| 1 |
gregl |
3.1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */
|
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint
|
| 4 |
|
|
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
|
|
#endif
|
| 6 |
|
|
|
| 7 |
|
|
/*
|
| 8 |
gregl |
3.2 |
* Holodeck beam support for display process
|
| 9 |
gregl |
3.1 |
*/
|
| 10 |
|
|
|
| 11 |
|
|
#include "rholo.h"
|
| 12 |
|
|
#include "rhdisp.h"
|
| 13 |
|
|
#include "view.h"
|
| 14 |
|
|
|
| 15 |
gregl |
3.4 |
struct cellist {
|
| 16 |
|
|
GCOORD *cl;
|
| 17 |
|
|
int n;
|
| 18 |
|
|
};
|
| 19 |
gregl |
3.1 |
|
| 20 |
gregl |
3.4 |
|
| 21 |
gregl |
3.1 |
int
|
| 22 |
|
|
npixels(vp, hr, vr, hp, bi) /* compute appropriate number to evaluate */
|
| 23 |
|
|
VIEW *vp;
|
| 24 |
|
|
int hr, vr;
|
| 25 |
|
|
HOLO *hp;
|
| 26 |
|
|
int bi;
|
| 27 |
|
|
{
|
| 28 |
gregl |
3.4 |
static VIEW vdo, vlast;
|
| 29 |
|
|
static HOLO *hplast;
|
| 30 |
gregl |
3.1 |
GCOORD gc[2];
|
| 31 |
|
|
FVECT cp[4];
|
| 32 |
|
|
FVECT ip[4];
|
| 33 |
|
|
double d;
|
| 34 |
|
|
register int i;
|
| 35 |
|
|
/* compute cell corners in image */
|
| 36 |
|
|
if (!hdbcoord(gc, hp, bi))
|
| 37 |
|
|
error(CONSISTENCY, "bad beam index in npixels");
|
| 38 |
gregl |
3.4 |
/* has holodeck or view changed? */
|
| 39 |
|
|
if (hp != hplast || bcmp((char *)vp, (char *)&vlast, sizeof(VIEW))) {
|
| 40 |
|
|
copystruct(&vdo, vp);
|
| 41 |
|
|
if (sect_behind(hp, &vdo)) { /* reverse view sense */
|
| 42 |
|
|
vdo.vdir[0] = -vdo.vdir[0];
|
| 43 |
|
|
vdo.vdir[1] = -vdo.vdir[1];
|
| 44 |
|
|
vdo.vdir[2] = -vdo.vdir[2];
|
| 45 |
|
|
setview(&vdo);
|
| 46 |
|
|
}
|
| 47 |
|
|
hplast = hp;
|
| 48 |
|
|
copystruct(&vlast, vp);
|
| 49 |
|
|
}
|
| 50 |
|
|
hdcell(cp, hp, gc+1); /* find cell on image */
|
| 51 |
gregl |
3.1 |
for (i = 0; i < 4; i++) {
|
| 52 |
gregl |
3.4 |
viewloc(ip[i], &vdo, cp[i]);
|
| 53 |
gregl |
3.1 |
if (ip[i][2] < 0.)
|
| 54 |
|
|
return(0);
|
| 55 |
|
|
ip[i][0] *= (double)hr; /* scale by resolution */
|
| 56 |
|
|
ip[i][1] *= (double)vr;
|
| 57 |
|
|
}
|
| 58 |
|
|
/* compute quad area */
|
| 59 |
|
|
d = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
|
| 60 |
|
|
(ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
|
| 61 |
|
|
d += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
|
| 62 |
|
|
(ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
|
| 63 |
|
|
if (d < 0)
|
| 64 |
|
|
d = -d;
|
| 65 |
|
|
/* round off result */
|
| 66 |
|
|
return((int)(.5*d+.5));
|
| 67 |
|
|
}
|
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
/*
|
| 71 |
|
|
* The ray directions that define the pyramid in visit_cells() needn't
|
| 72 |
|
|
* be normalized, but they must be given in clockwise order as seen
|
| 73 |
|
|
* from the pyramid's apex (origin).
