| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: rhdisp3.c,v 3.17 2018/01/24 04:39:52 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Holodeck beam support for display process
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "rholo.h"
|
| 9 |
#include "rhdisp.h"
|
| 10 |
|
| 11 |
struct cellist {
|
| 12 |
GCOORD *cl;
|
| 13 |
int n;
|
| 14 |
};
|
| 15 |
|
| 16 |
|
| 17 |
int
|
| 18 |
npixels(vp, hr, vr, hp, bi) /* compute appropriate nrays to evaluate */
|
| 19 |
VIEW *vp;
|
| 20 |
int hr, vr;
|
| 21 |
HOLO *hp;
|
| 22 |
int bi;
|
| 23 |
{
|
| 24 |
VIEW vrev;
|
| 25 |
GCOORD gc[2];
|
| 26 |
FVECT cp[4], ip[4], pf, pb;
|
| 27 |
double af, ab, sf2, sb2, dfb2, df2, db2, penalty;
|
| 28 |
int i;
|
| 29 |
/* special case */
|
| 30 |
if (hr <= 0 | vr <= 0)
|
| 31 |
return(0);
|
| 32 |
/* compute cell corners in image */
|
| 33 |
if (!hdbcoord(gc, hp, bi))
|
| 34 |
error(CONSISTENCY, "bad beam index in npixels");
|
| 35 |
hdcell(cp, hp, gc+1); /* find cell on front image */
|
| 36 |
for (i = 3; i--; ) /* compute front center */
|
| 37 |
pf[i] = 0.5*(cp[0][i] + cp[2][i]);
|
| 38 |
sf2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */
|
| 39 |
for (i = 0; i < 4; i++) { /* compute visible quad */
|
| 40 |
if (viewloc(ip[i], vp, cp[i]) <= 0) {
|
| 41 |
af = 0;
|
| 42 |
goto getback;
|
| 43 |
}
|
| 44 |
ip[i][0] *= (double)hr; /* scale by resolution */
|
| 45 |
ip[i][1] *= (double)vr;
|
| 46 |
}
|
| 47 |
/* compute front area */
|
| 48 |
af = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
|
| 49 |
(ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
|
| 50 |
af += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
|
| 51 |
(ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
|
| 52 |
af *= af >= 0 ? 0.5 : -0.5;
|
| 53 |
getback:
|
| 54 |
vrev = *vp; /* compute reverse view */
|
| 55 |
for (i = 0; i < 3; i++) {
|
| 56 |
vrev.vdir[i] = -vp->vdir[i];
|
| 57 |
vrev.vup[i] = -vp->vup[i];
|
| 58 |
vrev.hvec[i] = -vp->hvec[i];
|
| 59 |
vrev.vvec[i] = -vp->vvec[i];
|
| 60 |
}
|
| 61 |
hdcell(cp, hp, gc); /* find cell on back image */
|
| 62 |
for (i = 3; i--; ) /* compute rear center */
|
| 63 |
pb[i] = 0.5*(cp[0][i] + cp[2][i]);
|
| 64 |
sb2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */
|
| 65 |
for (i = 0; i < 4; i++) { /* compute visible quad */
|
| 66 |
if (viewloc(ip[i], &vrev, cp[i]) <= 0) {
|
| 67 |
ab = 0;
|
| 68 |
goto finish;
|
| 69 |
}
|
| 70 |
ip[i][0] *= (double)hr; /* scale by resolution */
|
| 71 |
ip[i][1] *= (double)vr;
|
| 72 |
}
|
| 73 |
/* compute back area */
|
| 74 |
ab = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
|
| 75 |
(ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
|
| 76 |
ab += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
|
| 77 |
(ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
|
| 78 |
ab *= ab >= 0 ? 0.5 : -0.5;
|
| 79 |
finish: /* compute penalty based on dist. sightline - viewpoint */
|
| 80 |
df2 = dist2(vp->vp, pf);
|
| 81 |
db2 = dist2(vp->vp, pb);
|
| 82 |
dfb2 = dist2(pf, pb);
|
| 83 |
penalty = dfb2 + df2 - db2;
|
| 84 |
penalty = df2 - 0.25*penalty*penalty/dfb2;
|
| 85 |
if (df2 > db2) penalty /= df2 <= dfb2 ? sb2 : sb2*df2/dfb2;
|
| 86 |
else penalty /= db2 <= dfb2 ? sf2 : sf2*db2/dfb2;
|
| 87 |
if (penalty < 1.) penalty = 1.;
|
| 88 |
/* round off smaller non-zero area */
|
| 89 |
if (ab <= FTINY || (af > FTINY && af <= ab))
|
| 90 |
return((int)(af/penalty + 0.5));
|
| 91 |
return((int)(ab/penalty + 0.5));
|
| 92 |
}
|
| 93 |
|
| 94 |
|
| 95 |
/*
|
| 96 |
* The ray directions that define the pyramid in visit_cells() needn't
|
| 97 |
* be normalized, but they must be given in clockwise order as seen
|
| 98 |
* from the pyramid's apex (origin).
