1 |
/* Copyright (c) 1998 Silicon Graphics, Inc. */ |
2 |
|
3 |
#ifndef lint |
4 |
static char SCCSid[] = "$SunId$ SGI"; |
5 |
#endif |
6 |
|
7 |
/* |
8 |
* Routines for tracking beam compuatations |
9 |
*/ |
10 |
|
11 |
#include "rholo.h" |
12 |
|
13 |
#define abs(x) ((x) > 0 ? (x) : -(x)) |
14 |
#define sgn(x) ((x) > 0 ? 1 : (x) < 0 ? -1 : 0) |
15 |
|
16 |
static PACKHEAD *complist=NULL; /* list of beams to compute */ |
17 |
static int complen=0; /* length of complist */ |
18 |
static int listpos=0; /* current list position for next_packet */ |
19 |
static int lastin= -1; /* last ordered position in list */ |
20 |
|
21 |
|
22 |
int |
23 |
beamcmp(b0, b1) /* comparison for compute order */ |
24 |
register PACKHEAD *b0, *b1; |
25 |
{ |
26 |
return( b1->nr*(b0->nc+1) - b0->nr*(b1->nc+1) ); |
27 |
} |
28 |
|
29 |
|
30 |
int |
31 |
beamidcmp(b0, b1) /* comparison for beam searching */ |
32 |
register PACKHEAD *b0, *b1; |
33 |
{ |
34 |
register int c = b0->hd - b1->hd; |
35 |
|
36 |
if (c) return(c); |
37 |
return(b0->bi - b1->bi); |
38 |
} |
39 |
|
40 |
|
41 |
int |
42 |
dispbeam(b, hb) /* display a holodeck beam */ |
43 |
register BEAM *b; |
44 |
register HDBEAMI *hb; |
45 |
{ |
46 |
static int n = 0; |
47 |
static PACKHEAD *p = NULL; |
48 |
|
49 |
if (b == NULL) |
50 |
return; |
51 |
if (b->nrm > n) { /* (re)allocate packet holder */ |
52 |
n = b->nrm; |
53 |
if (p == NULL) p = (PACKHEAD *)malloc(packsiz(n)); |
54 |
else p = (PACKHEAD *)realloc((char *)p, packsiz(n)); |
55 |
if (p == NULL) |
56 |
error(SYSTEM, "out of memory in dispbeam"); |
57 |
} |
58 |
/* assign packet fields */ |
59 |
bcopy((char *)hdbray(b), (char *)packra(p), b->nrm*sizeof(RAYVAL)); |
60 |
p->nr = p->nc = b->nrm; |
61 |
for (p->hd = 0; hdlist[p->hd] != hb->h; p->hd++) |
62 |
if (hdlist[p->hd] == NULL) |
63 |
error(CONSISTENCY, "unregistered holodeck in dispbeam"); |
64 |
p->bi = hb->b; |
65 |
disp_packet(p); /* display it */ |
66 |
} |
67 |
|
68 |
|
69 |
bundle_set(op, clist, nents) /* bundle set operation */ |
70 |
int op; |
71 |
PACKHEAD *clist; |
72 |
int nents; |
73 |
{ |
74 |
int oldnr, n; |
75 |
HDBEAMI *hbarr; |
76 |
register PACKHEAD *csm; |
77 |
register int i; |
78 |
/* search for common members */ |
79 |
qsort((char *)clist, nents, sizeof(PACKHEAD), beamidcmp); |
80 |
for (csm = clist+nents; csm-- > clist; ) |
81 |
csm->nc = -1; |
82 |
for (i = 0; i < complen; i++) { |
83 |
csm = (PACKHEAD *)bsearch((char *)(complist+i), (char *)clist, |
84 |
nents, sizeof(PACKHEAD), beamidcmp); |
85 |
if (csm == NULL) |
86 |
continue; |
87 |
oldnr = complist[i].nr; |
88 |
csm->nc = complist[i].nc; |
89 |
switch (op) { |
90 |
case BS_ADD: /* add to count */ |
91 |
complist[i].nr += csm->nr; |
92 |
csm->nr = 0; |
93 |
break; |
94 |
case BS_ADJ: /* reset count */ |
95 |
complist[i].nr = csm->nr; |
96 |
csm->nr = 0; |
97 |
break; |
