| 84 |
|
* The ray directions that define the pyramid in visit_cells() needn't |
| 85 |
|
* be normalized, but they must be given in clockwise order as seen |
| 86 |
|
* from the pyramid's apex (origin). |
| 87 |
+ |
* If no cell centers fall within the domain, the closest cell is visited. |
| 88 |
|
*/ |
| 89 |
|
int |
| 90 |
|
visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */ |
| 91 |
|
FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */ |
| 92 |
< |
HOLO *hp; |
| 92 |
> |
register HOLO *hp; |
| 93 |
|
int (*vf)(); |
| 94 |
|
char *dp; |
| 95 |
|
{ |
| 96 |
< |
int n = 0; |
| 96 |
> |
int ncalls = 0, n = 0; |
| 97 |
|
int inflags = 0; |
| 98 |
|
FVECT gp, pn[4], lo, ld; |
| 99 |
|
double po[4], lbeg, lend, d, t; |
| 100 |
< |
GCOORD gc; |
| 100 |
> |
GCOORD gc, gc2[2]; |
| 101 |
|
register int i; |
| 102 |
|
/* figure out whose side we're on */ |
| 103 |
|
hdgrid(gp, hp, orig); |
| 143 |
|
if (lbeg >= lend) |
| 144 |
|
continue; |
| 145 |
|
i = lend + .5; /* visit cells on this scan */ |
| 146 |
< |
for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) |
| 146 |
> |
for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) { |
| 147 |
|
n += (*vf)(&gc, dp); |
| 148 |
+ |
ncalls++; |
| 149 |
+ |
} |
| 150 |
|
} |
| 151 |
|
} |
| 152 |
< |
return(n); |
| 152 |
> |
if (ncalls) /* got one at least */ |
| 153 |
> |
return(n); |
| 154 |
> |
/* else find closest cell */ |
| 155 |
> |
VSUM(ld, pyrd[0], pyrd[1], 1.); |
| 156 |
> |
VSUM(ld, ld, pyrd[2], 1.); |
| 157 |
> |
VSUM(ld, ld, pyrd[3], 1.); |
| 158 |
> |
#if 0 |
| 159 |
> |
if (normalize(ld) == 0.0) /* technically not necessary */ |
| 160 |
> |
return(0); |
| 161 |
> |
#endif |
| 162 |
> |
d = hdinter(gc2, NULL, &t, hp, orig, ld); |
| 163 |
> |
if (d >= FHUGE || t <= 0.) |
| 164 |
> |
return(0); |
| 165 |
> |
return((*vf)(gc2+1, dp)); /* visit it */ |
| 166 |
|
} |
| 167 |
|
|
| 168 |
|
|