1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */ |
2 |
|
3 |
#ifndef lint |
4 |
static char SCCSid[] = "$SunId$ SGI"; |
5 |
#endif |
6 |
|
7 |
/* |
8 |
* Quadtree driver support routines. |
9 |
*/ |
10 |
|
11 |
#include "standard.h" |
12 |
#include "rhd_qtree.h" |
13 |
/* quantity of leaves to free at a time */ |
14 |
#ifndef LFREEPCT |
15 |
#define LFREEPCT 25 |
16 |
#endif |
17 |
|
18 |
RTREE qtrunk; /* our quadtree trunk */ |
19 |
double qtDepthEps = .02; /* epsilon to compare depths (z fraction) */ |
20 |
int qtMinNodesiz = 2; /* minimum node dimension (pixels) */ |
21 |
struct rleaves qtL; /* our pile of leaves */ |
22 |
|
23 |
#define TBUNDLESIZ 409 /* number of twigs in a bundle */ |
24 |
|
25 |
static RTREE **twigbundle; /* free twig blocks (NULL term.) */ |
26 |
static int nexttwig; /* next free twig */ |
27 |
|
28 |
#define is_stump(t) (!((t)->flgs & (BR_ANY|LF_ANY))) |
29 |
|
30 |
|
31 |
static RTREE * |
32 |
newtwig() /* allocate a twig */ |
33 |
{ |
34 |
register int bi; |
35 |
|
36 |
if (twigbundle == NULL) { /* initialize */ |
37 |
twigbundle = (RTREE **)malloc(sizeof(RTREE *)); |
38 |
if (twigbundle == NULL) |
39 |
goto memerr; |
40 |
twigbundle[0] = NULL; |
41 |
} |
42 |
bi = nexttwig / TBUNDLESIZ; |
43 |
if (twigbundle[bi] == NULL) { /* new block */ |
44 |
twigbundle = (RTREE **)realloc((char *)twigbundle, |
45 |
(bi+2)*sizeof(RTREE *)); |
46 |
if (twigbundle == NULL) |
47 |
goto memerr; |
48 |
twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE)); |
49 |
if (twigbundle[bi] == NULL) |
50 |
goto memerr; |
51 |
twigbundle[bi+1] = NULL; |
52 |
} |
53 |
/* nexttwig++ % TBUNDLESIZ */ |
54 |
return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ)); |
55 |
memerr: |
56 |
error(SYSTEM, "out of memory in newtwig"); |
57 |
} |
58 |
|
59 |
|
60 |
qtFreeTree(really) /* free allocated twigs */ |
61 |
int really; |
62 |
{ |
63 |
register int i; |
64 |
|
65 |
qtrunk.flgs = CH_ANY; /* chop down tree */ |
66 |
if (twigbundle == NULL) |
67 |
return; |
68 |
i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ; |
69 |
nexttwig = 0; |
70 |
if (!really) { /* just clear allocated blocks */ |
71 |
while (i--) |
72 |
bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE)); |
73 |
return; |
74 |
} |
75 |
/* else "really" means free up memory */ |
76 |
for (i = 0; twigbundle[i] != NULL; i++) |
77 |
free((char *)twigbundle[i]); |
78 |
free((char *)twigbundle); |
79 |
twigbundle = NULL; |
80 |
} |
81 |
|
82 |
|
83 |
static int |
84 |
newleaf() /* allocate a leaf from our pile */ |
85 |
{ |
86 |
int li; |
87 |
|
88 |
li = qtL.tl++; |
89 |
if (qtL.tl >= qtL.nl) /* get next leaf in ring */ |
90 |
qtL.tl = 0; |
91 |
if (qtL.tl == qtL.bl) /* need to shake some free */ |
92 |
qtCompost(LFREEPCT); |
93 |
