| 1 | 
#ifndef lint | 
| 2 | 
static const char       RCSid[] = "$Id: rhdisp3.c,v 3.19 2020/03/12 17:19:18 greg Exp $"; | 
| 3 | 
#endif | 
| 4 | 
/* | 
| 5 | 
 * Holodeck beam support for display process | 
| 6 | 
 */ | 
| 7 | 
 | 
| 8 | 
#include "rholo.h" | 
| 9 | 
#include "rhdisp.h" | 
| 10 | 
 | 
| 11 | 
struct cellist { | 
| 12 | 
        GCOORD  *cl; | 
| 13 | 
        int     n; | 
| 14 | 
}; | 
| 15 | 
 | 
| 16 | 
 | 
| 17 | 
int | 
| 18 | 
npixels(vp, hr, vr, hp, bi)     /* compute appropriate nrays to evaluate */ | 
| 19 | 
VIEW    *vp; | 
| 20 | 
int     hr, vr; | 
| 21 | 
HOLO    *hp; | 
| 22 | 
int     bi; | 
| 23 | 
{ | 
| 24 | 
        VIEW    vrev; | 
| 25 | 
        GCOORD  gc[2]; | 
| 26 | 
        FVECT   cp[4], ip[4], pf, pb; | 
| 27 | 
        double  af, ab, sf2, sb2, dfb2, df2, db2, penalty; | 
| 28 | 
        int     i; | 
| 29 | 
                                        /* special case */ | 
| 30 | 
        if (hr <= 0 | vr <= 0) | 
| 31 | 
                return(0); | 
| 32 | 
                                        /* compute cell corners in image */ | 
| 33 | 
        if (!hdbcoord(gc, hp, bi)) | 
| 34 | 
                error(CONSISTENCY, "bad beam index in npixels"); | 
| 35 | 
        hdcell(cp, hp, gc+1);           /* find cell on front image */ | 
| 36 | 
        for (i = 3; i--; )              /* compute front center */ | 
| 37 | 
                pf[i] = 0.5*(cp[0][i] + cp[2][i]); | 
| 38 | 
        sf2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */ | 
| 39 | 
        for (i = 0; i < 4; i++) {       /* compute visible quad */ | 
| 40 | 
                if (viewloc(ip[i], vp, cp[i]) != VL_GOOD) { | 
| 41 | 
                        af = 0; | 
| 42 | 
                        goto getback; | 
| 43 | 
                } | 
| 44 | 
                ip[i][0] *= (double)hr; /* scale by resolution */ | 
| 45 | 
                ip[i][1] *= (double)vr; | 
| 46 | 
        } | 
| 47 | 
                                        /* compute front area */ | 
| 48 | 
        af = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) - | 
| 49 | 
                (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]); | 
| 50 | 
        af += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) - | 
| 51 | 
                (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]); | 
| 52 | 
        af *= af >= 0 ? 0.5 : -0.5; | 
| 53 | 
getback: | 
| 54 | 
        vrev = *vp;             /* compute reverse view */ | 
| 55 | 
        for (i = 0; i < 3; i++) { | 
| 56 | 
                vrev.vdir[i] = -vp->vdir[i]; | 
| 57 | 
                vrev.vup[i] = -vp->vup[i]; | 
| 58 | 
                vrev.hvec[i] = -vp->hvec[i]; | 
| 59 | 
                vrev.vvec[i] = -vp->vvec[i]; | 
| 60 | 
        } | 
| 61 | 
        hdcell(cp, hp, gc);             /* find cell on back image */ | 
| 62 | 
        for (i = 3; i--; )              /* compute rear center */ | 
| 63 | 
                pb[i] = 0.5*(cp[0][i] + cp[2][i]); | 
| 64 | 
        sb2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */ | 
| 65 | 
        for (i = 0; i < 4; i++) {       /* compute visible quad */ | 
| 66 | 
                if (viewloc(ip[i], &vrev, cp[i]) != VL_GOOD) { | 
| 67 | 
                        ab = 0; | 
| 68 | 
                        goto finish; | 
| 69 | 
                } | 
| 70 | 
                ip[i][0] *= (double)hr; /* scale by resolution */ | 
| 71 | 
                ip[i][1] *= (double)vr; | 
| 72 | 
        } | 
| 73 | 
                                        /* compute back area */ | 
| 74 | 
        ab = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) - | 
| 75 | 
