1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: rholo2.c,v 3.27 2003/07/27 22:12:02 schorsch Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Rtrace support routines for holodeck rendering |
6 |
*/ |
7 |
|
8 |
#include <time.h> |
9 |
|
10 |
#include "rholo.h" |
11 |
#include "paths.h" |
12 |
#include "random.h" |
13 |
|
14 |
|
15 |
VIEWPOINT myeye; /* target view position */ |
16 |
|
17 |
struct gclim { |
18 |
HOLO *hp; /* holodeck pointer */ |
19 |
GCOORD gc; /* grid cell */ |
20 |
FVECT egp; /* eye grid point */ |
21 |
double erg2; /* mean square eye grid range */ |
22 |
double gmin[2], gmax[2]; /* grid coordinate limits */ |
23 |
}; /* a grid coordinate range */ |
24 |
|
25 |
static void initeyelim(struct gclim *gcl, HOLO *hp, GCOORD *gc); |
26 |
static void groweyelim(struct gclim *gcl, GCOORD *gc, |
27 |
double r0, double r1, int tight); |
28 |
static int clipeyelim(short rrng[2][2], struct gclim *gcl); |
29 |
|
30 |
|
31 |
static void |
32 |
initeyelim( /* initialize grid coordinate limits */ |
33 |
register struct gclim *gcl, |
34 |
register HOLO *hp, |
35 |
GCOORD *gc |
36 |
) |
37 |
{ |
38 |
register RREAL *v; |
39 |
register int i; |
40 |
|
41 |
if (hp != NULL) { |
42 |
hdgrid(gcl->egp, gcl->hp = hp, myeye.vpt); |
43 |
gcl->erg2 = 0; |
44 |
for (i = 0, v = hp->wg[0]; i < 3; i++, v += 3) |
45 |
gcl->erg2 += DOT(v,v); |
46 |
gcl->erg2 *= (1./3.) * myeye.rng*myeye.rng; |
47 |
} |
48 |
if (gc != NULL) |
49 |
gcl->gc = *gc; |
50 |
gcl->gmin[0] = gcl->gmin[1] = FHUGE; |
51 |
gcl->gmax[0] = gcl->gmax[1] = -FHUGE; |
52 |
} |
53 |
|
54 |
|
55 |
static void |
56 |
groweyelim( /* grow grid limits about eye point */ |
57 |
register struct gclim *gcl, |
58 |
GCOORD *gc, |
59 |
double r0, |
60 |
double r1, |
61 |
int tight |
62 |
) |
63 |
{ |
64 |
FVECT gp, ab; |
65 |
double ab2, od, cfact; |
66 |
double sqcoef[3], ctcoef[3], licoef[3], cnst; |
67 |
int gw, gi[2]; |
68 |
double wallpos, a, b, c, d, e, f; |
69 |
double root[2], yex; |
70 |
int n, i, j, nex; |
71 |
/* point/view cone */ |
72 |
i = gc->w>>1; |
73 |
gp[i] = gc->w&1 ? gcl->hp->grid[i] : 0; |
74 |
gp[hdwg0[gc->w]] = gc->i[0] + r0; |
75 |
gp[hdwg1[gc->w]] = gc->i[1] + r1; |
76 |
VSUB(ab, gcl->egp, gp); |
77 |
ab2 = DOT(ab, ab); |
78 |
gw = gcl->gc.w>>1; |
79 |
if ((i==gw ? ab[gw]*ab[gw] : ab2) <= gcl->erg2 + FTINY) { |
80 |
gcl->gmin[0] = gcl->gmin[1] = -FHUGE; |
81 |
gcl->gmax[0] = gcl->gmax[1] = FHUGE; |
82 |
return; /* too close (to wall) */ |
83 |
} |
84 |
ab2 = 1./ab2; /* 1/norm2(ab) */ |
85 |
od = DOT(gp, ab); /* origin dot direction */ |
86 |
cfact = 1./(1. - ab2*gcl->erg2); /* tan^2 + 1 of cone angle */ |
87 |
for (i = 0; i < 3; i++) { /* compute cone equation */ |
88 |
sqcoef[i] = ab[i]*ab[i]*cfact*ab2 - 1.; |
89 |
ctcoef[i] = 2.*ab[i]*ab[(i+1)%3]*cfact*ab2; |
90 |
licoef[i] = 2.*(gp[i] - ab[i]*cfact*od*ab2); |
91 |
} |
92 |
cnst = cfact*od*od*ab2 - DOT(gp,gp); |
93 |
/* |
94 |
* CONE: sqcoef[0]*x*x + sqcoef[1]*y*y + sqcoef[2]*z*z |
95 |
* + ctcoef[0]*x*y + ctcoef[1]*y*z + ctcoef[2]*z*x |
96 |
