ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhdisp3.c
Revision: 3.20
Committed: Thu May 14 20:58:03 2020 UTC (3 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R3, HEAD
Changes since 3.19: +3 -3 lines
Log Message:
Fixed return-value checking for viewloc()

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rhdisp3.c,v 3.19 2020/03/12 17:19:18 greg Exp $";
3 #endif
4 /*
5 * Holodeck beam support for display process
6 */
7
8 #include "rholo.h"
9 #include "rhdisp.h"
10
11 struct cellist {
12 GCOORD *cl;
13 int n;
14 };
15
16
17 int
18 npixels(vp, hr, vr, hp, bi) /* compute appropriate nrays to evaluate */
19 VIEW *vp;
20 int hr, vr;
21 HOLO *hp;
22 int bi;
23 {
24 VIEW vrev;
25 GCOORD gc[2];
26 FVECT cp[4], ip[4], pf, pb;
27 double af, ab, sf2, sb2, dfb2, df2, db2, penalty;
28 int i;
29 /* special case */
30 if (hr <= 0 | vr <= 0)
31 return(0);
32 /* compute cell corners in image */
33 if (!hdbcoord(gc, hp, bi))
34 error(CONSISTENCY, "bad beam index in npixels");
35 hdcell(cp, hp, gc+1); /* find cell on front image */
36 for (i = 3; i--; ) /* compute front center */
37 pf[i] = 0.5*(cp[0][i] + cp[2][i]);
38 sf2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */
39 for (i = 0; i < 4; i++) { /* compute visible quad */
40 if (viewloc(ip[i], vp, cp[i]) != VL_GOOD) {
41 af = 0;
42 goto getback;
43 }
44 ip[i][0] *= (double)hr; /* scale by resolution */
45 ip[i][1] *= (double)vr;
46 }
47 /* compute front area */
48 af = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
49 (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
50 af += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
51 (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
52 af *= af >= 0 ? 0.5 : -0.5;
53 getback:
54 vrev = *vp; /* compute reverse view */
55 for (i = 0; i < 3; i++) {
56 vrev.vdir[i] = -vp->vdir[i];
57 vrev.vup[i] = -vp->vup[i];
58 vrev.hvec[i] = -vp->hvec[i];
59 vrev.vvec[i] = -vp->vvec[i];
60 }
61 hdcell(cp, hp, gc); /* find cell on back image */
62 for (i = 3; i--; ) /* compute rear center */
63 pb[i] = 0.5*(cp[0][i] + cp[2][i]);
64 sb2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */
65 for (i = 0; i < 4; i++) { /* compute visible quad */
66 if (viewloc(ip[i], &vrev, cp[i]) != VL_GOOD) {
67 ab = 0;
68 goto finish;
69 }
70 ip[i][0] *= (double)hr; /* scale by resolution */
71 ip[i][1] *= (double)vr;
72 }
73 /* compute back area */
74 ab = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
75 (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
76 ab += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
77 (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
78 ab *= ab >= 0 ? 0.5 : -0.5;
79 finish: /* compute penalty based on dist. sightline - viewpoint */
80 df2 = dist2(vp->vp, pf);
81 db2 = dist2(vp->vp, pb);
82 dfb2 = dist2(pf, pb);
83 penalty = dfb2 + df2 - db2;
84 penalty = df2 - 0.25*penalty*penalty/dfb2;
85 if (df2 > db2) penalty /= df2 <= dfb2 ? sb2 : sb2*df2/dfb2;
86 else penalty /= db2 <= dfb2 ? sf2 : sf2*db2/dfb2;
87 if (penalty < 1.) penalty = 1.;
88 /* round off smaller non-zero area */
89 if (ab <= FTINY || (af > FTINY && af <= ab))
90 return((int)(af/penalty + 0.5));
91 return((int)(ab/penalty + 0.5));
92 }
93
94
95 /*
96 * The ray directions that define the pyramid in visit_cells() needn't
97 * be normalized, but they must be given in clockwise order as seen
98 * from the pyramid's apex (origin).
99 * If no cell centers fall within the domain, the closest cell is visited.