98 |
case BS_DEL: /* delete count */ |
99 |
if (csm->nr == 0 || csm->nr >= complist[i].nr) |
100 |
complist[i].nr = 0; |
101 |
else |
102 |
complist[i].nr -= csm->nr; |
103 |
break; |
104 |
} |
105 |
if (complist[i].nr != oldnr) |
106 |
lastin = -1; /* flag sort */ |
107 |
} |
108 |
/* computed rays for each uncommon beams */ |
109 |
for (csm = clist+nents; csm-- > clist; ) |
110 |
if (csm->nc < 0) |
111 |
csm->nc = bnrays(hdlist[csm->hd], csm->bi); |
112 |
/* complete list operations */ |
113 |
switch (op) { |
114 |
case BS_NEW: /* new computation set */ |
115 |
listpos = 0; lastin = -1; |
116 |
if (complen) /* free old list */ |
117 |
free((char *)complist); |
118 |
complist = NULL; |
119 |
if (!(complen = nents)) |
120 |
return; |
121 |
complist = (PACKHEAD *)malloc(nents*sizeof(PACKHEAD)); |
122 |
if (complist == NULL) |
123 |
goto memerr; |
124 |
bcopy((char *)clist, (char *)complist, nents*sizeof(PACKHEAD)); |
125 |
break; |
126 |
case BS_ADD: /* add to computation set */ |
127 |
case BS_ADJ: /* adjust set quantities */ |
128 |
if (nents <= 0) |
129 |
return; |
130 |
sortcomplist(); /* sort updated list & new entries */ |
131 |
qsort((char *)clist, nents, sizeof(PACKHEAD), beamcmp); |
132 |
/* what can't we satisfy? */ |
133 |
for (i = nents, csm = clist; i-- && csm->nr > csm->nc; csm++) |
134 |
; |
135 |
n = csm - clist; |
136 |
if (op == BS_ADJ) { /* don't regenerate adjusted beams */ |
137 |
for (i = n; i < nents && clist[i].nr > 0; i++) |
138 |
; |
139 |
nents = i; |
140 |
} |
141 |
if (n) { /* allocate space for merged list */ |
142 |
PACKHEAD *newlist; |
143 |
newlist = (PACKHEAD *)malloc( |
144 |
(complen+n)*sizeof(PACKHEAD) ); |
145 |
if (newlist == NULL) |
146 |
goto memerr; |
147 |
/* merge lists */ |
148 |
mergeclists(newlist, clist, n, complist, complen); |
149 |
if (complen) |
150 |
free((char *)complist); |
151 |
complist = newlist; |
152 |
complen += n; |
153 |
} |
154 |
listpos = 0; |
155 |
lastin = complen-1; /* list is now sorted */ |
156 |
break; |
157 |
case BS_DEL: /* delete from computation set */ |
158 |
return; /* already done */ |
159 |
default: |
160 |
error(CONSISTENCY, "bundle_set called with unknown operation"); |
161 |
} |
162 |
if (outdev == NULL) /* nothing to display? */ |
163 |
return; |
164 |
/* load and display beams we have */ |
165 |
hbarr = (HDBEAMI *)malloc(nents*sizeof(HDBEAMI)); |
166 |
for (i = nents; i--; ) { |
167 |
hbarr[i].h = hdlist[clist[i].hd]; |
168 |
hbarr[i].b = clist[i].bi; |
169 |
} |
170 |
hdloadbeams(hbarr, nents, dispbeam); |
171 |
free((char *)hbarr); |
172 |
return; |
173 |
memerr: |
174 |
error(SYSTEM, "out of memory in bundle_set"); |
175 |
} |
176 |
|
177 |
|
178 |
double |
179 |
beamvolume(hp, bi) /* compute approximate volume of a beam */ |
180 |
HOLO *hp; |
181 |
int bi; |
182 |
{ |
183 |
GCOORD gc[2]; |
184 |