return(li); |
94 |
} |
95 |
|
96 |
|
97 |
#define LEAFSIZ (3*sizeof(float)+sizeof(TMbright)+6*sizeof(BYTE)) |
98 |
|
99 |
int |
100 |
qtAllocLeaves(n) /* allocate space for n leaves */ |
101 |
register int n; |
102 |
{ |
103 |
unsigned nbytes; |
104 |
register unsigned i; |
105 |
|
106 |
qtFreeTree(0); /* make sure tree is empty */ |
107 |
if (n <= 0) |
108 |
return(0); |
109 |
if (qtL.nl >= n) |
110 |
return(qtL.nl); |
111 |
else if (qtL.nl > 0) |
112 |
free(qtL.base); |
113 |
/* round space up to nearest power of 2 */ |
114 |
nbytes = n*LEAFSIZ + 8; |
115 |
for (i = 1024; nbytes > i; i <<= 1) |
116 |
; |
117 |
n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */ |
118 |
qtL.base = (char *)malloc(n*LEAFSIZ); |
119 |
if (qtL.base == NULL) |
120 |
return(0); |
121 |
/* assign larger alignment types earlier */ |
122 |
qtL.wp = (float (*)[3])qtL.base; |
123 |
qtL.brt = (TMbright *)(qtL.wp + n); |
124 |
qtL.chr = (BYTE (*)[3])(qtL.brt + n); |
125 |
qtL.rgb = (BYTE (*)[3])(qtL.chr + n); |
126 |
qtL.nl = n; |
127 |
qtL.tml = qtL.bl = qtL.tl = 0; |
128 |
return(n); |
129 |
} |
130 |
|
131 |
#undef LEAFSIZ |
132 |
|
133 |
|
134 |
qtFreeLeaves() /* free our allocated leaves and twigs */ |
135 |
{ |
136 |
qtFreeTree(1); /* free tree also */ |
137 |
if (qtL.nl <= 0) |
138 |
return; |
139 |
free(qtL.base); |
140 |
qtL.base = NULL; |
141 |
qtL.nl = 0; |
142 |
} |
143 |
|
144 |
|
145 |
static |
146 |
shaketree(tp) /* shake dead leaves from tree */ |
147 |
register RTREE *tp; |
148 |
{ |
149 |
register int i, li; |
150 |
|
151 |
for (i = 0; i < 4; i++) |
152 |
if (tp->flgs & BRF(i)) { |
153 |
shaketree(tp->k[i].b); |
154 |
if (is_stump(tp->k[i].b)) |
155 |
tp->flgs &= ~BRF(i); |
156 |
} else if (tp->flgs & LFF(i)) { |
157 |
li = tp->k[i].li; |
158 |
if (qtL.bl < qtL.tl ? |
159 |
(li < qtL.bl || li >= qtL.tl) : |
160 |
(li < qtL.bl && li >= qtL.tl)) |
161 |
tp->flgs &= ~LFF(i); |
162 |
} |
163 |
} |
164 |
|
165 |
|
166 |
int |
167 |
qtCompost(pct) /* free up some leaves */ |
168 |
int pct; |
169 |
{ |
170 |
int nused, nclear, nmapped; |
171 |
|
172 |
/* figure out how many leaves to clear */ |
173 |
nclear = qtL.nl * pct / 100; |
174 |
nused = qtL.tl - qtL.bl; |
175 |
if (nused <= 0) nused += qtL.nl; |
176 |
nclear -= qtL.nl - nused; |
177 |
if (nclear <= 0) |
178 |
return(0); |
179 |
if (nclear >= nused) { /* clear them all */ |
180 |
qtFreeTree(0); |
181 |
qtL.tml = qtL.bl = qtL.tl = 0; |
182 |
return(nused); |
183 |
} |
184 |
/* else clear leaves from bottom */ |
185 |
nmapped = qtL.tml - qtL.bl; |
186 |
if (nmapped < 0) nmapped += qtL.nl; |
187 |
qtL.bl += nclear; |
188 |
if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl; |
189 |
if (nmapped <= nclear) qtL.tml = qtL.bl; |
190 |
shaketree(&qtrunk); |
191 |
