ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rholo3.c
Revision: 3.30
Committed: Tue Feb 2 16:13:24 1999 UTC (25 years, 2 months ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 3.29: +6 -10 lines
Log Message:
made chunkycmp global and added test for it in rholo()

File Contents

# Content
1 /* Copyright (c) 1998 Silicon Graphics, Inc. */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ SGI";
5 #endif
6
7 /*
8 * Routines for tracking beam compuatations
9 */
10
11 #include "rholo.h"
12 #include <sys/types.h>
13
14 #ifndef NFRAG2CHUNK
15 #define NFRAG2CHUNK 4096 /* number of fragments to start chunking */
16 #endif
17
18 #ifndef abs
19 #define abs(x) ((x) > 0 ? (x) : -(x))
20 #endif
21 #ifndef sgn
22 #define sgn(x) ((x) > 0 ? 1 : (x) < 0 ? -1 : 0)
23 #endif
24
25 #define rchunk(n) (((n)+(RPACKSIZ/2))/RPACKSIZ)
26
27 extern time_t time();
28
29 int chunkycmp = 0; /* clump beams together on disk */
30
31 static PACKHEAD *complist=NULL; /* list of beams to compute */
32 static int complen=0; /* length of complist */
33 static int listpos=0; /* current list position for next_packet */
34 static int lastin= -1; /* last ordered position in list */
35
36
37 int
38 beamcmp(b0, b1) /* comparison for compute order */
39 register PACKHEAD *b0, *b1;
40 {
41 BEAMI *bip0, *bip1;
42 register long c;
43 /* first check desired quantities */
44 if (chunkycmp)
45 c = rchunk(b1->nr)*(rchunk(b0->nc)+1L) -
46 rchunk(b0->nr)*(rchunk(b1->nc)+1L);
47 else
48 c = b1->nr*(b0->nc+1L) - b0->nr*(b1->nc+1L);
49 if (c > 0) return(1);
50 if (c < 0) return(-1);
51 /* only one file, so skip the following: */
52 #if 0
53 /* next, check file descriptors */
54 c = hdlist[b0->hd]->fd - hdlist[b1->hd]->fd;
55 if (c) return(c);
56 #endif
57 /* finally, check file positions */
58 bip0 = &hdlist[b0->hd]->bi[b0->bi];
59 bip1 = &hdlist[b1->hd]->bi[b1->bi];
60 /* put diskless beams last */
61 if (!bip0->nrd)
62 return(bip1->nrd > 0);
63 if (!bip1->nrd)
64 return(-1);
65 c = bip0->fo - bip1->fo;
66 return(c < 0 ? -1 : c > 0);
67 }
68
69
70 int
71 beamidcmp(b0, b1) /* comparison for beam searching */
72 register PACKHEAD *b0, *b1;
73 {
74 register int c = b0->hd - b1->hd;
75
76 if (c) return(c);
77 return(b0->bi - b1->bi);
78 }
79
80
81 int
82 dispbeam(b, hb) /* display a holodeck beam */
83 register BEAM *b;
84 register HDBEAMI *hb;
85 {
86 static int n = 0;
87 static PACKHEAD *p = NULL;
88
89 if (b == NULL)
90 return;
91 if (b->nrm > n) { /* (re)allocate packet holder */
92 n = b->nrm;
93 if (p == NULL) p = (PACKHEAD *)malloc(packsiz(n));
94 else p = (PACKHEAD *)realloc((char *)p, packsiz(n));
95 if (p == NULL)
96 error(SYSTEM, "out of memory in dispbeam");
97 }
98 /* assign packet fields */
99 bcopy((char *)hdbray(b), (char *)packra(p), b->nrm*sizeof(RAYVAL));
100 p->nr = p->nc = b->nrm;
101 for (p->hd = 0; hdlist[p->hd] != hb->h; p->hd++)
102 if (hdlist[p->hd] == NULL)
103 error(CONSISTENCY, "unregistered holodeck in dispbeam");
104 p->bi = hb->b;
105 disp_packet(p); /* display it */