                (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]); | 
| 76 | 
        ab += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) - | 
| 77 | 
                (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]); | 
| 78 | 
        ab *= ab >= 0 ? 0.5 : -0.5; | 
| 79 | 
finish:         /* compute penalty based on dist. sightline - viewpoint */ | 
| 80 | 
        df2 = dist2(vp->vp, pf); | 
| 81 | 
        db2 = dist2(vp->vp, pb); | 
| 82 | 
        dfb2 = dist2(pf, pb); | 
| 83 | 
        penalty = dfb2 + df2 - db2; | 
| 84 | 
        penalty = df2 - 0.25*penalty*penalty/dfb2; | 
| 85 | 
        if (df2 > db2)  penalty /= df2 <= dfb2 ? sb2 : sb2*df2/dfb2; | 
| 86 | 
        else            penalty /= db2 <= dfb2 ? sf2 : sf2*db2/dfb2; | 
| 87 | 
        if (penalty < 1.) penalty = 1.; | 
| 88 | 
                                        /* round off smaller non-zero area */ | 
| 89 | 
        if (ab <= FTINY || (af > FTINY && af <= ab)) | 
| 90 | 
                return((int)(af/penalty + 0.5)); | 
| 91 | 
        return((int)(ab/penalty + 0.5)); | 
| 92 | 
} | 
| 93 | 
 | 
| 94 | 
 | 
| 95 | 
/* | 
| 96 | 
 * The ray directions that define the pyramid in visit_cells() needn't | 
| 97 | 
 * be normalized, but they must be given in clockwise order as seen | 
| 98 | 
 * from the pyramid's apex (origin). | 
| 99 | 
 * If no cell centers fall within the domain, the closest cell is visited. | 
| 100 | 
 */ | 
| 101 | 
int | 
| 102 | 
visit_cells(orig, pyrd, hp, vf, dp)     /* visit cells within a pyramid */ | 
| 103 | 
FVECT   orig, pyrd[4];          /* pyramid ray directions in clockwise order */ | 
| 104 | 
HOLO    *hp; | 
| 105 | 
int     (*vf)(); | 
| 106 | 
char    *dp; | 
| 107 | 
{ | 
| 108 | 
        int     ncalls = 0, n = 0; | 
| 109 | 
        int     inflags = 0; | 
| 110 | 
        FVECT   gp, pn[4], lo, ld; | 
| 111 | 
        double  po[4], lbeg, lend, d, t; | 
| 112 | 
        GCOORD  gc, gc2[2]; | 
| 113 | 
        int     i; | 
| 114 | 
                                        /* figure out whose side we're on */ | 
| 115 | 
        hdgrid(gp, hp, orig); | 
| 116 | 
        for (i = 0; i < 3; i++) { | 
| 117 | 
                inflags |= (gp[i] > FTINY) << (i<<1); | 
| 118 | 
                inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1); | 
| 119 | 
        } | 
| 120 | 
                                        /* compute pyramid planes */ | 
| 121 | 
        for (i = 0; i < 4; i++) { | 
| 122 | 
                fcross(pn[i], pyrd[i], pyrd[(i+1)&03]); | 
| 123 | 
                po[i] = DOT(pn[i], orig); | 
| 124 | 
        } | 
| 125 | 
                                        /* traverse each wall */ | 
| 126 | 
        for (gc.w = 0; gc.w < 6; gc.w++) { | 
| 127 | 
                if (!(inflags & 1<<gc.w))       /* origin on wrong side */ | 
| 128 | 
                        continue; | 
| 129 | 
                                        /* scanline algorithm */ | 
| 130 | 
                for (gc.i[1] = hp->grid[hdwg1[gc.w]]; gc.i[1]--; ) { | 
| 131 | 
                                                /* compute scanline */ | 
| 132 | 
                        gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0; | 
| 133 | 
                        gp[hdwg0[gc.w]] = 0; | 
| 134 | 
                        gp[hdwg1[gc.w]] = gc.i[1] + 0.5; | 
| 135 | 
                        hdworld(lo, hp, gp); | 
| 136 | 
                        gp[hdwg0[gc.w]] = 1; | 
| 137 | 
                        hdworld(ld, hp, gp); | 
| 138 | 
                        ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2]; | 
| 139 | 
