/* Copyright (c) 1997 Silicon Graphics, Inc. */ #ifndef lint static char SCCSid[] = "$SunId$ SGI"; #endif /* * Quadtree driver support routines. */ #include "standard.h" #include "rhd_qtree.h" /* quantity of leaves to free at a time */ #ifndef LFREEPCT #define LFREEPCT 25 #endif RTREE qtrunk; /* our quadtree trunk */ double qtDepthEps = .02; /* epsilon to compare depths (z fraction) */ int qtMinNodesiz = 2; /* minimum node dimension (pixels) */ struct rleaves qtL; /* our pile of leaves */ #define TBUNDLESIZ 409 /* number of twigs in a bundle */ static RTREE **twigbundle; /* free twig blocks (NULL term.) */ static int nexttwig; /* next free twig */ #define is_stump(t) (!((t)->flgs & (BR_ANY|LF_ANY))) static RTREE * newtwig() /* allocate a twig */ { register int bi; if (twigbundle == NULL) { /* initialize */ twigbundle = (RTREE **)malloc(sizeof(RTREE *)); if (twigbundle == NULL) goto memerr; twigbundle[0] = NULL; } bi = nexttwig / TBUNDLESIZ; if (twigbundle[bi] == NULL) { /* new block */ twigbundle = (RTREE **)realloc((char *)twigbundle, (bi+2)*sizeof(RTREE *)); if (twigbundle == NULL) goto memerr; twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE)); if (twigbundle[bi] == NULL) goto memerr; twigbundle[bi+1] = NULL; } /* nexttwig++ % TBUNDLESIZ */ return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ)); memerr: error(SYSTEM, "out of memory in newtwig"); } qtFreeTree(really) /* free allocated twigs */ int really; { register int i; qtrunk.flgs = CH_ANY; nexttwig = 0; if (twigbundle == NULL) return; if (!really) { /* just clear allocated blocks */ for (i = 0; twigbundle[i] != NULL; i++) bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE)); return; } /* else "really" means free up memory */ for (i = 0; twigbundle[i] != NULL; i++) free((char *)twigbundle[i]); free((char *)twigbundle); twigbundle = NULL; } static int newleaf() /* allocate a leaf from our pile */ { int li; li = qtL.tl++; if (qtL.tl >= qtL.nl) /* get next leaf in ring */ qtL.tl = 0; if (qtL.tl == qtL.bl) /* need to shake some free */ qtCompost(LFREEPCT); return(li); } #define LEAFSIZ (3*sizeof(float)+sizeof(TMbright)+6*sizeof(BYTE)) int qtAllocLeaves(n) /* allocate space for n leaves */ register int n; { unsigned nbytes; register unsigned i; qtFreeTree(0); /* make sure tree is empty */ if (n <= 0) return(0); if (qtL.nl >= n) return(qtL.nl); else if (qtL.nl > 0) free(qtL.base); /* round space up to nearest power of 2 */ nbytes = n*LEAFSIZ + 8; for (i = 1024; nbytes > i; i <<= 1) ; n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */ qtL.base = (char *)malloc(n*LEAFSIZ); if (qtL.base == NULL) return(0); /* assign larger alignment types earlier */ qtL.wp = (float (*)[3])qtL.base; qtL.brt = (TMbright *)(qtL.wp + n); qtL.chr = (BYTE (*)[3])(qtL.brt + n); qtL.rgb = (BYTE (*)[3])(qtL.chr + n); qtL.nl = n; qtL.tml = qtL.bl = qtL.tl = 0; return(n); } #undef LEAFSIZ qtFreeLeaves() /* free our allocated leaves and twigs */ { qtFreeTree(1); /* free tree also */ if (qtL.nl <= 0) return; free(qtL.base); qtL.base = NULL; qtL.nl = 0; } static shaketree(tp) /* shake dead leaves from tree */ register RTREE *tp; { register int i, li; for (i = 0; i < 4; i++) if (tp->flgs & BRF(i)) { shaketree(tp->k[i].b); if (is_stump(tp->k[i].b)) tp->flgs &= ~BRF(i); } else if (tp->flgs & LFF(i)) { li = tp->k[i].li; if (qtL.bl < qtL.tl ? (li < qtL.bl || li >= qtL.tl) : (li < qtL.bl && li >= qtL.tl)) tp->flgs &= ~LFF(i); } } int qtCompost(pct) /* free up some leaves */ int pct; { int nused, nclear, nmapped; /* figure out how many leaves to clear */ nclear = qtL.nl * pct / 100; nused = qtL.tl - qtL.bl; if (nused <= 0) nused += qtL.nl; nclear -= qtL.nl - nused; if (nclear <= 0) return(0); if (nclear >= nused) { /* clear them all */ qtFreeTree(0); qtL.tml = qtL.bl = qtL.tl = 0; return(nused); } /* else clear leaves from bottom */ nmapped = qtL.tml - qtL.bl; if (nmapped < 0) nmapped += qtL.nl; qtL.bl += nclear; if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl; if (nmapped <= nclear) qtL.tml = qtL.bl; shaketree(&qtrunk); return(nclear); } int qtFindLeaf(x, y) /* find closest leaf to (x,y) */ int x, y; { register RTREE *tp = &qtrunk; int li = -1; int x0=0, y0=0, x1=odev.hres, y1=odev.vres; int mx, my; register int q; /* check limits */ if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres) return(-1); /* find nearby leaf in our tree */ for ( ; ; ) { for (q = 0; q < 4; q++) /* find any leaf this level */ if (tp->flgs & LFF(q)) { li = tp->k[q].li; break; } q = 0; /* which quadrant are we? */ mx = (x0 + x1) >> 1; my = (y0 + y1) >> 1; if (x < mx) x1 = mx; else {x0 = mx; q |= 01;} if (y < my) y1 = my; else {y0 = my; q |= 02;} if (tp->flgs & BRF(q)) { /* branch down if not a leaf */ tp = tp->k[q].b; continue; } if (tp->flgs & LFF(q)) /* good shot! */ return(tp->k[q].li); return(li); /* else return what we have */ } } static addleaf(li) /* add a leaf to our tree */ int li; { register RTREE *tp = &qtrunk; int x0=0, y0=0, x1=odev.hres, y1=odev.vres; int lo = -1; int x, y, mx, my; double z; FVECT ip, wp; register int q; /* compute leaf location */ VCOPY(wp, qtL.wp[li]); viewloc(ip, &odev.v, wp); if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1. || ip[1] < 0. || ip[1] >= 1.) return; x = ip[0] * odev.hres; y = ip[1] * odev.vres; z = ip[2]; /* find the place for it */ for ( ; ; ) { q = 0; /* which quadrant? */ mx = (x0 + x1) >> 1; my = (y0 + y1) >> 1; if (x < mx) x1 = mx; else {x0 = mx; q |= 01;} if (y < my) y1 = my; else {y0 = my; q |= 02;} if (tp->flgs & BRF(q)) { /* move to next branch */ tp->flgs |= CHF(q); /* not sure; guess */ tp = tp->k[q].b; continue; } if (!(tp->flgs & LFF(q))) { /* found stem for leaf */ tp->k[q].li = li; tp->flgs |= CHLFF(q); break; } /* check existing leaf */ if (lo != tp->k[q].li) { lo = tp->k[q].li; VCOPY(wp, qtL.wp[lo]); viewloc(ip, &odev.v, wp); } /* is node minimum size? */ if (x1-x0 <= qtMinNodesiz || y1-y0 <= qtMinNodesiz) { if (z > (1.-qtDepthEps)*ip[2]) /* who is closer? */ return; /* old one is */ tp->k[q].li = li; /* new one is */ tp->flgs |= CHF(q); break; } tp->flgs &= ~LFF(q); /* else grow tree */ tp->flgs |= CHBRF(q); tp = tp->k[q].b = newtwig(); q = 0; /* old leaf -> new branch */ mx = ip[0] * odev.hres; my = ip[1] * odev.vres; if (mx >= (x0 + x1) >> 1) q |= 01; if (my >= (y0 + y1) >> 1) q |= 02; tp->k[q].li = lo; tp->flgs |= LFF(q)|CH_ANY; /* all new */ } } dev_value(c, p) /* add a pixel value to our output queue */ COLR c; FVECT p; { register int li; li = newleaf(); VCOPY(qtL.wp[li], p); tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1); addleaf(li); } qtReplant() /* replant our tree using new view */ { register int i; /* anything to replant? */ if (qtL.bl == qtL.tl) return; qtFreeTree(0); /* blow the old tree away */ /* regrow it in new place */ for (i = qtL.bl; i != qtL.tl; ) { addleaf(i); if (++i >= qtL.nl) i = 0; } } qtMapLeaves(redo) /* map our leaves to RGB */ int redo; { int aorg, alen, borg, blen; /* recompute mapping? */ if (redo) qtL.tml = qtL.bl; /* already done? */ if (qtL.tml == qtL.tl) return(1); /* compute segments */ aorg = qtL.tml; if (qtL.tl >= aorg) { alen = qtL.tl - aorg; blen = 0; } else { alen = qtL.nl - aorg; borg = 0; blen = qtL.tl; } /* (re)compute tone mapping? */ if (qtL.tml == qtL.bl) { tmClearHisto(); tmAddHisto(qtL.brt+aorg, alen, 1); if (blen > 0) tmAddHisto(qtL.brt+borg, blen, 1); if (tmComputeMapping(0., 0., 0.) != TM_E_OK) return(0); } if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg, qtL.chr+aorg, alen) != TM_E_OK) return(0); if (blen > 0) tmMapPixels(qtL.rgb+borg, qtL.brt+borg, qtL.chr+borg, blen); qtL.tml = qtL.tl; return(1); } static redraw(ca, tp, x0, y0, x1, y1, l) /* redraw portion of a tree */ BYTE ca[3]; /* returned average color */ register RTREE *tp; int x0, y0, x1, y1; int l[2][2]; { int csm[3], nc; register BYTE *cp; BYTE rgb[3]; int quads = CH_ANY; int mx, my; register int i; /* compute midpoint */ mx = (x0 + x1) >> 1; my = (y0 + y1) >> 1; /* see what to do */ if (l[0][0] >= mx) quads &= ~(CHF(2)|CHF(0)); else if (l[0][1] <= mx) quads &= ~(CHF(3)|CHF(1)); if (l[1][0] >= my) quads &= ~(CHF(1)|CHF(0)); else if (l[1][1] <= my) quads &= ~(CHF(3)|CHF(2)); tp->flgs &= ~quads; /* mark them done */ csm[0] = csm[1] = csm[2] = nc = 0; /* do leaves first */ for (i = 0; i < 4; i++) if (quads & CHF(i) && tp->flgs & LFF(i)) { dev_paintr(cp=qtL.rgb[tp->k[i].li], i&01 ? mx : x0, i&02 ? my : y0, i&01 ? x1 : mx, i&02 ? y1 : my); csm[0] += cp[0]; csm[1] += cp[1]; csm[2] += cp[2]; nc++; quads &= ~CHF(i); } /* now do branches */ for (i = 0; i < 4; i++) if (quads & CHF(i) && tp->flgs & BRF(i)) { redraw(rgb, tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0, i&01 ? x1 : mx, i&02 ? y1 : my, l); csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; nc++; quads &= ~CHF(i); } if (nc > 1) { ca[0] = csm[0]/nc; ca[1] = csm[1]/nc; ca[2] = csm[2]/nc; } else { ca[0] = csm[0]; ca[1] = csm[1]; ca[2] = csm[2]; } if (!quads) return; /* fill in gaps with average */ for (i = 0; i < 4; i++) if (quads & CHF(i)) dev_paintr(ca, i&01 ? mx : x0, i&02 ? my : y0, i&01 ? x1 : mx, i&02 ? y1 : my); } static update(ca, tp, x0, y0, x1, y1) /* update tree display as needed */ BYTE ca[3]; /* returned average color */ register RTREE *tp; int x0, y0, x1, y1; { int csm[3], nc; register BYTE *cp; BYTE rgb[3]; int gaps = 0; int mx, my; register int i; /* compute midpoint */ mx = (x0 + x1) >> 1; my = (y0 + y1) >> 1; csm[0] = csm[1] = csm[2] = nc = 0; /* do leaves first */ for (i = 0; i < 4; i++) { if (!(tp->flgs & CHF(i))) continue; if (tp->flgs & LFF(i)) { dev_paintr(cp=qtL.rgb[tp->k[i].li], i&01 ? mx : x0, i&02 ? my : y0, i&01 ? x1 : mx, i&02 ? y1 : my); csm[0] += cp[0]; csm[1] += cp[1]; csm[2] += cp[2]; nc++; } else if (!(tp->flgs & BRF(i))) gaps |= 1<flgs & CHBRF(i)) == CHBRF(i)) { update(rgb, tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0, i&01 ? x1 : mx, i&02 ? y1 : my); csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; nc++; } if (nc > 1) { ca[0] = csm[0]/nc; ca[1] = csm[1]/nc; ca[2] = csm[2]/nc; } else { ca[0] = csm[0]; ca[1] = csm[1]; ca[2] = csm[2]; } /* fill in gaps with average */ for (i = 0; gaps && i < 4; gaps >>= 1, i++) if (gaps & 01) dev_paintr(ca, i&01 ? mx : x0, i&02 ? my : y0, i&01 ? x1 : mx, i&02 ? y1 : my); tp->flgs &= ~CH_ANY; /* all done */ } qtRedraw(x0, y0, x1, y1) /* redraw part or all of our screen */ int x0, y0, x1, y1; { int lim[2][2]; BYTE ca[3]; if (is_stump(&qtrunk)) return; if (!qtMapLeaves((lim[0][0]=x0) <= 0 & (lim[1][0]=y0) <= 0 & (lim[0][1]=x1) >= odev.hres-1 & (lim[1][1]=y1) >= odev.vres-1)) return; redraw(ca, &qtrunk, 0, 0, odev.hres, odev.vres, lim); } qtUpdate() /* update our tree display */ { BYTE ca[3]; if (is_stump(&qtrunk)) return; if (!qtMapLeaves(0)) return; update(ca, &qtrunk, 0, 0, odev.hres, odev.vres); }