100 */
101 int
102 visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */
103 FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */
104 HOLO *hp;
105 int (*vf)();
106 char *dp;
107 {
108 int ncalls = 0, n = 0;
109 int inflags = 0;
110 FVECT gp, pn[4], lo, ld;
111 double po[4], lbeg, lend, d, t;
112 GCOORD gc, gc2[2];
113 int i;
114 /* figure out whose side we're on */
115 hdgrid(gp, hp, orig);
116 for (i = 0; i < 3; i++) {
117 inflags |= (gp[i] > FTINY) << (i<<1);
118 inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1);
119 }
120 /* compute pyramid planes */
121 for (i = 0; i < 4; i++) {
122 fcross(pn[i], pyrd[i], pyrd[(i+1)&03]);
123 po[i] = DOT(pn[i], orig);
124 }
125 /* traverse each wall */
126 for (gc.w = 0; gc.w < 6; gc.w++) {
127 if (!(inflags & 1<<gc.w)) /* origin on wrong side */
128 continue;
129 /* scanline algorithm */
130 for (gc.i[1] = hp->grid[hdwg1[gc.w]]; gc.i[1]--; ) {
131 /* compute scanline */
132 gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0;
133 gp[hdwg0[gc.w]] = 0;
134 gp[hdwg1[gc.w]] = gc.i[1] + 0.5;
135 hdworld(lo, hp, gp);
136 gp[hdwg0[gc.w]] = 1;
137 hdworld(ld, hp, gp);
138 ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2];
139 /* find scanline limits */
140 lbeg = 0; lend = hp->grid[hdwg0[gc.w]];
141 for (i = 0; i < 4; i++) {
142 t = DOT(pn[i], lo) - po[i];
143 d = -DOT(pn[i], ld);
144 if (d > FTINY) { /* <- plane */
145 if ((t /= d) < lend)
146 lend = t;
147 } else if (d < -FTINY) { /* plane -> */
148 if ((t /= d) > lbeg)
149 lbeg = t;
150 } else if (t < 0) { /* outside */
151 lend = -1;
152 break;
153 }
154 }
155 if (lbeg >= lend)
156 continue;
157 i = lend + .5; /* visit cells on this scan */
158 for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) {
159 n += (*vf)(&gc, dp);
160 ncalls++;
161 }
162 }
163 }
164 if (ncalls) /* got one at least */
165 return(n);
166 /* else find closest cell */
167 VSUM(ld, pyrd[0], pyrd[1], 1.);
168 VSUM(ld, ld, pyrd[2], 1.);
169 VSUM(ld, ld, pyrd[3], 1.);
170 #if 0
171 if (normalize(ld) == 0.0) /* technically not necessary */
172 return(0);
173 #endif
174 d = hdinter(gc2, NULL, &t, hp, orig, ld);
175 if (d >= FHUGE*.99 || t <= 0.)
176 return(0);
177 return((*vf)(gc2+1, dp)); /* visit it */
178 }
179
180
181 sect_behind(hp, vp) /* check if section is "behind" viewpoint */
182 HOLO *hp;
183 VIEW *vp;
184 {
185 FVECT hcent;
186 /* compute holodeck section center */
187 VSUM(hcent, hp->orig, hp->xv[0], 0.5);
188 VSUM(hcent, hcent, hp->xv[1], 0.5);
189 VSUM(hcent, hcent, hp->xv[2], 0.5);
190 /* behind if center is behind */
191 return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp));
192 }
193
194
195 viewpyramid(org, dir, hp, vp) /* compute view pyramid */
196 FVECT org, dir[4];
197 HOLO *hp;
198 VIEW *vp;
199 {
200 int i;
201 /* check view type */
202 if (vp->type == VT_PAR)
203 return(0);
204 /* in front or behind? */
205 if (!sect_behind(hp, vp)) {
206 if (viewray(org, dir[0], vp, 0., 0.) < -FTINY)
207 return(0);
208 if (viewray(org, dir[1], vp, 0., 1.) < -FTINY)
209 return(0);
210 if (viewray(org, dir[2], vp, 1., 1.) < -FTINY)
211 return(0);
212 if (viewray(org, dir[3], vp, 1., 0.) < -FTINY)
213 return(0);
214 return(1);
215 } /* reverse pyramid */
216 if (viewray(org, dir[3], vp, 0., 0.) < -FTINY)
217 return(0);
218 if (viewray(org, dir[2], vp, 0., 1.) < -FTINY)
219 return(0);
220 if (viewray(org, dir[1], vp, 1., 1.) < -FTINY)
221 return(0);
222 if (viewray(org, dir[0], vp, 1., 0.) < -FTINY)