FVECT cp[4], edgeA, edgeB, cent[2]; |
185 |
FVECT v, crossp[2], diffv; |
186 |
double vol[2]; |
187 |
register int i; |
188 |
/* get grid coordinates */ |
189 |
if (!hdbcoord(gc, hp, bi)) |
190 |
error(CONSISTENCY, "bad beam index in beamvolume"); |
191 |
for (i = 0; i < 2; i++) { /* compute cell area vectors */ |
192 |
hdcell(cp, hp, gc+i); |
193 |
VSUM(edgeA, cp[1], cp[0], -1.0); |
194 |
VSUM(edgeB, cp[3], cp[1], -1.0); |
195 |
fcross(crossp[i], edgeA, edgeB); |
196 |
/* compute center */ |
197 |
cent[i][0] = 0.5*(cp[0][0] + cp[2][0]); |
198 |
cent[i][1] = 0.5*(cp[0][1] + cp[2][1]); |
199 |
cent[i][2] = 0.5*(cp[0][2] + cp[2][2]); |
200 |
} |
201 |
/* compute difference vector */ |
202 |
VSUM(diffv, cent[1], cent[0], -1.0); |
203 |
for (i = 0; i < 2; i++) { /* compute volume contributions */ |
204 |
vol[i] = 0.5*DOT(crossp[i], diffv); |
205 |
if (vol[i] < 0.) vol[i] = -vol[i]; |
206 |
} |
207 |
return(vol[0] + vol[1]); /* return total volume */ |
208 |
} |
209 |
|
210 |
|
211 |
init_global() /* initialize global ray computation */ |
212 |
{ |
213 |
long wtotal = 0; |
214 |
double frac; |
215 |
int i; |
216 |
register int j, k; |
217 |
/* free old list and empty queue */ |
218 |
if (complen > 0) { |
219 |
free((char *)complist); |
220 |
done_packets(flush_queue()); |
221 |
} |
222 |
/* allocate beam list */ |
223 |
complen = 0; |
224 |
for (j = 0; hdlist[j] != NULL; j++) |
225 |
complen += nbeams(hdlist[j]); |
226 |
complist = (PACKHEAD *)malloc(complen*sizeof(PACKHEAD)); |
227 |
if (complist == NULL) |
228 |
error(SYSTEM, "out of memory in init_global"); |
229 |
/* compute beam weights */ |
230 |
k = 0; |
231 |
for (j = 0; hdlist[j] != NULL; j++) { |
232 |
frac = 512. * VLEN(hdlist[j]->wg[0]) * |
233 |
VLEN(hdlist[j]->wg[1]) * |
234 |
VLEN(hdlist[j]->wg[2]); |
235 |
for (i = nbeams(hdlist[j]); i > 0; i--) { |
236 |
complist[k].hd = j; |
237 |
complist[k].bi = i; |
238 |
complist[k].nr = frac*beamvolume(hdlist[j], i) + 0.5; |
239 |
complist[k].nc = bnrays(hdlist[j], i); |
240 |
wtotal += complist[k++].nr; |
241 |
} |
242 |
} |
243 |
/* adjust weights */ |
244 |
if (vdef(DISKSPACE)) |
245 |
frac = 1024.*1024.*vflt(DISKSPACE) / (wtotal*sizeof(RAYVAL)); |
246 |
else |
247 |
frac = 1024.*1024.*16384. / (wtotal*sizeof(RAYVAL)); |
248 |
while (k--) |
249 |
complist[k].nr = frac * complist[k].nr; |
250 |
listpos = 0; lastin = -1; /* perform initial sort */ |
251 |
sortcomplist(); |
252 |
} |
253 |
|
254 |
|
255 |
mergeclists(cdest, cl1, n1, cl2, n2) /* merge two sorted lists */ |
256 |
register PACKHEAD *cdest; |
257 |
register PACKHEAD *cl1, *cl2; |
258 |
int n1, n2; |
259 |
{ |
260 |
register int cmp; |
261 |
|
262 |
while (n1 | n2) { |
263 |
if (!n1) cmp = 1; |
264 |
else if (!n2) cmp = -1; |
265 |
else cmp = beamcmp(cl1, cl2); |
266 |
if (cmp > 0) { |
267 |
copystruct(cdest, cl2); |
268 |
cl2++; n2--; |
269 |