106 if (n >= 1024) { /* free ridiculous packets */
107 free((char *)p);
108 p = NULL; n = 0;
109 }
110 }
111
112
113 bundle_set(op, clist, nents) /* bundle set operation */
114 int op;
115 PACKHEAD *clist;
116 int nents;
117 {
118 int oldnr, n;
119 HDBEAMI *hbarr;
120 register PACKHEAD *csm;
121 register int i;
122 /* search for common members */
123 for (csm = clist+nents; csm-- > clist; )
124 csm->nc = -1;
125 qsort((char *)clist, nents, sizeof(PACKHEAD), beamidcmp);
126 for (i = 0; i < complen; i++) {
127 csm = (PACKHEAD *)bsearch((char *)(complist+i), (char *)clist,
128 nents, sizeof(PACKHEAD), beamidcmp);
129 if (csm == NULL)
130 continue;
131 oldnr = complist[i].nr;
132 csm->nc = complist[i].nc;
133 switch (op) {
134 case BS_ADD: /* add to count */
135 complist[i].nr += csm->nr;
136 csm->nr = 0;
137 break;
138 case BS_ADJ: /* reset count */
139 complist[i].nr = csm->nr;
140 csm->nr = 0;
141 break;
142 case BS_DEL: /* delete count */
143 if (csm->nr == 0 || csm->nr >= complist[i].nr)
144 complist[i].nr = 0;
145 else
146 complist[i].nr -= csm->nr;
147 break;
148 }
149 if (complist[i].nr != oldnr)
150 lastin = -1; /* flag sort */
151 }
152 /* record computed rays for uncommon beams */
153 for (csm = clist+nents; csm-- > clist; )
154 if (csm->nc < 0)
155 csm->nc = bnrays(hdlist[csm->hd], csm->bi);
156 /* complete list operations */
157 switch (op) {
158 case BS_NEW: /* new computation set */
159 listpos = 0; lastin = -1;
160 if (complen) /* free old list */
161 free((char *)complist);
162 complist = NULL;
163 if (!(complen = nents))
164 return;
165 complist = (PACKHEAD *)malloc(nents*sizeof(PACKHEAD));
166 if (complist == NULL)
167 goto memerr;
168 bcopy((char *)clist, (char *)complist, nents*sizeof(PACKHEAD));
169 break;
170 case BS_ADD: /* add to computation set */
171 case BS_ADJ: /* adjust set quantities */
172 if (nents <= 0)
173 return;
174 sortcomplist(); /* sort updated list & new entries */
175 qsort((char *)clist, nents, sizeof(PACKHEAD), beamcmp);
176 /* what can't we satisfy? */
177 for (i = nents, csm = clist; i-- && csm->nr > csm->nc; csm++)
178 ;
179 n = csm - clist;
180 if (op == BS_ADJ) { /* don't regenerate adjusted beams */
181 for (++i; i-- && csm->nr > 0; csm++)
182 ;
183 nents = csm - clist;
184 }
185 if (n) { /* allocate space for merged list */
186 PACKHEAD *newlist;
187 newlist = (PACKHEAD *)malloc(
188 (complen+n)*sizeof(PACKHEAD) );
189 if (newlist == NULL)
190 goto memerr;
191 /* merge lists */
192 mergeclists(newlist, clist, n, complist, complen);
193 if (complen)
194 free((char *)complist);
195 complist = newlist;
196 complen += n;
197 }
198 listpos = 0;
199 lastin = complen-1; /* list is now sorted */
200 break;
201 case BS_DEL: /* delete from computation set */
202 return; /* already done */
203 default:
204 error(CONSISTENCY, "bundle_set called with unknown operation");
205 }
206 if (outdev == NULL || !nents) /* nothing to display? */
207 return;
208 /* load and display beams we have */
209 hbarr = (HDBEAMI *)malloc(nents*sizeof(HDBEAMI));
