ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhdisp3.c
Revision: 3.11
Committed: Thu Nov 5 13:58:37 1998 UTC (25 years, 5 months ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 3.10: +4 -1 lines
Log Message:
changed beam management to allow temporary override

File Contents

# User Rev Content
1 gwlarson 3.10 /* Copyright (c) 1998 Silicon Graphics, Inc. */
2 gregl 3.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ SGI";
5     #endif
6    
7     /*
8 gregl 3.2 * Holodeck beam support for display process
9 gregl 3.1 */
10    
11     #include "rholo.h"
12     #include "rhdisp.h"
13     #include "view.h"
14    
15 gregl 3.4 struct cellist {
16     GCOORD *cl;
17     int n;
18     };
19 gregl 3.1
20 gregl 3.4
21 gregl 3.1 int
22 gwlarson 3.10 npixels(vp, hr, vr, hp, bi) /* compute appropriate nrays to evaluate */
23 gregl 3.5 register VIEW *vp;
24 gregl 3.1 int hr, vr;
25     HOLO *hp;
26     int bi;
27     {
28 gregl 3.5 VIEW vrev;
29 gregl 3.1 GCOORD gc[2];
30 gwlarson 3.10 FVECT cp[4], ip[4], pf, pb;
31     double af, ab, sf2, sb2, dfb2, df2, db2, penalty;
32 gregl 3.1 register int i;
33 gwlarson 3.11 /* special case */
34     if (hr <= 0 | vr <= 0)
35     return(0);
36 gregl 3.1 /* compute cell corners in image */
37     if (!hdbcoord(gc, hp, bi))
38     error(CONSISTENCY, "bad beam index in npixels");
39 gregl 3.5 hdcell(cp, hp, gc+1); /* find cell on front image */
40 gwlarson 3.10 for (i = 3; i--; ) /* compute front center */
41     pf[i] = 0.5*(cp[0][i] + cp[2][i]);
42     sf2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */
43     for (i = 0; i < 4; i++) { /* compute visible quad */
44 gregl 3.5 viewloc(ip[i], vp, cp[i]);
45     if (ip[i][2] < 0.) {
46     af = 0;
47     goto getback;
48 gregl 3.4 }
49 gregl 3.5 ip[i][0] *= (double)hr; /* scale by resolution */
50     ip[i][1] *= (double)vr;
51 gregl 3.4 }
52 gregl 3.5 /* compute front area */
53     af = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
54     (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
55     af += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
56     (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
57 gwlarson 3.10 af *= af >= 0 ? 0.5 : -0.5;
58 gregl 3.5 getback:
59     copystruct(&vrev, vp); /* compute reverse view */
60     for (i = 0; i < 3; i++) {
61     vrev.vdir[i] = -vp->vdir[i];
62     vrev.vup[i] = -vp->vup[i];
63     vrev.hvec[i] = -vp->hvec[i];
64     vrev.vvec[i] = -vp->vvec[i];
65     }
66     hdcell(cp, hp, gc); /* find cell on back image */
67 gwlarson 3.10 for (i = 3; i--; ) /* compute rear center */
68     pb[i] = 0.5*(cp[0][i] + cp[2][i]);
69     sb2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */
70     for (i = 0; i < 4; i++) { /* compute visible quad */
71 gregl 3.5 viewloc(ip[i], &vrev, cp[i]);
72 gwlarson 3.10 if (ip[i][2] < 0.) {
73     ab = 0;
74     goto finish;
75     }
76 gregl 3.1 ip[i][0] *= (double)hr; /* scale by resolution */
77     ip[i][1] *= (double)vr;
78     }
79 gregl 3.5 /* compute back area */
80     ab = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) -
81 gregl 3.1 (ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]);
82 gregl 3.5 ab += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) -
83 gregl 3.1 (ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]);
84 gwlarson 3.10 ab *= ab >= 0 ? 0.5 : -0.5;
85     finish: /* compute penalty based on dist. sightline - viewpoint */
86     df2 = dist2(vp->vp, pf);
87     db2 = dist2(vp->vp, pb);
88     dfb2 = dist2(pf, pb);
89     penalty = dfb2 + df2 - db2;
90     penalty = df2 - 0.25*penalty*penalty/dfb2;
91     if (df2 > db2) penalty /= df2 <= dfb2 ? sb2 : sb2*df2/dfb2;
92     else penalty /= db2 <= dfb2 ? sf2 : sf2*db2/dfb2;
93     if (penalty < 1.) penalty = 1.;
94     /* round off smaller non-zero area */
95     if (ab <= FTINY || (af > FTINY && af <= ab))
96     return((int)(af/penalty + 0.5));
97     return((int)(ab/penalty + 0.5));
98 gregl 3.1 }
99    
100    
101     /*
102     * The ray directions that define the pyramid in visit_cells() needn't
103     * be normalized, but they must be given in clockwise order as seen
104     * from the pyramid's apex (origin).
