/* Copyright (c) 1998 Silicon Graphics, Inc. */ #ifndef lint static char SCCSid[] = "$SunId$ SGI"; #endif /* * Rtrace support routines for holodeck rendering */ #include "rholo.h" #include "paths.h" #include "random.h" VIEWPOINT myeye; /* target view position */ struct gclim { HOLO *hp; /* holodeck pointer */ GCOORD gc; /* grid cell */ FVECT egp; /* eye grid point */ double erg[2]; /* eye range in wall grid coords */ double gmin[2], gmax[2]; /* grid coordinate limits */ }; /* a grid coordinate range */ static initeyelim(gcl, hd, gc) /* initialize grid coordinate limits */ register struct gclim *gcl; int hd; GCOORD *gc; { register FLOAT *v; register int i; gcl->hp = hdlist[hd]; copystruct(&gcl->gc, gc); hdgrid(gcl->egp, gcl->hp, myeye.vpt); for (i = 0; i < 2; i++) { v = gcl->hp->wg[((gcl->gc.w>>1)+i+1)%3]; gcl->erg[i] = myeye.rng * VLEN(v); gcl->gmin[i] = FHUGE; gcl->gmax[i] = -FHUGE; } } static groweyelim(gcl, gp) /* grow grid limits about eye point */ register struct gclim *gcl; FVECT gp; { FVECT ab; double l2, d, mult, wg; register int i, g; VSUB(ab, gcl->egp, gp); l2 = DOT(ab,ab); if (l2 <= gcl->erg[0]*gcl->erg[1]) { gcl->gmin[0] = gcl->gmin[1] = -FHUGE; gcl->gmax[0] = gcl->gmax[1] = FHUGE; return; } mult = gp[g = gcl->gc.w>>1]; if (gcl->gc.w&1) mult -= gcl->hp->grid[g]; if (ab[g]*ab[g] > gcl->erg[0]*gcl->erg[1]) mult /= -ab[g]; else if (fabs(ab[hdwg0[gcl->gc.w]]) > fabs(ab[hdwg1[gcl->gc.w]])) mult = (gcl->gc.i[0] + .5 - gp[hdwg0[gcl->gc.w]]) / ab[hdwg0[gcl->gc.w]]; else mult = (gcl->gc.i[1] + .5 - gp[hdwg1[gcl->gc.w]]) / ab[hdwg1[gcl->gc.w]]; for (i = 0; i < 2; i++) { g = ((gcl->gc.w>>1)+i+1)%3; wg = gp[g] + mult*ab[g]; d = mult*gcl->erg[i]; if (d < 0.) d = -d; if (wg - d < gcl->gmin[i]) gcl->gmin[i] = wg - d; if (wg + d > gcl->gmax[i]) gcl->gmax[i] = wg + d; } } static int clipeyelim(rrng, gcl) /* clip eye limits to grid cell */ register short rrng[2][2]; register struct gclim *gcl; { int incell = 1; register int i; for (i = 0; i < 2; i++) { if (gcl->gmin[i] < gcl->gc.i[i]) gcl->gmin[i] = gcl->gc.i[i]; if (gcl->gmax[i] > gcl->gc.i[i]+1) gcl->gmax[i] = gcl->gc.i[i]+1; if ((incell &= gcl->gmax[i] > gcl->gmin[i])) { rrng[i][0] = 256.*(gcl->gmin[i] - gcl->gc.i[i]) + (1.-FTINY); rrng[i][1] = 256.*(gcl->gmax[i] - gcl->gc.i[i]) + (1.-FTINY) - rrng[i][0]; incell &= rrng[i][1] > 0; } } return(incell); } packrays(rod, p) /* pack ray origins and directions */ register float *rod; register PACKET *p; { #define gp ro #ifdef DEBUG double dist2sum = 0.; FVECT vt; #endif int nretries = p->nr + 2; struct gclim eyelim; short rrng0[2][2], rrng1[2][2]; int useyelim; GCOORD gc[2]; FVECT ro, rd; double d; register int i; if (!hdbcoord(gc, hdlist[p->hd], p->bi)) error(CONSISTENCY, "bad beam index in packrays"); if ((useyelim = myeye.rng > FTINY)) { initeyelim(&eyelim, p->hd, gc); gp[gc[1].w>>1] = gc[1].w&1 ? hdlist[p->hd]->grid[gc[1].w>>1] : 0; gp[hdwg0[gc[1].w]] = gc[1].i[0]; gp[hdwg1[gc[1].w]] = gc[1].i[1]; groweyelim(&eyelim, gp); gp[hdwg0[gc[1].w]]++; gp[hdwg1[gc[1].w]]++; groweyelim(&eyelim, gp); useyelim &= clipeyelim(rrng0, &eyelim); } for (i = 0; i < p->nr; i++) { retry: if (useyelim) { p->ra[i].r[0][0] = (int)(frandom()*rrng0[0][1]) + rrng0[0][0]; p->ra[i].r[0][1] = (int)(frandom()*rrng0[1][1]) + rrng0[1][0]; initeyelim(&eyelim, p->hd, gc+1); gp[gc[0].w>>1] = gc[0].w&1 ? hdlist[p->hd]->grid[gc[0].w>>1] : 0; gp[hdwg0[gc[0].w]] = gc[0].i[0] + (1./256.)*(p->ra[i].r[0][0]+.5); gp[hdwg1[gc[0].w]] = gc[0].i[1] + (1./256.)