* + licoef[0]*x + licoef[1]*y + licoef[2]*z + cnst == 0 |
97 |
*/ |
98 |
/* equation for conic section in plane */ |
99 |
gi[0] = hdwg0[gcl->gc.w]; |
100 |
gi[1] = hdwg1[gcl->gc.w]; |
101 |
wallpos = gcl->gc.w&1 ? gcl->hp->grid[gw] : 0; |
102 |
a = sqcoef[gi[0]]; /* x2 */ |
103 |
b = ctcoef[gi[0]]; /* xy */ |
104 |
c = sqcoef[gi[1]]; /* y2 */ |
105 |
d = ctcoef[gw]*wallpos + licoef[gi[0]]; /* x */ |
106 |
e = ctcoef[gi[1]]*wallpos + licoef[gi[1]]; /* y */ |
107 |
f = wallpos*(wallpos*sqcoef[gw] + licoef[gw]) + cnst; |
108 |
for (i = 0; i < 2; i++) { |
109 |
if (i) { /* swap x and y coefficients */ |
110 |
register double t; |
111 |
t = a; a = c; c = t; |
112 |
t = d; d = e; e = t; |
113 |
} |
114 |
nex = 0; /* check global extrema */ |
115 |
n = quadratic(root, a*(4.*a*c-b*b), 2.*a*(2.*c*d-b*e), |
116 |
d*(c*d-b*e) + f*b*b); |
117 |
while (n-- > 0) { |
118 |
if (gc->w>>1 == gi[i] && |
119 |
(gc->w&1) ^ (root[n] < gp[gc->w>>1])) { |
120 |
if (gc->w&1) |
121 |
gcl->gmin[i] = -FHUGE; |
122 |
else |
123 |
gcl->gmax[i] = FHUGE; |
124 |
nex++; |
125 |
continue; /* hyperbolic */ |
126 |
} |
127 |
if (tight) { |
128 |
yex = (-2.*a*root[n] - d)/b; |
129 |
if (yex < gcl->gc.i[1-i] || |
130 |
yex > gcl->gc.i[1-i]+1) |
131 |
continue; /* outside cell */ |
132 |
} |
133 |
if (root[n] < gcl->gmin[i]) |
134 |
gcl->gmin[i] = root[n]; |
135 |
if (root[n] > gcl->gmax[i]) |
136 |
gcl->gmax[i] = root[n]; |
137 |
nex++; |
138 |
} |
139 |
/* check local extrema */ |
140 |
for (j = nex < 2 ? 2 : 0; j--; ) { |
141 |
yex = gcl->gc.i[1-i] + j; |
142 |
n = quadratic(root, a, b*yex+d, yex*(yex*c+e)+f); |
143 |
while (n-- > 0) { |
144 |
if (gc->w>>1 == gi[i] && |
145 |
(gc->w&1) ^ (root[n] < gp[gc->w>>1])) |
146 |
continue; |
147 |
if (root[n] < gcl->gmin[i]) |
148 |
gcl->gmin[i] = root[n]; |
149 |
if (root[n] > gcl->gmax[i]) |
150 |
gcl->gmax[i] = root[n]; |
151 |
} |
152 |
} |
153 |
} |
154 |
} |
155 |
|
156 |
|
157 |
static int |
158 |
clipeyelim( /* clip eye limits to grid cell */ |
159 |
register short rrng[2][2], |
160 |
register struct gclim *gcl |
161 |
) |
162 |
{ |
163 |
int incell = 1; |
164 |
register int i; |
165 |
|
166 |
for (i = 0; i < 2; i++) { |
167 |
if (gcl->gmin[i] < gcl->gc.i[i]) |
168 |
gcl->gmin[i] = gcl->gc.i[i]; |
169 |
if (gcl->gmax[i] > gcl->gc.i[i]+1) |
170 |
gcl->gmax[i] = gcl->gc.i[i]+1; |
171 |
if (gcl->gmax[i] > gcl->gmin[i]) { |
172 |
rrng[i][0] = 256.*(gcl->gmin[i] - gcl->gc.i[i]) + |
173 |
(1.-FTINY); |
174 |
rrng[i][1] = 256.*(gcl->gmax[i] - gcl->gc.i[i]) + |
175 |
(1.-FTINY) - rrng[i][0]; |
176 |
} else |
177 |
rrng[i][0] = rrng[i][1] = 0; |
178 |
incell &= rrng[i][1] > 0; |
179 |
} |
180 |
return(incell); |
181 |
} |
182 |
|
183 |
|
184 |
extern void |
185 |
packrays( /* pack ray origins and directions */ |
186 |
register float *rod, |
187 |
register PACKET *p |
188 |
) |
189 |
{ |
190 |
#if 0 |
191 |
double dist2sum = 0.; |
192 |
FVECT vt; |
193 |
#endif |
194 |
int nretries = p->nr + 2; |
195 |
struct gclim eyelim; |
196 |
short rrng0[2][2], rrng1[2][2]; |
197 |
int useyelim; |
