myview.vfore) - continue; - /* we're in! */ + continue; /* not exact for VT_PER */ p = (int)(ip[1]*vres)*hres + (int)(ip[0]*hres); + if (mydepth[p] > FTINY) { /* check depth */ + if (ip[2] > mydepth[p]*(1.+DEPS)) + continue; + if (ip[2] < mydepth[p]*(1.-DEPS)) { + setcolor(mypixel[p], 0., 0., 0.); + myweight[p] = 0.; + } + } colr_color(col, rv->v); + scalecolor(col, prox); addcolor(mypixel[p], col); - myweight[p] += 1.0; + myweight[p] += prox; + mydepth[p] = ip[2]; } +} + + +int +kill_occl(h, v, nl, n) /* check for occlusion errors */ +int h, v; +short nl[NNEIGH][2]; +int n; +{ + short forequad[2][2]; + int d; + register int4 i; + + if (n <= 0) + return(1); + forequad[0][0] = forequad[0][1] = forequad[1][0] = forequad[1][1] = 0; + for (i = n; i--; ) { + d = (h-nl[i][0])*(h-nl[i][0]) + (v-nl[i][1])*(v-nl[i][1]); + if (mydepth[nl[i][1]*hres+nl[i][0]] < + mydepth[v*hres+h]*(1.-DEPS*d)) + forequad[nl[i][0] 1) { + i = v*hres + h; + setcolor(mypixel[i], 0., 0., 0.); + myweight[i] = 0.; /* occupancy reset afterwards */ + } + return(1); +} + + +int +grow_samp(h, v, nl, n) /* grow sample point appropriately */ +int h, v; +register short nl[NNEIGH][2]; +int n; +{ + COLOR mykern[MAXRAD2]; + float mykw[MAXRAD2]; + int4 maxr2; + double w; + register int4 p, r2; + int maxr, h2, v2; + + if (n <= 0) + return(1); + p = v*hres + h; /* build kernel values */ + maxr2 = (h-nl[n-1][0])*(h-nl[n-1][0]) + (v-nl[n-1][1])*(v-nl[n-1][1]); + DCHECK(maxr2>=MAXRAD2, CONSISTENCY, "out of range neighbor"); + for (r2 = maxr2+1; --r2; ) { + copycolor(mykern[r2], mypixel[p]); + mykw[r2] = pixWeight[r2]; + if (2*r2 >= maxr2) /* soften skirt */ + mykw[r2] *= (2*(maxr2-r2)+1.0)/maxr2; + scalecolor(mykern[r2], mykw[r2]); + } + maxr = sqrt((double)maxr2) + .99; /* stamp out that kernel */ + for (v2 = v-maxr; v2 <= v+maxr; v2++) { + if (v2 < 0) continue; + if (v2 >= vres) break; + for (h2 = h-maxr; h2 <= h+maxr; h2++) { + if (h2 < 0) continue; + if (h2 >= hres) break; + r2 = (v2-v)*(v2-v) + (h2-h)*(h2-h); + if (r2 > maxr2) continue; + if (CHK4(pixFlags, v2*hres+h2)) + continue; /* occupied */ + addcolor(mypixel[v2*hres+h2], mykern[r2]); + myweight[v2*hres+h2] += mykw[r2]*myweight[v*hres+h]; + } + } + return(1); +} + + +pixFlush() /* done with beams -- flush pixel values */ +{ + reset_flags(); /* set occupancy flags */ + meet_neighbors(kill_occl); /* eliminate occlusion errors */ + reset_flags(); /* reset occupancy flags */ + if (pixWeight[0] <= FTINY) { /* initialize weighting function */ + register int r; + for (r = MAXRAD2; --r; ) + pixWeight[r] = G0NORM/sqrt((double)r); + pixWeight[0] = 1.; + } + meet_neighbors(grow_samp); /* grow valid samples over image */ + free((char *)pixFlags); /* free pixel flags */ + pixFlags = NULL; +} + + +reset_flags() /* allocate/set/reset occupancy flags */ +{ + register int p; + + if (pixFlags == NULL) { + pixFlags = (int4 *)calloc(FL4NELS(hres*vres), sizeof(int4)); + CHECK(pixFlags==NULL, SYSTEM, "out of memory in reset_flags"); + } else + CLR4ALL(pixFlags, hres*vres); + for (p = hres*vres; p--; ) + if (myweight[p] > FTINY) + SET4(pixFlags, p); +} + + +int +findneigh(nl, h, v, rnl) /* find NNEIGH neighbors for pixel */ +short nl[NNEIGH][2]; +int h, v; +register short (*rnl)[NNEIGH]; +{ + int nn = 0; + int4 d, ld, nd[NNEIGH+1]; + int n, hoff; + register int h2, n2; + + ld = MAXRAD2; + for (hoff = 1; hoff < hres; hoff = (hoff<0) - hoff) { + h2 = h + hoff; + if (h2 < 0 | h2 >= hres) + continue; + if ((h2-h)*(h2-h) >= ld) + break; + for (n = 0; n < NNEIGH && rnl[h2][n] < NINF; n++) { + d = (h2-h)*(h2-h) + (v-rnl[h2][n])*(v-rnl[h2][n]); + if (d >= ld) + continue; + for (n2 = nn; ; n2--) { /* insert neighbor */ + if (!n2 || d >= nd[n2-1]) { + nd[n2] = d; + nl[n2][0] = h2; + nl[n2][1] = rnl[h2][n]; + break; + } + nd[n2] = nd[n2-1]; + nl[n2][0] = nl[n2-1][0]; + nl[n2][1] = nl[n2-1][1]; + } + if (nn < NNEIGH) + nn++; + else + ld = nd[NNEIGH-1]; + } + } + return(nn); +} + + +meet_neighbors(nf) /* run through samples and their neighbors */ +int (*nf)(); +{ + short ln[NNEIGH][2]; + int h, v, n, v2; + register short (*rnl)[NNEIGH]; + /* initialize bottom row list */ + rnl = (short (*)[NNEIGH])malloc(NNEIGH*sizeof(short)*hres); + CHECK(rnl==NULL, SYSTEM, "out of memory in meet_neighbors"); + for (h = 0; h < hres; h++) { + for (n = v = 0; v < vres; v++) + if (CHK4(pixFlags, v*hres+h)) { + rnl[h][n++] = v; + if (n >= NNEIGH) + break; + } + while (n < NNEIGH) + rnl[h][n++] = NINF; + } + v = 0; /* do each row */ + for ( ; ; ) { + for (h = 0; h < hres; h++) { + if (!CHK4(pixFlags, v*hres+h)) + continue; /* no one home */ + n = findneigh(ln, h, v, rnl); + (*nf)(h, v, ln, n); /* call on neighbors */ + } + if (++v >= vres) /* reinitialize row list */ + break; + for (h = 0; h < hres; h++) + for (v2 = rnl[h][NNEIGH-1]+1; v2 < vres; v2++) { + if (v2 - v > v - rnl[h][0]) + break; /* not close enough */ + if (CHK4(pixFlags, v2*hres+h)) { + for (n = 0; n < NNEIGH-1; n++) + rnl[h][n] = rnl[h][n+1]; + rnl[h][NNEIGH-1] = v2; + } + } + } + free((char *)rnl); /* free row list */ }