/* Copyright (c) 1998 Silicon Graphics, Inc. */ #ifndef lint static char SCCSid[] = "$SunId$ SGI"; #endif /* * Holodeck beam support for display process */ #include "rholo.h" #include "rhdisp.h" #include "view.h" struct cellist { GCOORD *cl; int n; }; int npixels(vp, hr, vr, hp, bi) /* compute appropriate nrays to evaluate */ register VIEW *vp; int hr, vr; HOLO *hp; int bi; { VIEW vrev; GCOORD gc[2]; FVECT cp[4], ip[4], pf, pb; double af, ab, sf2, sb2, dfb2, df2, db2, penalty; register int i; /* special case */ if (hr <= 0 | vr <= 0) return(0); /* compute cell corners in image */ if (!hdbcoord(gc, hp, bi)) error(CONSISTENCY, "bad beam index in npixels"); hdcell(cp, hp, gc+1); /* find cell on front image */ for (i = 3; i--; ) /* compute front center */ pf[i] = 0.5*(cp[0][i] + cp[2][i]); sf2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */ for (i = 0; i < 4; i++) { /* compute visible quad */ viewloc(ip[i], vp, cp[i]); if (ip[i][2] < 0.) { af = 0; goto getback; } ip[i][0] *= (double)hr; /* scale by resolution */ ip[i][1] *= (double)vr; } /* compute front area */ af = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) - (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]); af += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) - (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]); af *= af >= 0 ? 0.5 : -0.5; getback: copystruct(&vrev, vp); /* compute reverse view */ for (i = 0; i < 3; i++) { vrev.vdir[i] = -vp->vdir[i]; vrev.vup[i] = -vp->vup[i]; vrev.hvec[i] = -vp->hvec[i]; vrev.vvec[i] = -vp->vvec[i]; } hdcell(cp, hp, gc); /* find cell on back image */ for (i = 3; i--; ) /* compute rear center */ pb[i] = 0.5*(cp[0][i] + cp[2][i]); sb2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */ for (i = 0; i < 4; i++) { /* compute visible quad */ viewloc(ip[i], &vrev, cp[i]); if (ip[i][2] < 0.) { ab = 0; goto finish; } ip[i][0] *= (double)hr; /* scale by resolution */ ip[i][1] *= (double)vr; } /* compute back area */ ab = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) - (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]); ab += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) - (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]); ab *= ab >= 0 ? 0.5 : -0.5; finish: /* compute penalty based on dist. sightline - viewpoint */ df2 = dist2(vp->vp, pf); db2 = dist2(vp->vp, pb); dfb2 = dist2(pf, pb); penalty = dfb2 + df2 - db2; penalty = df2 - 0.25*penalty*penalty/dfb2; if (df2 > db2) penalty /= df2 <= dfb2 ? sb2 : sb2*df2/dfb2; else penalty /= db2 <= dfb2 ? sf2 : sf2*db2/dfb2; if (penalty < 1.) penalty = 1.; /* round off smaller non-zero area */ if (ab <= FTINY || (af > FTINY && af <= ab)) return((int)(af/penalty + 0.5)); return((int)(ab/penalty + 0.5)); } /* * The ray directions that define the pyramid in visit_cells() needn't * be normalized, but they must be given in clockwise order as seen * from the pyramid's apex (origin). * If no cell centers fall within the domain, the closest cell is visited. */ int visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */ FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */ register HOLO *hp; int (*vf)(); char *dp; { int ncalls = 0, n = 0; int inflags = 0; FVECT gp, pn[4], lo, ld; double po[4], lbeg, lend, d, t; GCOORD gc, gc2[2]; register int i; /* figure out whose side we're on */ hdgrid(gp, hp, orig); for (i = 0; i < 3; i++) { inflags |= (gp[i] > FTINY) << (i<<1); inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1); } /* compute pyramid planes */ for (i = 0; i < 4; i++) { fcross(pn[i], pyrd[i], pyrd[(i+1)&03]); po[i] = DOT(pn[i], orig); } /* traverse each wall */ for (gc.w = 0; gc.w < 6; gc.w++) { if (!(inflags & 1<grid[hdwg1[gc.w]]; gc.i[1]--; ) { /* compute scanline */ gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0; gp[hdwg0[gc.w]] = 0; gp[hdwg1[gc.w]] = gc.i[1] + 0.5; hdworld(lo, hp, gp); gp[hdwg0[gc.w]] = 1; hdworld(ld, hp, gp); ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2]; /* find scanline limits */ lbeg = 0; lend = hp->grid[hdwg0[gc.w]]; for (i = 0; i < 4; i++) { t = DOT(pn[i], lo) - po[i]; d = -DOT(pn[i], ld); if (d > FTINY) { /* <- plane */ if ((t /= d) < lend) lend = t; } else if (d < -FTINY) { /* plane -> */ if ((t /= d) > lbeg) lbeg = t; } else if (t < 0) { /* outside */ lend = -1; break; } } if (lbeg >= lend) continue; i = lend + .5; /* visit cells on this scan */ for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) { n += (*vf)(&gc, dp); ncalls++; } } } if (ncalls) /* got one at least */ return(n); /* else find closest cell */ VSUM(ld, pyrd[0], pyrd[1], 1.); VSUM(ld, ld, pyrd[2], 1.); VSUM(ld, ld, pyrd[3], 1.); #if 0 if (normalize(ld) == 0.0) /* technically not necessary */ return(0); #endif d = hdinter(gc2, NULL, &t, hp, orig, ld); if (d >= FHUGE || t <= 0.) return(0); return((*vf)(gc2+1, dp)); /* visit it */ } sect_behind(hp, vp) /* check if section is "behind" viewpoint */ register HOLO *hp; register VIEW *vp; { FVECT hcent; /* compute holodeck section center */ VSUM(hcent, hp->orig, hp->xv[0], 0.5); VSUM(hcent, hcent, hp->xv[1], 0.5); VSUM(hcent, hcent, hp->xv[2], 0.5); /* behind if center is behind */ return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp)); } viewpyramid(org, dir, hp, vp) /* compute view pyramid */ FVECT org, dir[4]; HOLO *hp; VIEW *vp; { register int i; /* check view type */ if (vp->type == VT_PAR) return(0); /* in front or behind? */ if (!sect_behind(hp, vp)) { if (viewray(org, dir[0], vp, 0., 0.) < -FTINY) return(0); if (viewray(org, dir[1], vp, 0., 1.) < -FTINY) return(0); if (viewray(org, dir[2], vp, 1., 1.) < -FTINY) return(0); if (viewray(org, dir[3], vp, 1., 0.) < -FTINY) return(0); return(1); } /* reverse pyramid */ if (viewray(org, dir[3], vp, 0., 0.) < -FTINY) return(0); if (viewray(org, dir[2], vp, 0., 1.) < -FTINY) return(0); if (viewray(org, dir[1], vp, 1., 1.) < -FTINY) return(0); if (viewray(org, dir[0], vp, 1., 0.) < -FTINY) return(0); for (i = 0; i < 3; i++) { dir[0][i] = -dir[0][i]; dir[1][i] = -dir[1][i]; dir[2][i] = -dir[2][i]; dir[3][i] = -dir[3][i]; } return(-1); } int addcell(gcp, cl) /* add a cell to a list */ GCOORD *gcp; register struct cellist *cl; { copystruct(cl->cl+cl->n, gcp); cl->n++; return(1); } int cellcmp(gcp1, gcp2) /* visit_cells() cell ordering */ register GCOORD *gcp1, *gcp2; { register int c; if ((c = gcp1->w - gcp2->w)) return(c); if ((c = gcp2->i[1] - gcp1->i[1])) /* wg1 is reverse-ordered */ return(c); return(gcp1->i[0] - gcp2->i[0]); } GCOORD * getviewcells(np, hp, vp) /* get ordered cell list for section view */ int *np; /* returned number of cells (negative if reversed) */ register HOLO *hp; VIEW *vp; { FVECT org, dir[4]; int orient; struct cellist cl; /* compute view pyramid */ *np = 0; orient = viewpyramid(org, dir, hp, vp); if (!orient) return(NULL); /* allocate enough list space */ cl.n = 2*( hp->grid[0]*hp->grid[1] + hp->grid[0]*hp->grid[2] + hp->grid[1]*hp->grid[2] ); cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD)); if (cl.cl == NULL) goto memerr; cl.n = 0; /* add cells within pyramid */ visit_cells(org, dir, hp, addcell, (char *)&cl); if (!cl.n) { free((char *)cl.cl); return(NULL); } *np = cl.n * orient; #if 0 /* We're just going to free this memory in a moment, and list is * sorted automatically by visit_cells(), so we don't need this. */ /* optimize memory use */ cl.cl = (GCOORD *)realloc((char *)cl.cl, cl.n*sizeof(GCOORD)); if (cl.cl == NULL) goto memerr; /* sort the list */ qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp); #endif return(cl.cl); memerr: error(SYSTEM, "out of memory in getviewcells"); } gridlines(f) /* run through holodeck section grid lines */ int (*f)(); { register int hd, w, i; int g0, g1; FVECT wp[2], mov; double d; /* do each wall on each section */ for (hd = 0; hdlist[hd] != NULL; hd++) for (w = 0; w < 6; w++) { g0 = hdwg0[w]; g1 = hdwg1[w]; d = 1.0/hdlist[hd]->grid[g0]; mov[0] = d * hdlist[hd]->xv[g0][0]; mov[1] = d * hdlist[hd]->xv[g0][1]; mov[2] = d * hdlist[hd]->xv[g0][2]; if (w & 1) { VSUM(wp[0], hdlist[hd]->orig, hdlist[hd]->xv[w>>1], 1.); VSUM(wp[0], wp[0], mov, 1.); } else VCOPY(wp[0], hdlist[hd]->orig); VSUM(wp[1], wp[0], hdlist[hd]->xv[g1], 1.); for (i = hdlist[hd]->grid[g0]; ; ) { /* g0 lines */ (*f)(wp); if (!--i) break; wp[0][0] += mov[0]; wp[0][1] += mov[1]; wp[0][2] += mov[2]; wp[1][0] += mov[0]; wp[1][1] += mov[1]; wp[1][2] += mov[2]; } d = 1.0/hdlist[hd]->grid[g1]; mov[0] = d * hdlist[hd]->xv[g1][0]; mov[1] = d * hdlist[hd]->xv[g1][1]; mov[2] = d * hdlist[hd]->xv[g1][2]; if (w & 1) VSUM(wp[0], hdlist[hd]->orig, hdlist[hd]->xv[w>>1], 1.); else VSUM(wp[0], hdlist[hd]->orig, mov, 1.); VSUM(wp[1], wp[0], hdlist[hd]->xv[g0], 1.); for (i = hdlist[hd]->grid[g1]; ; ) { /* g1 lines */ (*f)(wp); if (!--i) break; wp[0][0] += mov[0]; wp[0][1] += mov[1]; wp[0][2] += mov[2]; wp[1][0] += mov[0]; wp[1][1] += mov[1]; wp[1][2] += mov[2]; } } }