198 |
GCOORD gc[2]; |
199 |
FVECT ro, rd; |
200 |
double d; |
201 |
register int i; |
202 |
|
203 |
if (!hdbcoord(gc, hdlist[p->hd], p->bi)) |
204 |
error(CONSISTENCY, "bad beam index in packrays"); |
205 |
if ((useyelim = myeye.rng > FTINY)) { |
206 |
initeyelim(&eyelim, hdlist[p->hd], gc); |
207 |
groweyelim(&eyelim, gc+1, 0., 0., 0); |
208 |
groweyelim(&eyelim, gc+1, 1., 1., 0); |
209 |
useyelim = clipeyelim(rrng0, &eyelim); |
210 |
#ifdef DEBUG |
211 |
if (!useyelim) |
212 |
error(WARNING, "no eye overlap in packrays"); |
213 |
#endif |
214 |
} |
215 |
for (i = 0; i < p->nr; i++) { |
216 |
retry: |
217 |
if (useyelim) { |
218 |
initeyelim(&eyelim, NULL, gc+1); |
219 |
p->ra[i].r[0][0] = (int)(frandom()*rrng0[0][1]) |
220 |
+ rrng0[0][0]; |
221 |
p->ra[i].r[0][1] = (int)(frandom()*rrng0[1][1]) |
222 |
+ rrng0[1][0]; |
223 |
groweyelim(&eyelim, gc, |
224 |
(1./256.)*(p->ra[i].r[0][0]+.5), |
225 |
(1./256.)*(p->ra[i].r[0][1]+.5), 1); |
226 |
if (!clipeyelim(rrng1, &eyelim)) { |
227 |
useyelim = nretries-- > 0; |
228 |
#ifdef DEBUG |
229 |
if (!useyelim) |
230 |
error(WARNING, |
231 |
"exceeded retry limit in packrays"); |
232 |
#endif |
233 |
goto retry; |
234 |
} |
235 |
p->ra[i].r[1][0] = (int)(frandom()*rrng1[0][1]) |
236 |
+ rrng1[0][0]; |
237 |
p->ra[i].r[1][1] = (int)(frandom()*rrng1[1][1]) |
238 |
+ rrng1[1][0]; |
239 |
} else { |
240 |
p->ra[i].r[0][0] = frandom() * 256.; |
241 |
p->ra[i].r[0][1] = frandom() * 256.; |
242 |
p->ra[i].r[1][0] = frandom() * 256.; |
243 |
p->ra[i].r[1][1] = frandom() * 256.; |
244 |
} |
245 |
d = hdray(ro, rd, hdlist[p->hd], gc, p->ra[i].r); |
246 |
#if 0 |
247 |
VSUM(vt, ro, rd, d); |
248 |
dist2sum += dist2line(myeye.vpt, ro, vt); |
249 |
#endif |
250 |
if (p->offset != NULL) { |
251 |
if (!vdef(OBSTRUCTIONS)) |
252 |
d *= frandom(); /* random offset */ |
253 |
VSUM(ro, ro, rd, d); /* advance ray */ |
254 |
p->offset[i] = d; |
255 |
} |
256 |
VCOPY(rod, ro); |
257 |
rod += 3; |
258 |
VCOPY(rod, rd); |
259 |
rod += 3; |
260 |
} |
261 |
#if 0 |
262 |
fprintf(stderr, "%f RMS (%d retries)\t", sqrt(dist2sum/p->nr), |
263 |
p->nr + 2 - nretries); |
264 |
#endif |
265 |
} |
266 |
|
267 |
|
268 |
extern void |
269 |
donerays( /* encode finished ray computations */ |
270 |
register PACKET *p, |
271 |
register float *rvl |
272 |
) |
273 |
{ |
274 |
double d; |
275 |
register int i; |
276 |
|
277 |
for (i = 0; i < p->nr; i++) { |
278 |
setcolr(p->ra[i].v, rvl[0], rvl[1], rvl[2]); |
279 |
d = rvl[3]; |
280 |
if (p->offset != NULL) |
281 |
d += p->offset[i]; |
282 |
p->ra[i].d = hdcode(hdlist[p->hd], d); |
283 |
rvl += 4; |
284 |
} |
285 |
p->nc += p->nr; |
286 |
} |
287 |
|
288 |
|
289 |
extern int |
290 |
done_rtrace(void) /* clean up and close rtrace calculation */ |
291 |
{ |
292 |
int status; |
293 |
/* already closed? */ |
294 |
if (!nprocs) |
295 |
return(0); |
296 |
/* flush beam queue */ |
297 |
done_packets(flush_queue()); |
298 |
/* sync holodeck */ |
299 |
hdsync(NULL, 1); |
300 |
/* close rtrace */ |
301 |
if ((status = end_rtrace())) |