                                                /* find scanline limits */ | 
| 140 | 
                        lbeg = 0; lend = hp->grid[hdwg0[gc.w]]; | 
| 141 | 
                        for (i = 0; i < 4; i++) { | 
| 142 | 
                                t = DOT(pn[i], lo) - po[i]; | 
| 143 | 
                                d = -DOT(pn[i], ld); | 
| 144 | 
                                if (d > FTINY) {                /* <- plane */ | 
| 145 | 
                                        if ((t /= d) < lend) | 
| 146 | 
                                                lend = t; | 
| 147 | 
                                } else if (d < -FTINY) {        /* plane -> */ | 
| 148 | 
                                        if ((t /= d) > lbeg) | 
| 149 | 
                                                lbeg = t; | 
| 150 | 
                                } else if (t < 0) {             /* outside */ | 
| 151 | 
                                        lend = -1; | 
| 152 | 
                                        break; | 
| 153 | 
                                } | 
| 154 | 
                        } | 
| 155 | 
                        if (lbeg >= lend) | 
| 156 | 
                                continue; | 
| 157 | 
                        i = lend + .5;          /* visit cells on this scan */ | 
| 158 | 
                        for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) { | 
| 159 | 
                                n += (*vf)(&gc, dp); | 
| 160 | 
                                ncalls++; | 
| 161 | 
                        } | 
| 162 | 
                } | 
| 163 | 
        } | 
| 164 | 
        if (ncalls)                     /* got one at least */ | 
| 165 | 
                return(n); | 
| 166 | 
                                        /* else find closest cell */ | 
| 167 | 
        VSUM(ld, pyrd[0], pyrd[1], 1.); | 
| 168 | 
        VSUM(ld, ld, pyrd[2], 1.); | 
| 169 | 
        VSUM(ld, ld, pyrd[3], 1.); | 
| 170 | 
#if 0 | 
| 171 | 
        if (normalize(ld) == 0.0)       /* technically not necessary */ | 
| 172 | 
                return(0); | 
| 173 | 
#endif | 
| 174 | 
        d = hdinter(gc2, NULL, &t, hp, orig, ld); | 
| 175 | 
        if (d >= FHUGE*.99 || t <= 0.) | 
| 176 | 
                return(0); | 
| 177 | 
        return((*vf)(gc2+1, dp));       /* visit it */ | 
| 178 | 
} | 
| 179 | 
 | 
| 180 | 
 | 
| 181 | 
sect_behind(hp, vp)             /* check if section is "behind" viewpoint */ | 
| 182 | 
HOLO    *hp; | 
| 183 | 
VIEW    *vp; | 
| 184 | 
{ | 
| 185 | 
        FVECT   hcent; | 
| 186 | 
                                        /* compute holodeck section center */ | 
| 187 | 
        VSUM(hcent, hp->orig, hp->xv[0], 0.5); | 
| 188 | 
        VSUM(hcent, hcent, hp->xv[1], 0.5); | 
| 189 | 
        VSUM(hcent, hcent, hp->xv[2], 0.5); | 
| 190 | 
                                        /* behind if center is behind */ | 
| 191 | 
        return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp)); | 
| 192 | 
} | 
| 193 | 
 | 
| 194 | 
 | 
| 195 | 
viewpyramid(org, dir, hp, vp)   /* compute view pyramid */ | 
| 196 | 
FVECT   org, dir[4]; | 
| 197 | 
HOLO    *hp; | 
| 198 | 
VIEW    *vp; | 
| 199 | 
{ | 
| 200 | 
        int     i; | 
| 201 | 
                                        /* check view type */ | 
| 202 | 
        if (vp->type == VT_PAR) | 
| 203 | 
                return(0); | 
| 204 | 
                                        /* in front or behind? */ | 
| 205 | 
        if (!sect_behind(hp, vp)) { | 
| 206 | 
                if (viewray(org, dir[0], vp, 0., 0.) < -FTINY) | 
| 207 | 
                        return(0); | 
| 208 | 
                if (viewray(org, dir[1], vp, 0., 1.) < -FTINY) | 
