#ifndef lint static const char RCSid[] = "$Id: rholo2.c,v 3.28 2004/01/01 11:21:55 schorsch Exp $"; #endif /* * Rtrace support routines for holodeck rendering */ #include #include "rholo.h" #include "paths.h" #include "random.h" VIEWPOINT myeye; /* target view position */ struct gclim { HOLO *hp; /* holodeck pointer */ GCOORD gc; /* grid cell */ FVECT egp; /* eye grid point */ double erg2; /* mean square eye grid range */ double gmin[2], gmax[2]; /* grid coordinate limits */ }; /* a grid coordinate range */ static void initeyelim(struct gclim *gcl, HOLO *hp, GCOORD *gc); static void groweyelim(struct gclim *gcl, GCOORD *gc, double r0, double r1, int tight); static int clipeyelim(short rrng[2][2], struct gclim *gcl); static void initeyelim( /* initialize grid coordinate limits */ register struct gclim *gcl, register HOLO *hp, GCOORD *gc ) { register RREAL *v; register int i; if (hp != NULL) { hdgrid(gcl->egp, gcl->hp = hp, myeye.vpt); gcl->erg2 = 0; for (i = 0, v = hp->wg[0]; i < 3; i++, v += 3) gcl->erg2 += DOT(v,v); gcl->erg2 *= (1./3.) * myeye.rng*myeye.rng; } if (gc != NULL) gcl->gc = *gc; gcl->gmin[0] = gcl->gmin[1] = FHUGE; gcl->gmax[0] = gcl->gmax[1] = -FHUGE; } static void groweyelim( /* grow grid limits about eye point */ register struct gclim *gcl, GCOORD *gc, double r0, double r1, int tight ) { FVECT gp, ab; double ab2, od, cfact; double sqcoef[3], ctcoef[3], licoef[3], cnst; int gw, gi[2]; double wallpos, a, b, c, d, e, f; double root[2], yex; int n, i, j, nex; /* point/view cone */ i = gc->w>>1; gp[i] = gc->w&1 ? gcl->hp->grid[i] : 0; gp[hdwg0[gc->w]] = gc->i[0] + r0; gp[hdwg1[gc->w]] = gc->i[1] + r1; VSUB(ab, gcl->egp, gp); ab2 = DOT(ab, ab); gw = gcl->gc.w>>1; if ((i==gw ? ab[gw]*ab[gw] : ab2) <= gcl->erg2 + FTINY) { gcl->gmin[0] = gcl->gmin[1] = -FHUGE; gcl->gmax[0] = gcl->gmax[1] = FHUGE; return; /* too close (to wall) */ } ab2 = 1./ab2; /* 1/norm2(ab) */ od = DOT(gp, ab); /* origin dot direction */ cfact = 1./(1. - ab2*gcl->erg2); /* tan^2 + 1 of cone angle */ for (i = 0; i < 3; i++) { /* compute cone equation */ sqcoef[i] = ab[i]*ab[i]*cfact*ab2 - 1.; ctcoef[i] = 2.*ab[i]*ab[(i+1)%3]*cfact*ab2; licoef[i] = 2.*(gp[i] - ab[i]*cfact*od*ab2); } cnst = cfact*od*od*ab2 - DOT(gp,gp); /* * CONE: sqcoef[0]*x*x + sqcoef[1]*y*y + sqcoef[2]*z*z * + ctcoef[0]*x*y + ctcoef[1]*y*z + ctcoef[2]*z*x * + licoef[0]*x + licoef[1]*y + licoef[2]*z + cnst == 0 */ /* equation for conic section in plane */ gi[0] = hdwg0[gcl->gc.w]; gi[1] = hdwg1[gcl->gc.w]; wallpos = gcl->gc.w&1 ? gcl->hp->grid[gw] : 0; a = sqcoef[gi[0]]; /* x2 */ b = ctcoef[gi[0]]; /* xy */ c = sqcoef[gi[1]]; /* y2 */ d = ctcoef[gw]*wallpos + licoef[gi[0]]; /* x */ e = ctcoef[gi[1]]*wallpos + licoef[gi[1]]; /* y */ f = wallpos*(wallpos*sqcoef[gw] + licoef[gw]) + cnst; for (i = 0; i < 2; i++) { if (i) { /* swap x and y coefficients */ register double t; t = a; a = c; c = t; t = d; d = e; e = t; } nex = 0; /* check global extrema */ n = quadratic(root, a*(4.*a*c-b*b), 2.*a*(2.