|
| 99 |
* If no cell centers fall within the domain, the closest cell is visited.
|
| 100 |
*/
|
| 101 |
int
|
| 102 |
visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */
|
| 103 |
FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */
|
| 104 |
HOLO *hp;
|
| 105 |
int (*vf)();
|
| 106 |
char *dp;
|
| 107 |
{
|
| 108 |
int ncalls = 0, n = 0;
|
| 109 |
int inflags = 0;
|
| 110 |
FVECT gp, pn[4], lo, ld;
|
| 111 |
double po[4], lbeg, lend, d, t;
|
| 112 |
GCOORD gc, gc2[2];
|
| 113 |
int i;
|
| 114 |
/* figure out whose side we're on */
|
| 115 |
hdgrid(gp, hp, orig);
|
| 116 |
for (i = 0; i < 3; i++) {
|
| 117 |
inflags |= (gp[i] > FTINY) << (i<<1);
|
| 118 |
inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1);
|
| 119 |
}
|
| 120 |
/* compute pyramid planes */
|
| 121 |
for (i = 0; i < 4; i++) {
|
| 122 |
fcross(pn[i], pyrd[i], pyrd[(i+1)&03]);
|
| 123 |
po[i] = DOT(pn[i], orig);
|
| 124 |
}
|
| 125 |
/* traverse each wall */
|
| 126 |
for (gc.w = 0; gc.w < 6; gc.w++) {
|
| 127 |
if (!(inflags & 1<<gc.w)) /* origin on wrong side */
|
| 128 |
continue;
|
| 129 |
/* scanline algorithm */
|
| 130 |
for (gc.i[1] = hp->grid[hdwg1[gc.w]]; gc.i[1]--; ) {
|
| 131 |
/* compute scanline */
|
| 132 |
gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0;
|
| 133 |
gp[hdwg0[gc.w]] = 0;
|
| 134 |
gp[hdwg1[gc.w]] = gc.i[1] + 0.5;
|
| 135 |
hdworld(lo, hp, gp);
|
| 136 |
gp[hdwg0[gc.w]] = 1;
|
| 137 |
hdworld(ld, hp, gp);
|
| 138 |
ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2];
|
| 139 |
/* find scanline limits */
|
| 140 |
lbeg = 0; lend = hp->grid[hdwg0[gc.w]];
|
| 141 |
for (i = 0; i < 4; i++) {
|
| 142 |
t = DOT(pn[i], lo) - po[i];
|
| 143 |
d = -DOT(pn[i], ld);
|
| 144 |
if (d > FTINY) { /* <- plane */
|
| 145 |
if ((t /= d) < lend)
|
| 146 |
lend = t;
|
| 147 |
} else if (d < -FTINY) { /* plane -> */
|
| 148 |
if ((t /= d) > lbeg)
|
| 149 |
lbeg = t;
|
| 150 |
} else if (t < 0) { /* outside */
|
| 151 |
lend = -1;
|
| 152 |
break;
|
| 153 |
}
|
| 154 |
}
|
| 155 |
if (lbeg >= lend)
|
| 156 |
continue;
|
| 157 |
i = lend + .5; /* visit cells on this scan */
|
| 158 |
for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) {
|
| 159 |
n += (*vf)(&gc, dp);
|
| 160 |
ncalls++;
|
| 161 |
}
|
| 162 |
}
|
| 163 |
}
|
| 164 |
if (ncalls) /* got one at least */
|
| 165 |
return(n);
|
| 166 |
/* else find closest cell */
|
| 167 |
VSUM(ld, pyrd[0], pyrd[1], 1.);
|
| 168 |
VSUM(ld, ld, pyrd[2], 1.);
|
| 169 |
VSUM(ld, ld, pyrd[3], 1.);
|
| 170 |
#if 0
|
| 171 |
if (normalize(ld) == 0.0) /* technically not necessary */
|
| 172 |
return(0);
|
| 173 |
#endif
|
| 174 |
d = hdinter(gc2, NULL, &t, hp, orig, ld);
|
| 175 |
if (d >= FHUGE || t <= 0.)