| 209 | 
                        return(0); | 
| 210 | 
                if (viewray(org, dir[2], vp, 1., 1.) < -FTINY) | 
| 211 | 
                        return(0); | 
| 212 | 
                if (viewray(org, dir[3], vp, 1., 0.) < -FTINY) | 
| 213 | 
                        return(0); | 
| 214 | 
                return(1); | 
| 215 | 
        }                               /* reverse pyramid */ | 
| 216 | 
        if (viewray(org, dir[3], vp, 0., 0.) < -FTINY) | 
| 217 | 
                return(0); | 
| 218 | 
        if (viewray(org, dir[2], vp, 0., 1.) < -FTINY) | 
| 219 | 
                return(0); | 
| 220 | 
        if (viewray(org, dir[1], vp, 1., 1.) < -FTINY) | 
| 221 | 
                return(0); | 
| 222 | 
        if (viewray(org, dir[0], vp, 1., 0.) < -FTINY) | 
| 223 | 
                return(0); | 
| 224 | 
        for (i = 0; i < 3; i++) { | 
| 225 | 
                dir[0][i] = -dir[0][i]; | 
| 226 | 
                dir[1][i] = -dir[1][i]; | 
| 227 | 
                dir[2][i] = -dir[2][i]; | 
| 228 | 
                dir[3][i] = -dir[3][i]; | 
| 229 | 
        } | 
| 230 | 
        return(-1); | 
| 231 | 
} | 
| 232 | 
 | 
| 233 | 
 | 
| 234 | 
int | 
| 235 | 
addcell(gcp, cl)                /* add a cell to a list */ | 
| 236 | 
GCOORD  *gcp; | 
| 237 | 
struct cellist  *cl; | 
| 238 | 
{ | 
| 239 | 
        *(cl->cl+cl->n) = *gcp; | 
| 240 | 
        cl->n++; | 
| 241 | 
        return(1); | 
| 242 | 
} | 
| 243 | 
 | 
| 244 | 
 | 
| 245 | 
int | 
| 246 | 
cellcmp(gcp1, gcp2)             /* visit_cells() cell ordering */ | 
| 247 | 
GCOORD  *gcp1, *gcp2; | 
| 248 | 
{ | 
| 249 | 
        int     c; | 
| 250 | 
 | 
| 251 | 
        if ((c = gcp1->w - gcp2->w)) | 
| 252 | 
                return(c); | 
| 253 | 
        if ((c = gcp2->i[1] - gcp1->i[1]))      /* wg1 is reverse-ordered */ | 
| 254 | 
                return(c); | 
| 255 | 
        return(gcp1->i[0] - gcp2->i[0]); | 
| 256 | 
} | 
| 257 | 
 | 
| 258 | 
 | 
| 259 | 
GCOORD * | 
| 260 | 
getviewcells(np, hp, vp)        /* get ordered cell list for section view */ | 
| 261 | 
int     *np;            /* returned number of cells (negative if reversed) */ | 
| 262 | 
HOLO    *hp; | 
| 263 | 
VIEW    *vp; | 
| 264 | 
{ | 
| 265 | 
        FVECT   org, dir[4]; | 
| 266 | 
        int     orient; | 
| 267 | 
        struct cellist  cl; | 
| 268 | 
                                        /* compute view pyramid */ | 
| 269 | 
        *np = 0; | 
| 270 | 
        orient = viewpyramid(org, dir, hp, vp); | 
| 271 | 
        if (!orient) | 
| 272 | 
                return(NULL); | 
| 273 | 
                                        /* allocate enough list space */ | 
| 274 | 
        cl.n = 2*(      hp->grid[0]*hp->grid[1] + | 
| 275 | 
                        hp->grid[0]*hp->grid[2] + | 
| 276 | 
                        hp->grid[1]*hp->grid[2] ); | 
| 277 | 
        cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD)); | 
| 278 | 
        if (cl.cl == NULL) | 
| 279 | 
                goto memerr; | 
| 280 | 
        cl.n = 0;                       /* add cells within pyramid */ | 
| 281 | 
        visit_cells(org, dir, hp, addcell, (char *)&cl); | 
| 282 | 
        if (!cl.n) { | 
| 283 | 
                free((void *)cl.cl); | 
| 284 | 
                return(NULL); | 
| 285 | 
        } | 
| 286 | 
        *np = cl.n * orient; | 
| 287 | 
#if 0 | 
| 288 | 
        /* We're just going to free this memory in a moment, and list is | 
| 289 | 
         * sorted automatically by visit_cells(), so we don't need this. | 
| 290 | 
         */ | 
| 291 | 
