ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhpict2.c
Revision: 3.3
Committed: Mon Mar 8 14:09:11 1999 UTC (25 years, 1 month ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 3.2: +67 -37 lines
Log Message:
finished discontinuity implementation and fixed various bugs

File Contents

# User Rev Content
1 gwlarson 3.1 /* Copyright (c) 1999 Silicon Graphics, Inc. */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ SGI";
5     #endif
6    
7     /*
8     * Rendering routines for rhpict.
9     */
10    
11     #include "holo.h"
12     #include "view.h"
13    
14 gwlarson 3.2 #ifndef DEPS
15 gwlarson 3.3 #define DEPS 0.02 /* depth epsilon */
16 gwlarson 3.2 #endif
17 gwlarson 3.3 #ifndef PEPS
18     #define PEPS 0.04 /* pixel value epsilon */
19     #endif
20 gwlarson 3.2 #ifndef MAXRAD
21     #define MAXRAD 64 /* maximum kernel radius */
22     #endif
23     #ifndef NNEIGH
24     #define NNEIGH 7 /* find this many neighbors */
25     #endif
26    
27     #define NINF 16382
28    
29     #define MAXRAD2 (MAXRAD*MAXRAD+1)
30    
31     #define G0NORM 0.286 /* ground zero normalization (1/x integral) */
32    
33     #ifndef FL4OP
34     #define FL4OP(f,i,op) ((f)[(i)>>5] op (1L<<((i)&0x1f)))
35     #define CHK4(f,i) FL4OP(f,i,&)
36     #define SET4(f,i) FL4OP(f,i,|=)
37     #define CLR4(f,i) FL4OP(f,i,&=~)
38     #define TGL4(f,i) FL4OP(f,i,^=)
39     #define FL4NELS(n) (((n)+0x1f)>>5)
40     #define CLR4ALL(f,n) bzero((char *)(f),FL4NELS(n)*sizeof(int4))
41     #endif
42    
43     static int4 *pixFlags; /* pixel occupancy flags */
44     static float pixWeight[MAXRAD2]; /* pixel weighting function */
45 gwlarson 3.3 static short isqrttab[MAXRAD2]; /* integer square root table */
46 gwlarson 3.2
47 gwlarson 3.3 #define isqrt(i2) ((int)isqrttab[(int)(i2)])
48    
49 gwlarson 3.1 extern VIEW myview; /* current output view */
50     extern COLOR *mypixel; /* pixels being rendered */
51     extern float *myweight; /* weights (used to compute final pixels) */
52 gwlarson 3.2 extern float *mydepth; /* depth values (visibility culling) */
53 gwlarson 3.1 extern int hres, vres; /* current horizontal and vertical res. */
54    
55    
56 gwlarson 3.2 pixBeam(bp, hb) /* render a particular beam */
57 gwlarson 3.1 BEAM *bp;
58     register HDBEAMI *hb;
59     {
60     GCOORD gc[2];
61     register RAYVAL *rv;
62     FVECT rorg, rdir, wp, ip;
63     double d, prox;
64     COLOR col;
65 gwlarson 3.2 int n;
66     register int4 p;
67 gwlarson 3.1
68     if (!hdbcoord(gc, hb->h, hb->b))
69     error(CONSISTENCY, "bad beam in render_beam");
70     for (n = bp->nrm, rv = hdbray(bp); n--; rv++) {
71     /* reproject each sample */
72     hdray(rorg, rdir, hb->h, gc, rv->r);
73     if (rv->d < DCINF) {
74     d = hddepth(hb->h, rv->d);
75     VSUM(wp, rorg, rdir, d);
76     VSUB(ip, wp, myview.vp);
77     d = DOT(ip,rdir);
78 gwlarson 3.2 prox = d*d/DOT(ip,ip); /* cos(diff_angle)^32 */
79     prox *= prox; prox *= prox; prox *= prox; prox *= prox;
80 gwlarson 3.1 } else {
81     if (myview.type == VT_PAR || myview.vaft > FTINY)
82     continue; /* inf. off view */
83     VSUM(wp, myview.vp, rdir, FHUGE);
84 gwlarson 3.2 prox = 1.;
85 gwlarson 3.1 }
86     viewloc(ip, &myview, wp); /* frustum clipping */
87     if (ip[2] < 0.)
88     continue;
89     if (ip[0] < 0. || ip[0] >= 1.)
90     continue;
91     if (ip[1] < 0. || ip[1] >= 1.)