105 gregl 3.8 * If no cell centers fall within the domain, the closest cell is visited.
106 gregl 3.1 */
107     int
108     visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */
109     FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */
110 gregl 3.8 register HOLO *hp;
111 gregl 3.1 int (*vf)();
112     char *dp;
113     {
114 gregl 3.8 int ncalls = 0, n = 0;
115 gregl 3.1 int inflags = 0;
116     FVECT gp, pn[4], lo, ld;
117     double po[4], lbeg, lend, d, t;
118 gregl 3.8 GCOORD gc, gc2[2];
119 gregl 3.1 register int i;
120     /* figure out whose side we're on */
121     hdgrid(gp, hp, orig);
122     for (i = 0; i < 3; i++) {
123     inflags |= (gp[i] > FTINY) << (i<<1);
124     inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1);
125     }
126     /* compute pyramid planes */
127     for (i = 0; i < 4; i++) {
128     fcross(pn[i], pyrd[i], pyrd[(i+1)&03]);
129     po[i] = DOT(pn[i], orig);
130     }
131     /* traverse each wall */
132     for (gc.w = 0; gc.w < 6; gc.w++) {
133     if (!(inflags & 1<<gc.w)) /* origin on wrong side */
134     continue;
135     /* scanline algorithm */
136 gregl 3.9 for (gc.i[1] = hp->grid[hdwg1[gc.w]]; gc.i[1]--; ) {
137 gregl 3.1 /* compute scanline */
138     gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0;
139 gregl 3.9 gp[hdwg0[gc.w]] = 0;
140     gp[hdwg1[gc.w]] = gc.i[1] + 0.5;
141 gregl 3.1 hdworld(lo, hp, gp);
142 gregl 3.9 gp[hdwg0[gc.w]] = 1;
143 gregl 3.1 hdworld(ld, hp, gp);
144 gregl 3.2 ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2];
145 gregl 3.1 /* find scanline limits */
146 gregl 3.9 lbeg = 0; lend = hp->grid[hdwg0[gc.w]];
147 gregl 3.1 for (i = 0; i < 4; i++) {
148     t = DOT(pn[i], lo) - po[i];
149     d = -DOT(pn[i], ld);
150 gregl 3.2 if (d > FTINY) { /* <- plane */
151 gregl 3.1 if ((t /= d) < lend)
152     lend = t;
153 gregl 3.2 } else if (d < -FTINY) { /* plane -> */
154 gregl 3.1 if ((t /= d) > lbeg)
155     lbeg = t;
156 gregl 3.3 } else if (t < 0) { /* outside */
157     lend = -1;
158     break;
159     }
160 gregl 3.1 }
161 gregl 3.3 if (lbeg >= lend)
162     continue;
163 gregl 3.1 i = lend + .5; /* visit cells on this scan */
164 gregl 3.8 for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) {
165 gregl 3.1 n += (*vf)(&gc, dp);
166 gregl 3.8 ncalls++;
167     }
168 gregl 3.1 }
169     }
170 gregl 3.8 if (ncalls) /* got one at least */
171     return(n);
172     /* else find closest cell */
173     VSUM(ld, pyrd[0], pyrd[1], 1.);
174     VSUM(ld, ld, pyrd[2], 1.);
175     VSUM(ld, ld, pyrd[3], 1.);
176     #if 0
177     if (normalize(ld) == 0.0) /* technically not necessary */
178     return(0);
179     #endif
180     d = hdinter(gc2, NULL, &t, hp, orig, ld);
181     if (d >= FHUGE || t <= 0.)