                                        /* optimize memory use */ | 
| 292 | 
        cl.cl = (GCOORD *)realloc((void *)cl.cl, cl.n*sizeof(GCOORD)); | 
| 293 | 
        if (cl.cl == NULL) | 
| 294 | 
                goto memerr; | 
| 295 | 
                                        /* sort the list */ | 
| 296 | 
        qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp); | 
| 297 | 
#endif | 
| 298 | 
        return(cl.cl); | 
| 299 | 
memerr: | 
| 300 | 
        error(SYSTEM, "out of memory in getviewcells"); | 
| 301 | 
} | 
| 302 | 
 | 
| 303 | 
 | 
| 304 | 
void | 
| 305 | 
gridlines(                      /* run through holodeck section grid lines */ | 
| 306 | 
        void    (*f)(FVECT wp[2]) | 
| 307 | 
) | 
| 308 | 
{ | 
| 309 | 
        int     hd, w, i; | 
| 310 | 
        int     g0, g1; | 
| 311 | 
        FVECT   wp[2], mov; | 
| 312 | 
        double  d; | 
| 313 | 
                                        /* do each wall on each section */ | 
| 314 | 
        for (hd = 0; hdlist[hd] != NULL; hd++) | 
| 315 | 
                for (w = 0; w < 6; w++) { | 
| 316 | 
                        g0 = hdwg0[w]; | 
| 317 | 
                        g1 = hdwg1[w]; | 
| 318 | 
                        d = 1.0/hdlist[hd]->grid[g0]; | 
| 319 | 
                        mov[0] = d * hdlist[hd]->xv[g0][0]; | 
| 320 | 
                        mov[1] = d * hdlist[hd]->xv[g0][1]; | 
| 321 | 
                        mov[2] = d * hdlist[hd]->xv[g0][2]; | 
| 322 | 
                        if (w & 1) { | 
| 323 | 
                                VSUM(wp[0], hdlist[hd]->orig, | 
| 324 | 
                                                hdlist[hd]->xv[w>>1], 1.); | 
| 325 | 
                                VSUM(wp[0], wp[0], mov, 1.); | 
| 326 | 
                        } else | 
| 327 | 
                                VCOPY(wp[0], hdlist[hd]->orig); | 
| 328 | 
                        VSUM(wp[1], wp[0], hdlist[hd]->xv[g1], 1.); | 
| 329 | 
                        for (i = hdlist[hd]->grid[g0]; ; ) {    /* g0 lines */ | 
| 330 | 
                                (*f)(wp); | 
| 331 | 
                                if (!--i) break; | 
| 332 | 
                                wp[0][0] += mov[0]; wp[0][1] += mov[1]; | 
| 333 | 
                                wp[0][2] += mov[2]; wp[1][0] += mov[0]; | 
| 334 | 
                                wp[1][1] += mov[1]; wp[1][2] += mov[2]; | 
| 335 | 
                        } | 
| 336 | 
                        d = 1.0/hdlist[hd]->grid[g1]; | 
| 337 | 
                        mov[0] = d * hdlist[hd]->xv[g1][0]; | 
| 338 | 
                        mov[1] = d * hdlist[hd]->xv[g1][1]; | 
| 339 | 
                        mov[2] = d * hdlist[hd]->xv[g1][2]; | 
| 340 | 
                        if (w & 1) | 
| 341 | 
                                VSUM(wp[0], hdlist[hd]->orig, | 
| 342 | 
                                                hdlist[hd]->xv[w>>1], 1.); | 
| 343 | 
                        else | 
| 344 | 
                                VSUM(wp[0], hdlist[hd]->orig, mov, 1.); | 
| 345 | 
                        VSUM(wp[1], wp[0], hdlist[hd]->xv[g0], 1.); | 
| 346 | 
                        for (i = hdlist[hd]->grid[g1]; ; ) {    /* g1 lines */ | 
| 347 | 
                                (*f)(wp); | 
| 348 | 
                                if (!--i) break; | 
| 349 | 
                                wp[0][0] += mov[0]; wp[0][1] += mov[1]; | 
| 350 | 
                                wp[0][2] += mov[2]; wp[1][0] += mov[0]; | 
| 351 | 
                                wp[1][1] += mov[1]; wp[1][2] += mov[2]; | 
| 352 | 
                        } | 
| 353 | 
                } | 
| 354 | 
} |