210 for (i = nents; i--; ) {
211 hbarr[i].h = hdlist[clist[i].hd];
212 hbarr[i].b = clist[i].bi;
213 }
214 hdloadbeams(hbarr, nents, dispbeam);
215 free((char *)hbarr);
216 if (hdfragflags&FF_READ) {
217 listpos = 0;
218 lastin = -1; /* need to re-sort list */
219 }
220 return;
221 memerr:
222 error(SYSTEM, "out of memory in bundle_set");
223 }
224
225
226 double
227 beamvolume(hp, bi) /* compute approximate volume of a beam */
228 HOLO *hp;
229 int bi;
230 {
231 GCOORD gc[2];
232 FVECT cp[4], edgeA, edgeB, cent[2];
233 FVECT v, crossp[2], diffv;
234 double vol[2];
235 register int i;
236 /* get grid coordinates */
237 if (!hdbcoord(gc, hp, bi))
238 error(CONSISTENCY, "bad beam index in beamvolume");
239 for (i = 0; i < 2; i++) { /* compute cell area vectors */
240 hdcell(cp, hp, gc+i);
241 VSUM(edgeA, cp[1], cp[0], -1.0);
242 VSUM(edgeB, cp[3], cp[1], -1.0);
243 fcross(crossp[i], edgeA, edgeB);
244 /* compute center */
245 cent[i][0] = 0.5*(cp[0][0] + cp[2][0]);
246 cent[i][1] = 0.5*(cp[0][1] + cp[2][1]);
247 cent[i][2] = 0.5*(cp[0][2] + cp[2][2]);
248 }
249 /* compute difference vector */
250 VSUM(diffv, cent[1], cent[0], -1.0);
251 for (i = 0; i < 2; i++) { /* compute volume contributions */
252 vol[i] = 0.5*DOT(crossp[i], diffv);
253 if (vol[i] < 0.) vol[i] = -vol[i];
254 }
255 return(vol[0] + vol[1]); /* return total volume */
256 }
257
258
259 init_global() /* initialize global ray computation */
260 {
261 long wtotal = 0;
262 double frac;
263 int i;
264 register int j, k;
265 /* free old list and empty queue */
266 if (complen > 0) {
267 free((char *)complist);
268 done_packets(flush_queue());
269 }
270 /* reseed random number generator */
271 srandom(time(NULL));
272 /* allocate beam list */
273 complen = 0;
274 for (j = 0; hdlist[j] != NULL; j++)
275 complen += nbeams(hdlist[j]);
276 complist = (PACKHEAD *)malloc(complen*sizeof(PACKHEAD));
277 if (complist == NULL)
278 error(SYSTEM, "out of memory in init_global");
279 /* compute beam weights */
280 k = 0;
281 for (j = 0; hdlist[j] != NULL; j++) {
282 frac = 512. * VLEN(hdlist[j]->wg[0]) *
283 VLEN(hdlist[j]->wg[1]) *
284 VLEN(hdlist[j]->wg[2]);
285 for (i = nbeams(hdlist[j]); i > 0; i--) {
286 complist[k].hd = j;
287 complist[k].bi = i;
288 complist[k].nr = frac*beamvolume(hdlist[j], i) + 0.5;
289 complist[k].nc = bnrays(hdlist[j], i);
290 wtotal += complist[k++].nr;
291 }
292 }
293 /* adjust weights */
294 if (vdef(DISKSPACE))
295 frac = 1024.*1024.*vflt(DISKSPACE) / (wtotal*sizeof(RAYVAL));
296 else
297 frac = 1024.*1024.*16384. / (wtotal*sizeof(RAYVAL));
298 while (k--)
299 complist[k].nr = frac*complist[k].nr + 0.5;
300 listpos = 0; lastin = -1; /* perform initial sort */
301 sortcomplist();
302 /* no view vicinity */
303 myeye.rng = 0;
304 }
305
306
307 mergeclists(cdest, cl1, n1, cl2, n2) /* merge two sorted lists */
308 register PACKHEAD *cdest;
309 register PACKHEAD *cl1, *cl2;
310 int n1, n2;
311 {
312 register int cmp;
313
314 while (n1 | n2) {
315 if (!n1) cmp = 1;
316 else if (!n2) cmp = -1;