} else { |
270 |
copystruct(cdest, cl1); |
271 |
cl1++; n1--; |
272 |
} |
273 |
cdest++; |
274 |
} |
275 |
} |
276 |
|
277 |
|
278 |
sortcomplist() /* fix our list order */ |
279 |
{ |
280 |
PACKHEAD *list2; |
281 |
register int i; |
282 |
|
283 |
if (complen <= 0) /* check to see if there is even a list */ |
284 |
return; |
285 |
if (lastin < 0 || listpos*4 >= complen*3) |
286 |
qsort((char *)complist, complen, sizeof(PACKHEAD), beamcmp); |
287 |
else if (listpos) { /* else sort and merge sublist */ |
288 |
list2 = (PACKHEAD *)malloc(listpos*sizeof(PACKHEAD)); |
289 |
if (list2 == NULL) |
290 |
error(SYSTEM, "out of memory in sortcomplist"); |
291 |
bcopy((char *)complist,(char *)list2,listpos*sizeof(PACKHEAD)); |
292 |
qsort((char *)list2, listpos, sizeof(PACKHEAD), beamcmp); |
293 |
mergeclists(complist, list2, listpos, |
294 |
complist+listpos, complen-listpos); |
295 |
free((char *)list2); |
296 |
} |
297 |
/* drop satisfied requests */ |
298 |
for (i = complen; i-- && complist[i].nr <= complist[i].nc; ) |
299 |
; |
300 |
if (i < 0) { |
301 |
free((char *)complist); |
302 |
complist = NULL; |
303 |
complen = 0; |
304 |
} else if (i < complen-1) { |
305 |
list2 = (PACKHEAD *)realloc((char *)complist, |
306 |
(i+1)*sizeof(PACKHEAD)); |
307 |
if (list2 != NULL) { |
308 |
complist = list2; |
309 |
complen = i+1; |
310 |
} |
311 |
} |
312 |
listpos = 0; lastin = i; |
313 |
} |
314 |
|
315 |
|
316 |
/* |
317 |
* The following routine works on the assumption that the bundle weights are |
318 |
* more or less evenly distributed, such that computing a packet causes |
319 |
* a given bundle to move way down in the computation order. We keep |
320 |
* track of where the computed bundle with the highest priority would end |
321 |
* up, and if we get further in our compute list than this, we resort the |
322 |
* list and start again from the beginning. Since |
323 |
* a merge sort is used, the sorting costs are minimal. |
324 |
*/ |
325 |
next_packet(p, n) /* prepare packet for computation */ |
326 |
register PACKET *p; |
327 |
int n; |
328 |
{ |
329 |
register int i; |
330 |
|
331 |
if (listpos > lastin) /* time to sort the list */ |
332 |
sortcomplist(); |
333 |
if (complen <= 0) |
334 |
return(0); |
335 |
p->hd = complist[listpos].hd; |
336 |
p->bi = complist[listpos].bi; |
337 |
p->nc = complist[listpos].nc; |
338 |
p->nr = complist[listpos].nr - p->nc; |
339 |
if (p->nr <= 0) |
340 |
return(0); |
341 |
#ifdef DEBUG |
342 |
if (n < 1 | n > RPACKSIZ) |
343 |
error(CONSISTENCY, "next_packet called with bad n value"); |
344 |
#endif |
345 |
if (p->nr > n) |
346 |
p->nr = n; |
347 |
complist[listpos].nc += p->nr; /* find where this one would go */ |
348 |
while (lastin > listpos && |
349 |
beamcmp(complist+lastin, complist+listpos) > 0) |
350 |
lastin--; |
351 |
listpos++; |
352 |
return(1); |
353 |
} |