223 return(0);
224 for (i = 0; i < 3; i++) {
225 dir[0][i] = -dir[0][i];
226 dir[1][i] = -dir[1][i];
227 dir[2][i] = -dir[2][i];
228 dir[3][i] = -dir[3][i];
229 }
230 return(-1);
231 }
232
233
234 int
235 addcell(gcp, cl) /* add a cell to a list */
236 GCOORD *gcp;
237 struct cellist *cl;
238 {
239 *(cl->cl+cl->n) = *gcp;
240 cl->n++;
241 return(1);
242 }
243
244
245 int
246 cellcmp(gcp1, gcp2) /* visit_cells() cell ordering */
247 GCOORD *gcp1, *gcp2;
248 {
249 int c;
250
251 if ((c = gcp1->w - gcp2->w))
252 return(c);
253 if ((c = gcp2->i[1] - gcp1->i[1])) /* wg1 is reverse-ordered */
254 return(c);
255 return(gcp1->i[0] - gcp2->i[0]);
256 }
257
258
259 GCOORD *
260 getviewcells(np, hp, vp) /* get ordered cell list for section view */
261 int *np; /* returned number of cells (negative if reversed) */
262 HOLO *hp;
263 VIEW *vp;
264 {
265 FVECT org, dir[4];
266 int orient;
267 struct cellist cl;
268 /* compute view pyramid */
269 *np = 0;
270 orient = viewpyramid(org, dir, hp, vp);
271 if (!orient)
272 return(NULL);
273 /* allocate enough list space */
274 cl.n = 2*( hp->grid[0]*hp->grid[1] +
275 hp->grid[0]*hp->grid[2] +
276 hp->grid[1]*hp->grid[2] );
277 cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD));
278 if (cl.cl == NULL)
279 goto memerr;
280 cl.n = 0; /* add cells within pyramid */
281 visit_cells(org, dir, hp, addcell, (char *)&cl);
282 if (!cl.n) {
283 free((void *)cl.cl);
284 return(NULL);
285 }
286 *np = cl.n * orient;
287 #if 0
288 /* We're just going to free this memory in a moment, and list is
289 * sorted automatically by visit_cells(), so we don't need this.
290 */
291 /* optimize memory use */
292 cl.cl = (GCOORD *)realloc((void *)cl.cl, cl.n*sizeof(GCOORD));
293 if (cl.cl == NULL)
294 goto memerr;
295 /* sort the list */
296 qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp);
297 #endif
298 return(cl.cl);
299 memerr:
300 error(SYSTEM, "out of memory in getviewcells");
301 }
302
303
304 void
305 gridlines( /* run through holodeck section grid lines */
306 void (*f)(FVECT wp[2])
307 )
308 {
309 int hd, w, i;
310 int g0, g1;
311 FVECT wp[2], mov;
312 double d;
313 /* do each wall on each section */
314 for (hd = 0; hdlist[hd] != NULL; hd++)
315 for (w = 0; w < 6; w++) {
316 g0 = hdwg0[w];
317 g1 = hdwg1[w];
318 d = 1.0/hdlist[hd]->grid[g0];
319 mov[0] = d * hdlist[hd]->xv[g0][0];
320 mov[1] = d * hdlist[hd]->xv[g0][1];
321 mov[2] = d * hdlist[hd]->xv[g0][2];
322 if (w & 1) {
323 VSUM(wp[0], hdlist[hd]->orig,
324 hdlist[hd]->xv[w>>1], 1.);
325 VSUM(wp[0], wp[0], mov, 1.);
326 } else
327 VCOPY(wp[0], hdlist[hd]->orig);
328 VSUM(wp[1], wp[0], hdlist[hd]->xv[g1], 1.);
329 for (i = hdlist[hd]->grid[g0]; ; ) { /* g0 lines */
330 (*f)(wp);
331 if (!--i) break;
332 wp[0][0] += mov[0]; wp[0][1] += mov[1];
333 wp[0][2] += mov[2]; wp[1][0] += mov[0];
334 wp[1][1] += mov[1]; wp[1][2] += mov[2];
335 }
336 d = 1.0/hdlist[hd]->grid[g1];
337 mov[0] = d * hdlist[hd]->xv[g1][0];
338 mov[1] = d * hdlist[hd]->xv[g1][1];
339 mov[2] = d * hdlist[hd]->xv[g1][2];
340 if (w & 1)
341 VSUM(wp[0], hdlist[hd]->orig,
342 hdlist[hd]->xv[w>>1], 1.);
343 else
344 VSUM(wp[0], hdlist[hd]->orig, mov, 1.);
345 VSUM(wp[1], wp[0], hdlist[hd]->xv[g0], 1.);
346 for (i = hdlist[hd]->grid[g1]; ; ) { /* g1 lines */
347 (*f)(wp);
348 if (!--i) break;
349 wp[0][0] += mov[0]; wp[0][1] += mov[1];
350 wp[0][2] += mov[2]; wp[1][0] += mov[0];
351 wp[1][1] += mov[1]; wp[1][2] += mov[2];
352 }
353 }
354 }