92     continue;
93     if (myview.vaft > FTINY && ip[2] > myview.vaft - myview.vfore)
94 gwlarson 3.2 continue; /* not exact for VT_PER */
95 gwlarson 3.1 p = (int)(ip[1]*vres)*hres + (int)(ip[0]*hres);
96 gwlarson 3.2 if (mydepth[p] > FTINY) { /* check depth */
97     if (ip[2] > mydepth[p]*(1.+DEPS))
98     continue;
99     if (ip[2] < mydepth[p]*(1.-DEPS)) {
100     setcolor(mypixel[p], 0., 0., 0.);
101     myweight[p] = 0.;
102     }
103     }
104 gwlarson 3.1 colr_color(col, rv->v);
105 gwlarson 3.2 scalecolor(col, prox);
106 gwlarson 3.1 addcolor(mypixel[p], col);
107 gwlarson 3.2 myweight[p] += prox;
108     mydepth[p] = ip[2];
109 gwlarson 3.1 }
110 gwlarson 3.2 }
111    
112    
113     int
114     kill_occl(h, v, nl, n) /* check for occlusion errors */
115     int h, v;
116 gwlarson 3.3 register short nl[NNEIGH][2];
117 gwlarson 3.2 int n;
118     {
119     short forequad[2][2];
120     int d;
121 gwlarson 3.3 register int4 i, p;
122 gwlarson 3.2
123     if (n <= 0)
124     return(1);
125 gwlarson 3.3 p = v*hres + h;
126 gwlarson 3.2 forequad[0][0] = forequad[0][1] = forequad[1][0] = forequad[1][1] = 0;
127     for (i = n; i--; ) {
128     d = (h-nl[i][0])*(h-nl[i][0]) + (v-nl[i][1])*(v-nl[i][1]);
129 gwlarson 3.3 d = isqrt(d);
130     if (mydepth[nl[i][1]*hres+nl[i][0]]*(1.+DEPS*d) < mydepth[p])
131 gwlarson 3.2 forequad[nl[i][0]<h][nl[i][1]<v] = 1;
132     }
133 gwlarson 3.3 if (forequad[0][0]+forequad[0][1]+forequad[1][0]+forequad[1][1] > 2) {
134     setcolor(mypixel[p], 0., 0., 0.);
135     myweight[p] = 0.; /* occupancy reset afterwards */
136 gwlarson 3.2 }
137     return(1);
138     }
139    
140    
141     int
142     grow_samp(h, v, nl, n) /* grow sample point appropriately */
143     int h, v;
144     register short nl[NNEIGH][2];
145     int n;
146     {
147 gwlarson 3.3 int dis[NNEIGH], ndis;
148 gwlarson 3.2 COLOR mykern[MAXRAD2];
149     int4 maxr2;
150 gwlarson 3.3 double w, d;
151 gwlarson 3.2 register int4 p, r2;
152 gwlarson 3.3 int i, r, maxr, h2, v2;
153 gwlarson 3.2
154     if (n <= 0)
155     return(1);
156     p = v*hres + h; /* build kernel values */
157     maxr2 = (h-nl[n-1][0])*(h-nl[n-1][0]) + (v-nl[n-1][1])*(v-nl[n-1][1]);
158     DCHECK(maxr2>=MAXRAD2, CONSISTENCY, "out of range neighbor");
159 gwlarson 3.3 maxr = isqrt(maxr2);
160     for (v2 = 1; v2 <= maxr; v2++)
161     for (h2 = 0; h2 <= v2; h2++) {
162     r2 = h2*h2 + v2*v2;
163     if (r2 > maxr2) break;
164     copycolor(mykern[r2], mypixel[p]);
165     scalecolor(mykern[r2], pixWeight[r2]);
166     }
167     ndis = 0; /* find discontinuities */
168     for (i = n; i--; ) {
169     r2 = (h-nl[i][0])*(h-nl[i][0]) + (v-nl[i][1])*(v-nl[i][1]);
170     r = isqrt(r2);
171     d = mydepth[nl[i][1]*hres+nl[i][0]] / mydepth[p];
172     d = d>=1. ? d-1. : 1.-d;
173     if (d > r*DEPS || bigdiff(mypixel[p],
174     mypixel[nl[i][1]*hres+nl[i][0]], r*PEPS))
175     dis[ndis++] = i;
176 gwlarson 3.2 }
177 gwlarson 3.3 /* stamp out that kernel */
178 gwlarson 3.2 for (v2 = v-maxr; v2 <= v+maxr; v2++) {
179 gwlarson 3.3 if (v2 < 0) v2 = 0;
180     else if (v2 >= vres) break;
181 gwlarson 3.2 for (h2 = h-maxr; h2 <= h+maxr; h2++) {
182 gwlarson 3.3 if (h2 < 0) h2 = 0;
183     else if (h2 >= hres) break;
184     r2 = (h2-h)*(h2-h) + (v2-v)*(v2-v);
185 gwlarson 3.2 if (r2 > maxr2) continue;
186     if (CHK4(pixFlags, v2*hres+h2))
187     continue; /* occupied */
188 gwlarson 3.3 for (i = ndis; i--; ) {
189     r = (h2-nl[dis[i]][0])*(h2-nl[dis[i]][0]) +
190     (v2-nl[dis[i]][1])*(v2-nl[dis[i]][1]);
191     if (r < r2) break;
192     }
193     if (i >= 0) continue; /* outside edge */
194 gwlarson 3.2 addcolor(mypixel[v2*hres+h2], mykern[r2]);
195 gwlarson 3.3 myweight[v2*hres+h2] += pixWeight[r2] *
196     myweight[v*hres+h];
197 gwlarson 3.2 }
198     }
199     return(1);
200     }
201    
202    