|
| 176 |
return(0);
|
| 177 |
return((*vf)(gc2+1, dp)); /* visit it */
|
| 178 |
}
|
| 179 |
|
| 180 |
|
| 181 |
sect_behind(hp, vp) /* check if section is "behind" viewpoint */
|
| 182 |
HOLO *hp;
|
| 183 |
VIEW *vp;
|
| 184 |
{
|
| 185 |
FVECT hcent;
|
| 186 |
/* compute holodeck section center */
|
| 187 |
VSUM(hcent, hp->orig, hp->xv[0], 0.5);
|
| 188 |
VSUM(hcent, hcent, hp->xv[1], 0.5);
|
| 189 |
VSUM(hcent, hcent, hp->xv[2], 0.5);
|
| 190 |
/* behind if center is behind */
|
| 191 |
return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp));
|
| 192 |
}
|
| 193 |
|
| 194 |
|
| 195 |
viewpyramid(org, dir, hp, vp) /* compute view pyramid */
|
| 196 |
FVECT org, dir[4];
|
| 197 |
HOLO *hp;
|
| 198 |
VIEW *vp;
|
| 199 |
{
|
| 200 |
int i;
|
| 201 |
/* check view type */
|
| 202 |
if (vp->type == VT_PAR)
|
| 203 |
return(0);
|
| 204 |
/* in front or behind? */
|
| 205 |
if (!sect_behind(hp, vp)) {
|
| 206 |
if (viewray(org, dir[0], vp, 0., 0.) < -FTINY)
|
| 207 |
return(0);
|
| 208 |
if (viewray(org, dir[1], vp, 0., 1.) < -FTINY)
|
| 209 |
return(0);
|
| 210 |
if (viewray(org, dir[2], vp, 1., 1.) < -FTINY)
|
| 211 |
return(0);
|
| 212 |
if (viewray(org, dir[3], vp, 1., 0.) < -FTINY)
|
| 213 |
return(0);
|
| 214 |
return(1);
|
| 215 |
} /* reverse pyramid */
|
| 216 |
if (viewray(org, dir[3], vp, 0., 0.) < -FTINY)
|
| 217 |
return(0);
|
| 218 |
if (viewray(org, dir[2], vp, 0., 1.) < -FTINY)
|
| 219 |
return(0);
|
| 220 |
if (viewray(org, dir[1], vp, 1., 1.) < -FTINY)
|
| 221 |
return(0);
|
| 222 |
if (viewray(org, dir[0], vp, 1., 0.) < -FTINY)
|
| 223 |
return(0);
|
| 224 |
for (i = 0; i < 3; i++) {
|
| 225 |
dir[0][i] = -dir[0][i];
|
| 226 |
dir[1][i] = -dir[1][i];
|
| 227 |
dir[2][i] = -dir[2][i];
|
| 228 |
dir[3][i] = -dir[3][i];
|
| 229 |
}
|
| 230 |
return(-1);
|
| 231 |
}
|
| 232 |
|
| 233 |
|
| 234 |
int
|
| 235 |
addcell(gcp, cl) /* add a cell to a list */
|
| 236 |
GCOORD *gcp;
|
| 237 |
struct cellist *cl;
|
| 238 |
{
|
| 239 |
*(cl->cl+cl->n) = *gcp;
|
| 240 |
cl->n++;
|
| 241 |
return(1);
|
| 242 |
}
|
| 243 |
|
| 244 |
|
| 245 |
int
|
| 246 |
cellcmp(gcp1, gcp2) /* visit_cells() cell ordering */
|
| 247 |
GCOORD *gcp1, *gcp2;
|
| 248 |
{
|
| 249 |
int c;
|
| 250 |
|
| 251 |
if ((c = gcp1->w - gcp2->w))
|
| 252 |
return(c);
|
| 253 |
if ((c = gcp2->i[1] - gcp1->i[1])) /* wg1 is reverse-ordered */
|
| 254 |
return(c);
|
| 255 |
return(gcp1->i[0] - gcp2->i[0]);
|
| 256 |
}
|
| 257 |
|
| 258 |
|
| 259 |
GCOORD *
|
| 260 |
getviewcells(np, hp, vp) /* get ordered cell list for section view */
|
| 261 |
int *np; /* returned number of cells (negative if reversed) */
|
| 262 |
HOLO *hp;
|
| 263 |
VIEW *vp;
|
| 264 |
{
|
| 265 |
FVECT org, dir[4];
|
| 266 |
int orient;
|
| 267 |
struct cellist cl;
|
| 268 |
/* compute view pyramid */
|
| 269 |
*np = 0;
|
| 270 |
orient = viewpyramid(org, dir, hp, vp);
|
| 271 |
if (!orient)
|
| 272 |
return(NULL);
|
| 273 |
/* allocate enough list space */
|
| 274 |
cl.n = 2*( hp->grid[0]*hp->grid[1] +
|
| 275 |
hp->grid[0]*hp->grid[2] +
|
| 276 |
hp->grid[1]*hp->grid[2] );
|
| 277 |
cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD));
|
| 278 |
if (cl.cl == NULL)
|
| 279 |
goto memerr;
|
| 280 |
cl.n = 0; /* add cells within pyramid */
|
| 281 |
visit_cells(org, dir, hp, addcell, (char *)&cl);
|
| 282 |
if (!cl.n) {
|
| 283 |
free((void *)cl.cl);
|
| 284 |
return(NULL);
|
| 285 |
}
|
| 286 |
*np = cl.n * orient;
|
| 287 |
#if 0
|
| 288 |
/* We're just going to free this memory in a moment, and list is
|
| 289 |
* sorted automatically by visit_cells(), so we don't need this.