*(p->ra[i].r[0][1]+.5); groweyelim(&eyelim, gp); if (!clipeyelim(rrng1, &eyelim)) { useyelim &= nretries-- > 0; #ifdef DEBUG if (!useyelim) error(WARNING, "exceeded retry limit in packrays"); #endif goto retry; } p->ra[i].r[1][0] = (int)(frandom()*rrng1[0][1]) + rrng1[0][0]; p->ra[i].r[1][1] = (int)(frandom()*rrng1[1][1]) + rrng1[1][0]; } else { p->ra[i].r[0][0] = frandom() * 256.; p->ra[i].r[0][1] = frandom() * 256.; p->ra[i].r[1][0] = frandom() * 256.; p->ra[i].r[1][1] = frandom() * 256.; } d = hdray(ro, rd, hdlist[p->hd], gc, p->ra[i].r); #ifdef DEBUG VSUM(vt, ro, rd, d); dist2sum += dist2line(myeye.vpt, ro, vt); #endif if (p->offset != NULL) { if (!vdef(OBSTRUCTIONS)) d *= frandom(); /* random offset */ VSUM(ro, ro, rd, d); /* advance ray */ p->offset[i] = d; } VCOPY(rod, ro); rod += 3; VCOPY(rod, rd); rod += 3; } #ifdef DEBUG fprintf(stderr, "RMS distance = %f\n", sqrt(dist2sum/p->nr)); #endif #undef gp } donerays(p, rvl) /* encode finished ray computations */ register PACKET *p; register float *rvl; { double d; register int i; for (i = 0; i < p->nr; i++) { setcolr(p->ra[i].v, rvl[0], rvl[1], rvl[2]); d = rvl[3]; if (p->offset != NULL) d += p->offset[i]; p->ra[i].d = hdcode(hdlist[p->hd], d); rvl += 4; } p->nc += p->nr; } int done_rtrace() /* clean up and close rtrace calculation */ { int status; /* already closed? */ if (!nprocs) return; /* flush beam queue */ done_packets(flush_queue()); /* sync holodeck */ hdsync(NULL, 1); /* close rtrace */ if ((status = end_rtrace())) error(WARNING, "bad exit status from rtrace"); if (vdef(REPORT)) { /* report time */ eputs("rtrace process closed\n"); report(0); } return(status); /* return status */ } new_rtrace() /* restart rtrace calculation */ { char combuf[128]; if (nprocs > 0) /* already running? */ return; starttime = time(NULL); /* reset start time and counts */ npacksdone = nraysdone = 0L; if (vdef(TIME)) /* reset end time */ endtime = starttime + vflt(TIME)*3600. + .5; if (vdef(RIF)) { /* rerun rad to update octree */ sprintf(combuf, "rad -v 0 -s -w %s", vval(RIF)); if (system(combuf)) error(WARNING, "error running rad"); } if (start_rtrace() < 1) /* start rtrace */ error(WARNING, "cannot restart rtrace"); else if (vdef(REPORT)) { eputs("rtrace process restarted\n"); report(0); } } getradfile() /* run rad and get needed variables */ { static short mvar[] = {OCTREE,EYESEP,-1}; static char tf1[] = TEMPLATE; char tf2[64]; char combuf[256]; char *pippt; register int i; register char *cp; /* check if rad file specified */ if (!vdef(RIF)) return(0); /* create rad command */ mktemp(tf1); sprintf(tf2, "%s.rif", tf1); sprintf(combuf, "rad -v 0 -s -e -w %s OPTFILE=%s | egrep '^[ \t]*(NOMATCH", vval(RIF), tf1); cp = combuf; while (*cp){ if (*cp == '|') pippt = cp; cp++; } /* match unset variables */ for (i = 0; mvar[i] >= 0; i++) if (!vdef(mvar[i])) { *cp++ = '|'; strcpy(cp, vnam(mvar[i])); while (*cp) cp++; pippt = NULL; } if (pippt != NULL) strcpy(pippt, "> /dev/null"); /* nothing to match */ else sprintf(cp, ")[ \t]*=' > %s", tf2); #ifdef DEBUG wputs(combuf); wputs("\n"); #endif system(combuf); /* ignore exit code */ if (pippt == NULL) { loadvars(tf2); /* load variables */ unlink(tf2); } rtargc += wordfile(rtargv+rtargc, tf1); /* get rtrace options */ unlink(tf1); /* clean up */ return(1); } report(t) /* report progress so far */ time_t t; { static time_t seconds2go = 1000000; if (t == 0L) t = time(NULL); sprintf(errmsg, "%ld packets (%ld rays) done after %.2f hours\n", npacksdone, nraysdone, (t-starttime)/3600.); eputs(errmsg); if (seconds2go == 1000000) seconds2go = vdef(REPORT) ? (long)(vflt(REPORT)*60. + .5) : 0L; if (seconds2go) reporttime = t + seconds2go; }