182     return(0);
183     return((*vf)(gc2+1, dp)); /* visit it */
184 gregl 3.1 }
185    
186    
187 gregl 3.4 sect_behind(hp, vp) /* check if section is "behind" viewpoint */
188     register HOLO *hp;
189     register VIEW *vp;
190     {
191     FVECT hcent;
192     /* compute holodeck section center */
193     VSUM(hcent, hp->orig, hp->xv[0], 0.5);
194     VSUM(hcent, hcent, hp->xv[1], 0.5);
195     VSUM(hcent, hcent, hp->xv[2], 0.5);
196     /* behind if center is behind */
197     return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp));
198     }
199    
200    
201     viewpyramid(org, dir, hp, vp) /* compute view pyramid */
202     FVECT org, dir[4];
203     HOLO *hp;
204     VIEW *vp;
205     {
206     register int i;
207     /* check view type */
208     if (vp->type == VT_PAR)
209     return(0);
210     /* in front or behind? */
211     if (!sect_behind(hp, vp)) {
212     if (viewray(org, dir[0], vp, 0., 0.) < -FTINY)
213     return(0);
214     if (viewray(org, dir[1], vp, 0., 1.) < -FTINY)
215     return(0);
216     if (viewray(org, dir[2], vp, 1., 1.) < -FTINY)
217     return(0);
218     if (viewray(org, dir[3], vp, 1., 0.) < -FTINY)
219     return(0);
220     return(1);
221     } /* reverse pyramid */
222     if (viewray(org, dir[3], vp, 0., 0.) < -FTINY)
223     return(0);
224     if (viewray(org, dir[2], vp, 0., 1.) < -FTINY)
225     return(0);
226     if (viewray(org, dir[1], vp, 1., 1.) < -FTINY)
227     return(0);
228     if (viewray(org, dir[0], vp, 1., 0.) < -FTINY)
229     return(0);
230     for (i = 0; i < 3; i++) {
231     dir[0][i] = -dir[0][i];
232     dir[1][i] = -dir[1][i];
233     dir[2][i] = -dir[2][i];
234     dir[3][i] = -dir[3][i];
235     }
236     return(-1);
237     }
238    
239    
240 gregl 3.1 int
241     addcell(gcp, cl) /* add a cell to a list */
242     GCOORD *gcp;
243 gregl 3.4 register struct cellist *cl;
244 gregl 3.1 {
245 gregl 3.4 copystruct(cl->cl+cl->n, gcp);
246     cl->n++;
247 gregl 3.1 return(1);
248     }
249    
250    
251     int
252     cellcmp(gcp1, gcp2) /* visit_cells() cell ordering */
253     register GCOORD *gcp1, *gcp2;
254     {
255     register int c;
256    
257     if ((c = gcp1->w - gcp2->w))
258     return(c);
259     if ((c = gcp2->i[1] - gcp1->i[1])) /* wg1 is reverse-ordered */
260     return(c);
261     return(gcp1->i[0] - gcp2->i[0]);
262     }
263    
264    
265 gregl 3.4 GCOORD *
266     getviewcells(np, hp, vp) /* get ordered cell list for section view */
267     int *np; /* returned number of cells (negative if reversed) */
268 gregl 3.1 register HOLO *hp;
269     VIEW *vp;
270     {
271     FVECT org, dir[4];
272 gregl 3.4 int orient;
273     struct cellist cl;
274 gregl 3.1 /* compute view pyramid */
275 gregl 3.4 *np = 0;
276     orient = viewpyramid(org, dir, hp, vp);
277     if (!orient)
278     return(NULL);
279 gregl 3.1 /* allocate enough list space */
280 gregl 3.4 cl.n = 2*( hp->grid[0]*hp->grid[1] +
281     hp->grid[0]*hp->grid[2] +
282     hp->grid[1]*hp->grid[2] );
283     cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD));
284     if (cl.cl == NULL)
285 gregl 3.1 goto memerr;
286 gregl 3.4 cl.n = 0; /* add cells within pyramid */
287 gwlarson 3.11 visit_cells(org, dir, hp, addcell, (char *)&cl);
288 gregl 3.4 if (!cl.n) {
289     free((char *)cl.cl);
290 gregl 3.1 return(NULL);
291     }
292 gregl 3.4 *np = cl.n * orient;
293 gregl 3.1 #if 0
294 gregl 3.2 /* We're just going to free this memory in a moment, and list is
295     * sorted automatically by visit_cells(), so we don't need this.