return(nclear); |
192 |
} |
193 |
|
194 |
|
195 |
int |
196 |
qtFindLeaf(x, y) /* find closest leaf to (x,y) */ |
197 |
int x, y; |
198 |
{ |
199 |
register RTREE *tp = &qtrunk; |
200 |
int li = -1; |
201 |
int x0=0, y0=0, x1=odev.hres, y1=odev.vres; |
202 |
int mx, my; |
203 |
register int q; |
204 |
/* check limits */ |
205 |
if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres) |
206 |
return(-1); |
207 |
/* find nearby leaf in our tree */ |
208 |
for ( ; ; ) { |
209 |
for (q = 0; q < 4; q++) /* find any leaf this level */ |
210 |
if (tp->flgs & LFF(q)) { |
211 |
li = tp->k[q].li; |
212 |
break; |
213 |
} |
214 |
q = 0; /* which quadrant are we? */ |
215 |
mx = (x0 + x1) >> 1; |
216 |
my = (y0 + y1) >> 1; |
217 |
if (x < mx) x1 = mx; |
218 |
else {x0 = mx; q |= 01;} |
219 |
if (y < my) y1 = my; |
220 |
else {y0 = my; q |= 02;} |
221 |
if (tp->flgs & BRF(q)) { /* branch down if not a leaf */ |
222 |
tp = tp->k[q].b; |
223 |
continue; |
224 |
} |
225 |
if (tp->flgs & LFF(q)) /* good shot! */ |
226 |
return(tp->k[q].li); |
227 |
return(li); /* else return what we have */ |
228 |
} |
229 |
} |
230 |
|
231 |
|
232 |
static |
233 |
addleaf(li) /* add a leaf to our tree */ |
234 |
int li; |
235 |
{ |
236 |
register RTREE *tp = &qtrunk; |
237 |
int x0=0, y0=0, x1=odev.hres, y1=odev.vres; |
238 |
int lo = -1; |
239 |
int x, y, mx, my; |
240 |
double z; |
241 |
FVECT ip, wp; |
242 |
register int q; |
243 |
/* compute leaf location */ |
244 |
VCOPY(wp, qtL.wp[li]); |
245 |
viewloc(ip, &odev.v, wp); |
246 |
if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1. |
247 |
|| ip[1] < 0. || ip[1] >= 1.) |
248 |
return; |
249 |
x = ip[0] * odev.hres; |
250 |
y = ip[1] * odev.vres; |
251 |
z = ip[2]; |
252 |
/* find the place for it */ |
253 |
for ( ; ; ) { |
254 |
q = 0; /* which quadrant? */ |
255 |
mx = (x0 + x1) >> 1; |
256 |
my = (y0 + y1) >> 1; |
257 |
if (x < mx) x1 = mx; |
258 |
else {x0 = mx; q |= 01;} |
259 |
if (y < my) y1 = my; |
260 |
else {y0 = my; q |= 02;} |
261 |
if (tp->flgs & BRF(q)) { /* move to next branch */ |
262 |
tp->flgs |= CHF(q); /* not sure; guess */ |
263 |
tp = tp->k[q].b; |
264 |
continue; |
265 |
} |
266 |
if (!(tp->flgs & LFF(q))) { /* found stem for leaf */ |
267 |
tp->k[q].li = li; |
268 |
tp->flgs |= CHLFF(q); |
269 |
break; |
270 |
} |
271 |
/* check existing leaf */ |
272 |
if (lo != tp->k[q].li) { |
273 |
lo = tp->k[q].li; |
274 |
VCOPY(wp, qtL.wp[lo]); |
275 |
viewloc(ip, &odev.v, wp); |
276 |
} |
277 |
/* is node minimum size? */ |
278 |
if (x1-x0 <= qtMinNodesiz || y1-y0 <= qtMinNodesiz) { |
279 |
if (z > (1.-qtDepthEps)*ip[2]) /* who is closer? */ |
280 |
return; /* old one is */ |
281 |
tp->k[q].li = li; /* new one is */ |
282 |
tp->flgs |= CHF(q); |
283 |
break; |
284 |