302 |
error(WARNING, "bad exit status from rtrace"); |
303 |
if (vdef(REPORT)) { /* report time */ |
304 |
eputs("rtrace process closed\n"); |
305 |
report(0); |
306 |
} |
307 |
return(status); /* return status */ |
308 |
} |
309 |
|
310 |
|
311 |
extern void |
312 |
new_rtrace(void) /* restart rtrace calculation */ |
313 |
{ |
314 |
char combuf[128]; |
315 |
|
316 |
if (nprocs > 0) /* already running? */ |
317 |
return; |
318 |
starttime = time(NULL); /* reset start time and counts */ |
319 |
npacksdone = nraysdone = 0L; |
320 |
if (vdef(TIME)) /* reset end time */ |
321 |
endtime = starttime + vflt(TIME)*3600. + .5; |
322 |
if (vdef(RIF)) { /* rerun rad to update octree */ |
323 |
sprintf(combuf, "rad -v 0 -s -w %s", vval(RIF)); |
324 |
if (system(combuf)) |
325 |
error(WARNING, "error running rad"); |
326 |
} |
327 |
if (start_rtrace() < 1) /* start rtrace */ |
328 |
error(WARNING, "cannot restart rtrace"); |
329 |
else if (vdef(REPORT)) { |
330 |
eputs("rtrace process restarted\n"); |
331 |
report(0); |
332 |
} |
333 |
} |
334 |
|
335 |
|
336 |
extern int |
337 |
getradfile(void) /* run rad and get needed variables */ |
338 |
{ |
339 |
static short mvar[] = {OCTREE,EYESEP,-1}; |
340 |
static char tf1[] = TEMPLATE; |
341 |
char tf2[64]; |
342 |
char combuf[256]; |
343 |
char *pippt = NULL; |
344 |
register int i; |
345 |
register char *cp; |
346 |
/* check if rad file specified */ |
347 |
if (!vdef(RIF)) |
348 |
return(0); |
349 |
/* create rad command */ |
350 |
mktemp(tf1); |
351 |
sprintf(tf2, "%s.rif", tf1); |
352 |
sprintf(combuf, |
353 |
"rad -v 0 -s -e -w %s OPTFILE=%s | egrep '^[ \t]*(NOMATCH", |
354 |
vval(RIF), tf1); |
355 |
cp = combuf; |
356 |
while (*cp){ |
357 |
if (*cp == '|') pippt = cp; |
358 |
cp++; |
359 |
} /* match unset variables */ |
360 |
for (i = 0; mvar[i] >= 0; i++) |
361 |
if (!vdef(mvar[i])) { |
362 |
*cp++ = '|'; |
363 |
strcpy(cp, vnam(mvar[i])); |
364 |
while (*cp) cp++; |
365 |
pippt = NULL; |
366 |
} |
367 |
if (pippt != NULL) |
368 |
strcpy(pippt, "> " NULL_DEVICE); /* nothing to match */ |
369 |
else |
370 |
sprintf(cp, ")[ \t]*=' > %s", tf2); |
371 |
#ifdef DEBUG |
372 |
wputs(combuf); wputs("\n"); |
373 |
#endif |
374 |
system(combuf); /* ignore exit code */ |
375 |
if (pippt == NULL) { |
376 |
loadvars(tf2); /* load variables */ |
377 |
unlink(tf2); |
378 |
} |
379 |
rtargc += wordfile(rtargv+rtargc, tf1); /* get rtrace options */ |
380 |
unlink(tf1); /* clean up */ |
381 |
return(1); |
382 |
} |
383 |
|
384 |
|
385 |
extern void |
386 |
report( /* report progress so far */ |
387 |
time_t t |
388 |
) |
389 |
{ |
390 |
static time_t seconds2go = 1000000; |
391 |
|
392 |
if (t == 0L) |
393 |
t = time(NULL); |
394 |
sprintf(errmsg, "%ld packets (%ld rays) done after %.2f hours\n", |
395 |
npacksdone, nraysdone, (t-starttime)/3600.); |
396 |
eputs(errmsg); |
397 |
if (seconds2go == 1000000) |
398 |
seconds2go = vdef(REPORT) ? (long)(vflt(REPORT)*60. + .5) : 0L; |
399 |
if (seconds2go) |
400 |
reporttime = t + seconds2go; |
401 |
} |