317 else cmp = beamcmp(cl1, cl2);
318 if (cmp > 0) {
319 copystruct(cdest, cl2);
320 cl2++; n2--;
321 } else {
322 copystruct(cdest, cl1);
323 cl1++; n1--;
324 }
325 cdest++;
326 }
327 }
328
329
330 sortcomplist() /* fix our list order */
331 {
332 PACKHEAD *list2;
333 int listlen;
334 register int i;
335
336 if (complen <= 0) /* check to see if there is even a list */
337 return;
338 if (!chunkycmp) /* check to see if fragment list is full */
339 if (!hdfragOK(hdlist[0]->fd, &listlen, NULL)
340 #if NFRAG2CHUNK
341 || listlen >= NFRAG2CHUNK
342 #endif
343 ) {
344 chunkycmp++; /* use "chunky" comparison */
345 lastin = -1; /* need to re-sort list */
346 #ifdef DEBUG
347 error(WARNING, "using chunky comparison mode");
348 #endif
349 }
350 if (lastin < 0 || listpos*4 >= complen*3)
351 qsort((char *)complist, complen, sizeof(PACKHEAD), beamcmp);
352 else if (listpos) { /* else sort and merge sublist */
353 list2 = (PACKHEAD *)malloc(listpos*sizeof(PACKHEAD));
354 if (list2 == NULL)
355 error(SYSTEM, "out of memory in sortcomplist");
356 bcopy((char *)complist,(char *)list2,listpos*sizeof(PACKHEAD));
357 qsort((char *)list2, listpos, sizeof(PACKHEAD), beamcmp);
358 mergeclists(complist, list2, listpos,
359 complist+listpos, complen-listpos);
360 free((char *)list2);
361 }
362 /* drop satisfied requests */
363 for (i = complen; i-- && complist[i].nr <= complist[i].nc; )
364 ;
365 if (i < 0) {
366 free((char *)complist);
367 complist = NULL;
368 complen = 0;
369 } else if (i < complen-1) {
370 list2 = (PACKHEAD *)realloc((char *)complist,
371 (i+1)*sizeof(PACKHEAD));
372 if (list2 != NULL)
373 complist = list2;
374 complen = i+1;
375 }
376 listpos = 0; lastin = i;
377 }
378
379
380 /*
381 * The following routine works on the assumption that the bundle weights are
382 * more or less evenly distributed, such that computing a packet causes
383 * a given bundle to move way down in the computation order. We keep
384 * track of where the computed bundle with the highest priority would end
385 * up, and if we get further in our compute list than this, we re-sort the
386 * list and start again from the beginning. Since
387 * a merge sort is used, the sorting costs are minimal.
388 */
389 next_packet(p, n) /* prepare packet for computation */
390 register PACKET *p;
391 int n;
392 {
393 register int i;
394
395 if (listpos > lastin) /* time to sort the list */
396 sortcomplist();
397 if (complen <= 0)
398 return(0);
399 p->hd = complist[listpos].hd;
400 p->bi = complist[listpos].bi;
401 p->nc = complist[listpos].nc;
402 p->nr = complist[listpos].nr - p->nc;
403 if (p->nr <= 0)
404 return(0);
405 DCHECK(n < 1 | n > RPACKSIZ,
406 CONSISTENCY, "next_packet called with bad n value");
407 if (p->nr > n)
408 p->nr = n;
409 complist[listpos].nc += p->nr; /* find where this one would go */
410 if (hdgetbeam(hdlist[p->hd], p->bi) != NULL)
411 hdfreefrag(hdlist[p->hd], p->bi);
412 while (lastin > listpos &&
413 beamcmp(complist+lastin, complist+listpos) > 0)
414 lastin--;
415 listpos++;
416 return(1);
417 }