} |
285 |
tp->flgs &= ~LFF(q); /* else grow tree */ |
286 |
tp->flgs |= CHBRF(q); |
287 |
tp = tp->k[q].b = newtwig(); |
288 |
q = 0; /* old leaf -> new branch */ |
289 |
mx = ip[0] * odev.hres; |
290 |
my = ip[1] * odev.vres; |
291 |
if (mx >= (x0 + x1) >> 1) q |= 01; |
292 |
if (my >= (y0 + y1) >> 1) q |= 02; |
293 |
tp->k[q].li = lo; |
294 |
tp->flgs |= LFF(q)|CH_ANY; /* all new */ |
295 |
} |
296 |
} |
297 |
|
298 |
|
299 |
dev_value(c, p) /* add a pixel value to our output queue */ |
300 |
COLR c; |
301 |
FVECT p; |
302 |
{ |
303 |
register int li; |
304 |
|
305 |
li = newleaf(); |
306 |
VCOPY(qtL.wp[li], p); |
307 |
tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1); |
308 |
addleaf(li); |
309 |
} |
310 |
|
311 |
|
312 |
qtReplant() /* replant our tree using new view */ |
313 |
{ |
314 |
register int i; |
315 |
/* anything to replant? */ |
316 |
if (qtL.bl == qtL.tl) |
317 |
return; |
318 |
qtFreeTree(0); /* blow the old tree away */ |
319 |
/* regrow it in new place */ |
320 |
for (i = qtL.bl; i != qtL.tl; ) { |
321 |
addleaf(i); |
322 |
if (++i >= qtL.nl) i = 0; |
323 |
} |
324 |
} |
325 |
|
326 |
|
327 |
qtMapLeaves(redo) /* map our leaves to RGB */ |
328 |
int redo; |
329 |
{ |
330 |
int aorg, alen, borg, blen; |
331 |
/* recompute mapping? */ |
332 |
if (redo) |
333 |
qtL.tml = qtL.bl; |
334 |
/* already done? */ |
335 |
if (qtL.tml == qtL.tl) |
336 |
return(1); |
337 |
/* compute segments */ |
338 |
aorg = qtL.tml; |
339 |
if (qtL.tl >= aorg) { |
340 |
alen = qtL.tl - aorg; |
341 |
blen = 0; |
342 |
} else { |
343 |
alen = qtL.nl - aorg; |
344 |
borg = 0; |
345 |
blen = qtL.tl; |
346 |
} |
347 |
/* (re)compute tone mapping? */ |
348 |
if (qtL.tml == qtL.bl) { |
349 |
tmClearHisto(); |
350 |
tmAddHisto(qtL.brt+aorg, alen, 1); |
351 |
if (blen > 0) |
352 |
tmAddHisto(qtL.brt+borg, blen, 1); |
353 |
if (tmComputeMapping(0., 0., 0.) != TM_E_OK) |
354 |
return(0); |
355 |
} |
356 |
if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg, |
357 |
qtL.chr+aorg, alen) != TM_E_OK) |
358 |
return(0); |
359 |
if (blen > 0) |
360 |
tmMapPixels(qtL.rgb+borg, qtL.brt+borg, |
361 |
qtL.chr+borg, blen); |
362 |
qtL.tml = qtL.tl; |
363 |
return(1); |
364 |
} |
365 |
|
366 |
|
367 |
static |
368 |
redraw(tp, x0, y0, x1, y1, l) /* mark portion of a tree for redraw */ |
369 |
register RTREE *tp; |
370 |
int x0, y0, x1, y1; |
371 |
int l[2][2]; |
372 |
{ |
373 |
int quads = CH_ANY; |
374 |
int mx, my; |
375 |
register int i; |
376 |
/* compute midpoint */ |
377 |
mx = (x0 + x1) >> 1; |
378 |
my = (y0 + y1) >> 1; |
379 |
/* see what to do */ |
380 |
if (l[0][0] >= mx) |
381 |
quads &= ~(CHF(2)|CHF(0)); |
382 |
else if (l[0][1] < mx) |
383 |
quads &= ~(CHF(3)|CHF(1)); |
384 |
if (l[1][0] >= my) |
385 |