|
| 74 |
|
|
*/
|
| 75 |
|
|
int
|
| 76 |
|
|
visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */
|
| 77 |
|
|
FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */
|
| 78 |
|
|
HOLO *hp;
|
| 79 |
|
|
int (*vf)();
|
| 80 |
|
|
char *dp;
|
| 81 |
|
|
{
|
| 82 |
|
|
int n = 0;
|
| 83 |
|
|
int inflags = 0;
|
| 84 |
|
|
FVECT gp, pn[4], lo, ld;
|
| 85 |
|
|
double po[4], lbeg, lend, d, t;
|
| 86 |
|
|
GCOORD gc;
|
| 87 |
|
|
register int i;
|
| 88 |
|
|
/* figure out whose side we're on */
|
| 89 |
|
|
hdgrid(gp, hp, orig);
|
| 90 |
|
|
for (i = 0; i < 3; i++) {
|
| 91 |
|
|
inflags |= (gp[i] > FTINY) << (i<<1);
|
| 92 |
|
|
inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1);
|
| 93 |
|
|
}
|
| 94 |
|
|
/* compute pyramid planes */
|
| 95 |
|
|
for (i = 0; i < 4; i++) {
|
| 96 |
|
|
fcross(pn[i], pyrd[i], pyrd[(i+1)&03]);
|
| 97 |
|
|
po[i] = DOT(pn[i], orig);
|
| 98 |
|
|
}
|
| 99 |
|
|
/* traverse each wall */
|
| 100 |
|
|
for (gc.w = 0; gc.w < 6; gc.w++) {
|
| 101 |
|
|
if (!(inflags & 1<<gc.w)) /* origin on wrong side */
|
| 102 |
|
|
continue;
|
| 103 |
|
|
/* scanline algorithm */
|
| 104 |
|
|
for (gc.i[1] = hp->grid[((gc.w>>1)+2)%3]; gc.i[1]--; ) {
|
| 105 |
|
|
/* compute scanline */
|
| 106 |
|
|
gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0;
|
| 107 |
|
|
gp[((gc.w>>1)+1)%3] = 0;
|
| 108 |
|
|
gp[((gc.w>>1)+2)%3] = gc.i[1] + 0.5;
|
| 109 |
|
|
hdworld(lo, hp, gp);
|
| 110 |
|
|
gp[((gc.w>>1)+1)%3] = 1;
|
| 111 |
|
|
hdworld(ld, hp, gp);
|
| 112 |
gregl |
3.2 |
ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2];
|
| 113 |
gregl |
3.1 |
/* find scanline limits */
|
| 114 |
|
|
lbeg = 0; lend = hp->grid[((gc.w>>1)+1)%3];
|
| 115 |
|
|
for (i = 0; i < 4; i++) {
|
| 116 |
|
|
t = DOT(pn[i], lo) - po[i];
|
| 117 |
|
|
d = -DOT(pn[i], ld);
|
| 118 |
gregl |
3.2 |
if (d > FTINY) { /* <- plane */
|
| 119 |
gregl |
3.1 |
if ((t /= d) < lend)
|
| 120 |
|
|
lend = t;
|
| 121 |
gregl |
3.2 |
} else if (d < -FTINY) { /* plane -> */
|
| 122 |
gregl |
3.1 |
if ((t /= d) > lbeg)
|
| 123 |
|
|
lbeg = t;
|
| 124 |
gregl |
3.3 |
} else if (t < 0) { /* outside */
|
| 125 |
|
|
lend = -1;
|
| 126 |
|
|
break;
|
| 127 |
|
|
}
|
| 128 |
gregl |
3.1 |
}
|
| 129 |
gregl |
3.3 |
if (lbeg >= lend)
|
| 130 |
|
|
continue;
|
| 131 |
gregl |
3.1 |
i = lend + .5; /* visit cells on this scan */
|
| 132 |
|
|
for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++)