*c*d-b*e), d*(c*d-b*e) + f*b*b); while (n-- > 0) { if (gc->w>>1 == gi[i] && (gc->w&1) ^ (root[n] < gp[gc->w>>1])) { if (gc->w&1) gcl->gmin[i] = -FHUGE; else gcl->gmax[i] = FHUGE; nex++; continue; /* hyperbolic */ } if (tight) { yex = (-2.*a*root[n] - d)/b; if (yex < gcl->gc.i[1-i] || yex > gcl->gc.i[1-i]+1) continue; /* outside cell */ } if (root[n] < gcl->gmin[i]) gcl->gmin[i] = root[n]; if (root[n] > gcl->gmax[i]) gcl->gmax[i] = root[n]; nex++; } /* check local extrema */ for (j = nex < 2 ? 2 : 0; j--; ) { yex = gcl->gc.i[1-i] + j; n = quadratic(root, a, b*yex+d, yex*(yex*c+e)+f); while (n-- > 0) { if (gc->w>>1 == gi[i] && (gc->w&1) ^ (root[n] < gp[gc->w>>1])) continue; if (root[n] < gcl->gmin[i]) gcl->gmin[i] = root[n]; if (root[n] > gcl->gmax[i]) gcl->gmax[i] = root[n]; } } } } static int clipeyelim( /* clip eye limits to grid cell */ register short rrng[2][2], register struct gclim *gcl ) { int incell = 1; register int i; for (i = 0; i < 2; i++) { if (gcl->gmin[i] < gcl->gc.i[i]) gcl->gmin[i] = gcl->gc.i[i]; if (gcl->gmax[i] > gcl->gc.i[i]+1) gcl->gmax[i] = gcl->gc.i[i]+1; if (gcl->gmax[i] > gcl->gmin[i]) { rrng[i][0] = 256.*(gcl->gmin[i] - gcl->gc.i[i]) + (1.-FTINY); rrng[i][1] = 256.*(gcl->gmax[i] - gcl->gc.i[i]) + (1.-FTINY) - rrng[i][0]; } else rrng[i][0] = rrng[i][1] = 0; incell &= rrng[i][1] > 0; } return(incell); } extern void packrays( /* pack ray origins and directions */ register float *rod, register PACKET *p ) { #if 0 double dist2sum = 0.; FVECT vt; #endif int nretries = p->nr + 2; struct gclim eyelim; short rrng0[2][2], rrng1[2][2]; int useyelim; GCOORD gc[2]; FVECT ro, rd; double d; register int i; if (!hdbcoord(gc, hdlist[p->hd], p->bi)) error(CONSISTENCY, "bad beam index in packrays"); if ((useyelim = myeye.rng > FTINY)) { initeyelim(&eyelim, hdlist[p->hd], gc); groweyelim(&eyelim, gc+1, 0., 0., 0); groweyelim(&eyelim, gc+1, 1., 1., 0); useyelim = clipeyelim(rrng0, &eyelim); #ifdef DEBUG if (!useyelim) error(WARNING, "no eye overlap in packrays"); #endif } for (i = 0; i < p->nr; i++) { retry: if (useyelim) { initeyelim(&eyelim, NULL, gc+1); p->ra[i].r[0][0] = (int)(frandom()*rrng0[0][1]) + rrng0[0][0]; p->ra[i].r[0][1] = (int)(frandom()*rrng0[1][1]) + rrng0[1][0]; groweyelim(&eyelim, gc, (1./256.)*(p->ra[i].r[0][0]+.5), (1./256.)*(p->ra[i].r[0][1]+.5), 1); if (!clipeyelim(rrng1, &eyelim)) { useyelim = nretries-- > 0; #ifdef DEBUG if (!useyelim) error(WARNING, "exceeded retry limit in packrays"); #endif goto retry; } p->ra[i].r[1][0] = (int)(frandom()*rrng1[0][1]) + rrng1[0][0]; p->ra[i].r[1][1] = (int)(frandom()*rrng1[1][1]) + rrng1[1][0]; } else { p->ra[i].r[0][0] = frandom() * 256.; p->ra[i].r[0][1] = frandom() * 256.; p->ra[i].r[1][0] = frandom() * 256.; p->ra[i].r[1][1] = frandom() * 256.; } d = hdray(ro, rd, hdlist[p->hd], gc, p->ra[i].r); #if 0 VSUM(vt, ro, rd, d); dist2sum += dist2line(myeye.vpt, ro, vt); #endif if (p->offset != NULL) { if (!vdef(OBSTRUCTIONS)) d *= frandom(); /* random offset */ VSUM(ro, ro, rd, d); /* advance ray */ p->offset[i] = d; } VCOPY(rod, ro); rod += 3; VCOPY(rod, rd); rod += 3; } #if 0 fprintf(stderr, "%f RMS (%d retries)\t", sqrt(dist2sum/p->nr), p->nr + 2 - nretries); #endif } extern void donerays( /* encode finished ray computations */ register PACKET *p, register float *rvl ) { double d; register int i; for (i = 0; i < p->nr; i++) { setcolr(p->ra[i].v, rvl[0], rvl[1], rvl[2]); d = rvl[3]; if (p->offset != NULL) d += p->offset[i]; p->ra[i].d = hdcode(hdlist[p->hd], d); rvl += 4; } p->nc += p->nr; } extern int done_rtrace(void) /* clean up and close rtrace calculation */ { int status; /* already closed? */ if (!nprocs) return(0); /* flush beam queue */ done_packets(flush_queue()); /* sync holodeck */ hdsync(NULL, 1); /* close rtrace */ if ((status = end_rtrace())) error(WARNING, "bad exit status from rtrace"); if (vdef(REPORT)) { /* report time */ eputs("rtrace process closed\n"); report(0); } return(status); /* return status */ } extern void new_rtrace(void) /* restart rtrace calculation */ { char combuf[128]; if (nprocs > 0) /* already running? */ return; starttime = time(NULL); /* reset start time and counts */ npacksdone = nraysdone = 0L; if (vdef(TIME)) /* reset end time */ endtime = starttime + vflt(TIME)*3600. + .5; if (vdef(RIF)) { /* rerun rad to update octree */ sprintf(combuf, "rad -v 0 -s -w %s", vval(RIF)); if (system(combuf)) error(WARNING, "error running rad"); } if (start_rtrace() < 1) /* start rtrace */ error(WARNING, "cannot restart rtrace"); else if (vdef(REPORT)) { eputs("rtrace process restarted\n"); report(0); } } extern int getradfile(void) /* run rad and get needed variables */ { static short mvar[] = {OCTREE,EYESEP,-1}; static char tf1[] = TEMPLATE; char tf2[64]; char combuf[256]; char *pippt = NULL; register int i; register char *cp; /* check if rad file specified */ if (!vdef(RIF)) return(0); /* create rad command */ mktemp(tf1); sprintf(tf2, "%s.rif", tf1); sprintf(combuf, "rad -v 0 -s -e -w %s OPTFILE=%s | egrep '^[ \t]*(NOMATCH", vval(RIF), tf1); cp = combuf; while (*cp){ if (*cp == '|') pippt = cp; cp++; } /* match unset variables */ for (i = 0; mvar[i] >= 0; i++) if (!vdef(mvar[i])) { *cp++ = '|'; strcpy(cp, vnam(mvar[i])); while (*cp) cp++; pippt = NULL; } if (pippt != NULL) strcpy(pippt, "> " NULL_DEVICE); /* nothing to match */ else sprintf(cp, ")[ \t]*=' > %s", tf2); #ifdef DEBUG wputs(combuf); wputs("\n"); #endif system(combuf); /* ignore exit code */ if (pippt == NULL) { loadvars(tf2); /* load variables */ unlink(tf2); } rtargc += wordfile(rtargv+rtargc, tf1); /* get rtrace options */ unlink(tf1); /* clean up */ return(1); } extern void report( /* report progress so far */ time_t t ) { static time_t seconds2go = 1000000; if (t == 0L) t = time(NULL); sprintf(errmsg, "%ld packets (%ld rays) done after %.2f hours\n", npacksdone, nraysdone, (t-starttime)/3600.); eputs(errmsg); if (seconds2go == 1000000) seconds2go = vdef(REPORT) ? (long)(vflt(REPORT)*60. + .5) : 0L; if (seconds2go) reporttime = t + seconds2go; }