203     pixFlush() /* done with beams -- flush pixel values */
204     {
205     reset_flags(); /* set occupancy flags */
206     meet_neighbors(kill_occl); /* eliminate occlusion errors */
207     reset_flags(); /* reset occupancy flags */
208     if (pixWeight[0] <= FTINY) { /* initialize weighting function */
209 gwlarson 3.3 register int i, j, r2;
210     double d;
211     for (i = 1; i <= MAXRAD; i++)
212     for (j = 0; j <= i; j++) {
213     r2 = i*i + j*j;
214     if (r2 >= MAXRAD2) break;
215     d = sqrt((double)r2);
216     pixWeight[r2] = G0NORM/d;
217     isqrttab[r2] = d + 0.99;
218     }
219 gwlarson 3.2 pixWeight[0] = 1.;
220 gwlarson 3.3 isqrttab[0] = 0;
221 gwlarson 3.2 }
222     meet_neighbors(grow_samp); /* grow valid samples over image */
223     free((char *)pixFlags); /* free pixel flags */
224     pixFlags = NULL;
225     }
226    
227    
228     reset_flags() /* allocate/set/reset occupancy flags */
229     {
230     register int p;
231    
232     if (pixFlags == NULL) {
233     pixFlags = (int4 *)calloc(FL4NELS(hres*vres), sizeof(int4));
234     CHECK(pixFlags==NULL, SYSTEM, "out of memory in reset_flags");
235     } else
236     CLR4ALL(pixFlags, hres*vres);
237     for (p = hres*vres; p--; )
238     if (myweight[p] > FTINY)
239     SET4(pixFlags, p);
240     }
241    
242    
243     int
244     findneigh(nl, h, v, rnl) /* find NNEIGH neighbors for pixel */
245     short nl[NNEIGH][2];
246     int h, v;
247     register short (*rnl)[NNEIGH];
248     {
249     int nn = 0;
250 gwlarson 3.3 int4 d, nd[NNEIGH];
251 gwlarson 3.2 int n, hoff;
252     register int h2, n2;
253    
254 gwlarson 3.3 nd[NNEIGH-1] = MAXRAD2;
255 gwlarson 3.2 for (hoff = 1; hoff < hres; hoff = (hoff<0) - hoff) {
256     h2 = h + hoff;
257     if (h2 < 0 | h2 >= hres)
258     continue;
259 gwlarson 3.3 if ((h2-h)*(h2-h) >= nd[NNEIGH-1])
260 gwlarson 3.2 break;
261     for (n = 0; n < NNEIGH && rnl[h2][n] < NINF; n++) {
262     d = (h2-h)*(h2-h) + (v-rnl[h2][n])*(v-rnl[h2][n]);
263 gwlarson 3.3 if (d >= nd[NNEIGH-1])
264 gwlarson 3.2 continue;
265 gwlarson 3.3 if (nn < NNEIGH) /* insert neighbor */
266     nn++;
267     for (n2 = nn; n2--; ) {
268 gwlarson 3.2 if (!n2 || d >= nd[n2-1]) {
269     nd[n2] = d;
270     nl[n2][0] = h2;
271     nl[n2][1] = rnl[h2][n];
272     break;
273     }
274     nd[n2] = nd[n2-1];
275     nl[n2][0] = nl[n2-1][0];
276     nl[n2][1] = nl[n2-1][1];
277     }
278     }
279     }
280     return(nn);
281     }
282    
283    
284     meet_neighbors(nf) /* run through samples and their neighbors */
285     int (*nf)();
286     {
287     short ln[NNEIGH][2];
288     int h, v, n, v2;
289     register short (*rnl)[NNEIGH];
290     /* initialize bottom row list */
291     rnl = (short (*)[NNEIGH])malloc(NNEIGH*sizeof(short)*hres);
292     CHECK(rnl==NULL, SYSTEM, "out of memory in meet_neighbors");
293     for (h = 0; h < hres; h++) {
294     for (n = v = 0; v < vres; v++)
295     if (CHK4(pixFlags, v*hres+h)) {
296     rnl[h][n++] = v;
297     if (n >= NNEIGH)
298     break;
299     }
300     while (n < NNEIGH)
301     rnl[h][n++] = NINF;
302     }
303     v = 0; /* do each row */
304     for ( ; ; ) {
305     for (h = 0; h < hres; h++) {
306     if (!CHK4(pixFlags, v*hres+h))
307     continue; /* no one home */
308     n = findneigh(ln, h, v, rnl);
309     (*nf)(h, v, ln, n); /* call on neighbors */
310     }
311     if (++v >= vres) /* reinitialize row list */
312     break;
313     for (h = 0; h < hres; h++)
314     for (v2 = rnl[h][NNEIGH-1]+1; v2 < vres; v2++) {
315     if (v2 - v > v - rnl[h][0])
316     break; /* not close enough */
317     if (CHK4(pixFlags, v2*hres+h)) {
318     for (n = 0; n < NNEIGH-1; n++)
319     rnl[h][n] = rnl[h][n+1];
320     rnl[h][NNEIGH-1] = v2;
321     }
322     }
323     }
324     free((char *)rnl); /* free row list */
325 gwlarson 3.1 }