296     */
297 gregl 3.4 /* optimize memory use */
298     cl.cl = (GCOORD *)realloc((char *)cl.cl, cl.n*sizeof(GCOORD));
299     if (cl.cl == NULL)
300     goto memerr;
301 gregl 3.1 /* sort the list */
302 gregl 3.4 qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp);
303 gregl 3.1 #endif
304 gregl 3.4 return(cl.cl);
305 gregl 3.1 memerr:
306     error(SYSTEM, "out of memory in getviewcells");
307     }
308 gregl 3.6
309    
310     gridlines(f) /* run through holodeck section grid lines */
311     int (*f)();
312     {
313     register int hd, w, i;
314     int g0, g1;
315 gregl 3.7 FVECT wp[2], mov;
316 gregl 3.6 double d;
317     /* do each wall on each section */
318     for (hd = 0; hdlist[hd] != NULL; hd++)
319     for (w = 0; w < 6; w++) {
320 gregl 3.9 g0 = hdwg0[w];
321     g1 = hdwg1[w];
322 gregl 3.7 d = 1.0/hdlist[hd]->grid[g0];
323     mov[0] = d * hdlist[hd]->xv[g0][0];
324     mov[1] = d * hdlist[hd]->xv[g0][1];
325     mov[2] = d * hdlist[hd]->xv[g0][2];
326     if (w & 1) {
327 gregl 3.6 VSUM(wp[0], hdlist[hd]->orig,
328     hdlist[hd]->xv[w>>1], 1.);
329 gregl 3.7 VSUM(wp[0], wp[0], mov, 1.);
330     } else
331     VCOPY(wp[0], hdlist[hd]->orig);
332     VSUM(wp[1], wp[0], hdlist[hd]->xv[g1], 1.);
333     for (i = hdlist[hd]->grid[g0]; ; ) { /* g0 lines */
334 gregl 3.6 (*f)(wp);
335 gregl 3.7 if (!--i) break;
336     wp[0][0] += mov[0]; wp[0][1] += mov[1];
337     wp[0][2] += mov[2]; wp[1][0] += mov[0];
338     wp[1][1] += mov[1]; wp[1][2] += mov[2];
339 gregl 3.6 }
340 gregl 3.7 d = 1.0/hdlist[hd]->grid[g1];
341     mov[0] = d * hdlist[hd]->xv[g1][0];
342     mov[1] = d * hdlist[hd]->xv[g1][1];
343     mov[2] = d * hdlist[hd]->xv[g1][2];
344     if (w & 1)
345 gregl 3.6 VSUM(wp[0], hdlist[hd]->orig,
346     hdlist[hd]->xv[w>>1], 1.);
347 gregl 3.7 else
348     VSUM(wp[0], hdlist[hd]->orig, mov, 1.);
349     VSUM(wp[1], wp[0], hdlist[hd]->xv[g0], 1.);
350     for (i = hdlist[hd]->grid[g1]; ; ) { /* g1 lines */
351 gregl 3.6 (*f)(wp);
352 gregl 3.7 if (!--i) break;
353     wp[0][0] += mov[0]; wp[0][1] += mov[1];
354     wp[0][2] += mov[2]; wp[1][0] += mov[0];
355     wp[1][1] += mov[1]; wp[1][2] += mov[2];
356 gregl 3.6 }
357     }
358     }