quads &= ~(CHF(1)|CHF(0)); |
386 |
else if (l[1][1] < my) |
387 |
quads &= ~(CHF(3)|CHF(2)); |
388 |
tp->flgs |= quads; /* mark quadrants for update */ |
389 |
/* climb the branches */ |
390 |
for (i = 0; i < 4; i++) |
391 |
if (tp->flgs & BRF(i) && quads & CHF(i)) |
392 |
redraw(tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0, |
393 |
i&01 ? x1 : mx, i&02 ? y1 : my, l); |
394 |
} |
395 |
|
396 |
|
397 |
static |
398 |
update(ca, tp, x0, y0, x1, y1) /* update tree display as needed */ |
399 |
BYTE ca[3]; /* returned average color */ |
400 |
register RTREE *tp; |
401 |
int x0, y0, x1, y1; |
402 |
{ |
403 |
int csm[3], nc; |
404 |
register BYTE *cp; |
405 |
BYTE rgb[3]; |
406 |
int gaps = 0; |
407 |
int mx, my; |
408 |
register int i; |
409 |
/* compute midpoint */ |
410 |
mx = (x0 + x1) >> 1; |
411 |
my = (y0 + y1) >> 1; |
412 |
csm[0] = csm[1] = csm[2] = nc = 0; |
413 |
/* do leaves first */ |
414 |
for (i = 0; i < 4; i++) { |
415 |
if (tp->flgs & LFF(i)) { |
416 |
cp = qtL.rgb[tp->k[i].li]; |
417 |
csm[0] += cp[0]; csm[1] += cp[1]; csm[2] += cp[2]; |
418 |
nc++; |
419 |
if (tp->flgs & CHF(i)) |
420 |
dev_paintr(cp, i&01 ? mx : x0, i&02 ? my : y0, |
421 |
i&01 ? x1 : mx, i&02 ? y1 : my); |
422 |
} else if ((tp->flgs & CHBRF(i)) == CHF(i)) |
423 |
gaps |= 1<<i; /* empty stem */ |
424 |
} |
425 |
/* now do branches */ |
426 |
for (i = 0; i < 4; i++) |
427 |
if ((tp->flgs & CHBRF(i)) == CHBRF(i)) { |
428 |
update(rgb, tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0, |
429 |
i&01 ? x1 : mx, i&02 ? y1 : my); |
430 |
csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; |
431 |
nc++; |
432 |
} |
433 |
if (nc > 1) { |
434 |
ca[0] = csm[0]/nc; ca[1] = csm[1]/nc; ca[2] = csm[2]/nc; |
435 |
} else { |
436 |
ca[0] = csm[0]; ca[1] = csm[1]; ca[2] = csm[2]; |
437 |
} |
438 |
/* fill in gaps with average */ |
439 |
for (i = 0; gaps && i < 4; gaps >>= 1, i++) |
440 |
if (gaps & 01) |
441 |
dev_paintr(ca, i&01 ? mx : x0, i&02 ? my : y0, |
442 |
i&01 ? x1 : mx, i&02 ? y1 : my); |
443 |
tp->flgs &= ~CH_ANY; /* all done */ |
444 |
} |
445 |
|
446 |
|
447 |
qtRedraw(x0, y0, x1, y1) /* redraw part or all of our screen */ |
448 |
int x0, y0, x1, y1; |
449 |
{ |
450 |
int lim[2][2]; |
451 |
|
452 |
if (is_stump(&qtrunk)) |
453 |
return; |
454 |
if (!qtMapLeaves((lim[0][0]=x0) <= 0 & (lim[1][0]=y0) <= 0 & |
455 |
(lim[0][1]=x1) >= odev.hres-1 & (lim[1][1]=y1) >= odev.vres-1)) |
456 |
return; |
457 |
redraw(&qtrunk, 0, 0, odev.hres, odev.vres, lim); |
458 |
} |
459 |
|
460 |
|
461 |
qtUpdate() /* update our tree display */ |
462 |
{ |
463 |
BYTE ca[3]; |
464 |
|
465 |
if (is_stump(&qtrunk)) |
466 |
return; |
467 |
if (!qtMapLeaves(0)) |
468 |
return; |
469 |
update(ca, &qtrunk, 0, 0, odev.hres, odev.vres); |
470 |
} |