|
| 290 |
*/
|
| 291 |
/* optimize memory use */
|
| 292 |
cl.cl = (GCOORD *)realloc((void *)cl.cl, cl.n*sizeof(GCOORD));
|
| 293 |
if (cl.cl == NULL)
|
| 294 |
goto memerr;
|
| 295 |
/* sort the list */
|
| 296 |
qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp);
|
| 297 |
#endif
|
| 298 |
return(cl.cl);
|
| 299 |
memerr:
|
| 300 |
error(SYSTEM, "out of memory in getviewcells");
|
| 301 |
}
|
| 302 |
|
| 303 |
|
| 304 |
void
|
| 305 |
gridlines( /* run through holodeck section grid lines */
|
| 306 |
void (*f)(FVECT wp[2])
|
| 307 |
)
|
| 308 |
{
|
| 309 |
int hd, w, i;
|
| 310 |
int g0, g1;
|
| 311 |
FVECT wp[2], mov;
|
| 312 |
double d;
|
| 313 |
/* do each wall on each section */
|
| 314 |
for (hd = 0; hdlist[hd] != NULL; hd++)
|
| 315 |
for (w = 0; w < 6; w++) {
|
| 316 |
g0 = hdwg0[w];
|
| 317 |
g1 = hdwg1[w];
|
| 318 |
d = 1.0/hdlist[hd]->grid[g0];
|
| 319 |
mov[0] = d * hdlist[hd]->xv[g0][0];
|
| 320 |
mov[1] = d * hdlist[hd]->xv[g0][1];
|
| 321 |
mov[2] = d * hdlist[hd]->xv[g0][2];
|
| 322 |
if (w & 1) {
|
| 323 |
VSUM(wp[0], hdlist[hd]->orig,
|
| 324 |
hdlist[hd]->xv[w>>1], 1.);
|
| 325 |
VSUM(wp[0], wp[0], mov, 1.);
|
| 326 |
} else
|
| 327 |
VCOPY(wp[0], hdlist[hd]->orig);
|
| 328 |
VSUM(wp[1], wp[0], hdlist[hd]->xv[g1], 1.);
|
| 329 |
for (i = hdlist[hd]->grid[g0]; ; ) { /* g0 lines */
|
| 330 |
(*f)(wp);
|
| 331 |
if (!--i) break;
|
| 332 |
wp[0][0] += mov[0]; wp[0][1] += mov[1];
|
| 333 |
wp[0][2] += mov[2]; wp[1][0] += mov[0];
|
| 334 |
wp[1][1] += mov[1]; wp[1][2] += mov[2];
|
| 335 |
}
|
| 336 |
d = 1.0/hdlist[hd]->grid[g1];
|
| 337 |
mov[0] = d * hdlist[hd]->xv[g1][0];
|
| 338 |
mov[1] = d * hdlist[hd]->xv[g1][1];
|
| 339 |
mov[2] = d * hdlist[hd]->xv[g1][2];
|
| 340 |
if (w & 1)
|
| 341 |
VSUM(wp[0], hdlist[hd]->orig,
|
| 342 |
hdlist[hd]->xv[w>>1], 1.);
|
| 343 |
else
|
| 344 |
VSUM(wp[0], hdlist[hd]->orig, mov, 1.);
|
| 345 |
VSUM(wp[1], wp[0], hdlist[hd]->xv[g0], 1.);
|
| 346 |
for (i = hdlist[hd]->grid[g1]; ; ) { /* g1 lines */
|
| 347 |
(*f)(wp);
|
| 348 |
if (!--i) break;
|
| 349 |
wp[0][0] += mov[0]; wp[0][1] += mov[1];
|
| 350 |
wp[0][2] += mov[2]; wp[1][0] += mov[0];
|
| 351 |
wp[1][1] += mov[1]; wp[1][2] += mov[2];
|
| 352 |
}
|
| 353 |
}
|
| 354 |
}
|