|
| 133 |
|
|
n += (*vf)(&gc, dp);
|
| 134 |
|
|
}
|
| 135 |
|
|
}
|
| 136 |
|
|
return(n);
|
| 137 |
|
|
}
|
| 138 |
|
|
|
| 139 |
|
|
|
| 140 |
gregl |
3.4 |
sect_behind(hp, vp) /* check if section is "behind" viewpoint */
|
| 141 |
|
|
register HOLO *hp;
|
| 142 |
|
|
register VIEW *vp;
|
| 143 |
|
|
{
|
| 144 |
|
|
FVECT hcent;
|
| 145 |
|
|
/* compute holodeck section center */
|
| 146 |
|
|
VSUM(hcent, hp->orig, hp->xv[0], 0.5);
|
| 147 |
|
|
VSUM(hcent, hcent, hp->xv[1], 0.5);
|
| 148 |
|
|
VSUM(hcent, hcent, hp->xv[2], 0.5);
|
| 149 |
|
|
/* behind if center is behind */
|
| 150 |
|
|
return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp));
|
| 151 |
|
|
}
|
| 152 |
|
|
|
| 153 |
|
|
|
| 154 |
|
|
viewpyramid(org, dir, hp, vp) /* compute view pyramid */
|
| 155 |
|
|
FVECT org, dir[4];
|
| 156 |
|
|
HOLO *hp;
|
| 157 |
|
|
VIEW *vp;
|
| 158 |
|
|
{
|
| 159 |
|
|
register int i;
|
| 160 |
|
|
/* check view type */
|
| 161 |
|
|
if (vp->type == VT_PAR)
|
| 162 |
|
|
return(0);
|
| 163 |
|
|
/* in front or behind? */
|
| 164 |
|
|
if (!sect_behind(hp, vp)) {
|
| 165 |
|
|
if (viewray(org, dir[0], vp, 0., 0.) < -FTINY)
|
| 166 |
|
|
return(0);
|
| 167 |
|
|
if (viewray(org, dir[1], vp, 0., 1.) < -FTINY)
|
| 168 |
|
|
return(0);
|
| 169 |
|
|
if (viewray(org, dir[2], vp, 1., 1.) < -FTINY)
|
| 170 |
|
|
return(0);
|
| 171 |
|
|
if (viewray(org, dir[3], vp, 1., 0.) < -FTINY)
|
| 172 |
|
|
return(0);
|
| 173 |
|
|
return(1);
|
| 174 |
|
|
} /* reverse pyramid */
|
| 175 |
|
|
if (viewray(org, dir[3], vp, 0., 0.) < -FTINY)
|
| 176 |
|
|
return(0);
|
| 177 |
|
|
if (viewray(org, dir[2], vp, 0., 1.) < -FTINY)
|
| 178 |
|
|
return(0);
|
| 179 |
|
|
if (viewray(org, dir[1], vp, 1., 1.) < -FTINY)
|
| 180 |
|
|
return(0);
|
| 181 |
|
|
if (viewray(org, dir[0], vp, 1., 0.) < -FTINY)
|
| 182 |
|
|
return(0);
|
| 183 |
|
|
for (i = 0; i < 3; i++) {
|
| 184 |
|
|
dir[0][i] = -dir[0][i];
|
| 185 |
|
|
dir[1][i] = -dir[1][i];
|
| 186 |
|
|
dir[2][i] = -dir[2][i];
|
| 187 |
|
|
dir[3][i] = -dir[3][i];
|
| 188 |
|
|
}
|
| 189 |
|
|
return(-1);
|
| 190 |
|
|
}
|
| 191 |
|
|
|
| 192 |
|
|
|
| 193 |
gregl |
3.1 |
int
|
| 194 |
|
|
addcell(gcp, cl) /* add a cell to a list */
|
| 195 |
|
|
GCOORD *gcp;
|
| 196 |
gregl |
3.4 |
register struct cellist *cl;
|
| 197 |
gregl |
3.1 |
{
|
| 198 |
gregl |
3.4 |
copystruct(cl->cl+cl->n, gcp);
|
| 199 |
|
|
cl->n++;
|
| 200 |
gregl |
3.1 |
return(1);
|
| 201 |
|
|
}
|
| 202 |
|
|
|
| 203 |
|
|
|
| 204 |
|
|
int
|
| 205 |
|
|
cellcmp(gcp1, gcp2) /* visit_cells() cell ordering */
|
| 206 |
|
|
register GCOORD *gcp1, *gcp2;
|
| 207 |
|
|
{
|
| 208 |
|
|
register int c;
|
| 209 |
|
|
|
| 210 |
|
|
if ((c = gcp1->w - gcp2->w))
|
| 211 |
|
|
return(c);
|
| 212 |
|
|
if ((c = gcp2->i[1] - gcp1->i[1])) /* wg1 is reverse-ordered */
|
| 213 |
|
|
return(c);
|
| 214 |
|
|
return(gcp1->i[0] - gcp2->i[0]);
|
| 215 |
|
|
}
|
| 216 |
|
|
|
| 217 |
|
|
|
| 218 |
gregl |
3.4 |
GCOORD *
|
| 219 |
|
|
getviewcells(np, hp, vp) /* get ordered cell list for section view */
|
| 220 |
|
|
int *np; /* returned number of cells (negative if reversed) */
|
| 221 |
gregl |
3.1 |
register HOLO *hp;
|
| 222 |
|
|
VIEW *vp;
|
| 223 |
|
|
{
|
| 224 |
|
|
FVECT org, dir[4];
|
| 225 |
gregl |
3.4 |
int orient;
|
| 226 |
|
|
struct cellist cl;
|
| 227 |
gregl |
3.1 |
/* compute view pyramid */
|
| 228 |
gregl |
3.4 |
*np = 0;
|
| 229 |
|
|
orient = viewpyramid(org, dir, hp, vp);
|
| 230 |
|
|
if (!orient)
|
| 231 |
|
|
return(NULL);
|
| 232 |
gregl |
3.1 |
/* allocate enough list space */
|
| 233 |
gregl |
3.4 |
cl.n = 2*( hp->grid[0]*hp->grid[1] +
|
| 234 |
|
|
hp->grid[0]*hp->grid[2] +
|
| 235 |
|
|
hp->grid[1]*hp->grid[2] );
|
| 236 |
|
|
cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD));
|
| 237 |
|
|
if (cl.cl == NULL)
|
| 238 |
gregl |
3.1 |
goto memerr;
|
| 239 |
gregl |
3.4 |
cl.n = 0; /* add cells within pyramid */
|
| 240 |
|
|
visit_cells(org, dir, hp, addcell, &cl);
|
| 241 |
|
|
if (!cl.n) {
|
| 242 |
|
|
free((char *)cl.cl);
|
| 243 |
gregl |
3.1 |
return(NULL);
|
| 244 |
|
|
}
|
| 245 |
gregl |
3.4 |
*np = cl.n * orient;
|
| 246 |
gregl |
3.1 |
#if 0
|
| 247 |
gregl |
3.2 |
/* We're just going to free this memory in a moment, and list is
|
| 248 |
|
|
* sorted automatically by visit_cells(), so we don't need this.
|
| 249 |
|
|
*/
|
| 250 |
gregl |
3.4 |
/* optimize memory use */
|
| 251 |
|
|
cl.cl = (GCOORD *)realloc((char *)cl.cl, cl.n*sizeof(GCOORD));
|
| 252 |
|
|
if (cl.cl == NULL)
|
| 253 |
|
|
goto memerr;
|
| 254 |
gregl |
3.1 |
/* sort the list */
|
| 255 |
gregl |
3.4 |
qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp);
|
| 256 |
gregl |
3.1 |
#endif
|
| 257 |
gregl |
3.4 |
return(cl.cl);
|
| 258 |
gregl |
3.1 |
memerr:
|
| 259 |
|
|
error(SYSTEM, "out of memory in getviewcells");
|
| 260 |
|
|
}
|