ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhd_qtree.c
Revision: 3.17
Committed: Thu Jan 1 13:00:15 1998 UTC (26 years, 9 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.16: +8 -2 lines
Log Message:
increased interactive update rate with periodic display flushing

File Contents

# Content
1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ SGI";
5 #endif
6
7 /*
8 * Quadtree driver support routines.
9 */
10
11 #include "standard.h"
12 #include "rhd_qtree.h"
13 /* quantity of leaves to free at a time */
14 #ifndef LFREEPCT
15 #define LFREEPCT 25
16 #endif
17 /* maximum allowed angle difference (deg.) */
18 #ifndef MAXANG
19 #define MAXANG 20
20 #endif
21 #if MAXANG>0
22 #define MAXDIFF2 ( MAXANG*MAXANG * (PI*PI/180./180.))
23 #endif
24
25 #define abs(i) ((i) < 0 ? -(i) : (i))
26
27 RTREE qtrunk; /* our quadtree trunk */
28 double qtDepthEps = .05; /* epsilon to compare depths (z fraction) */
29 int qtMinNodesiz = 2; /* minimum node dimension (pixels) */
30 struct rleaves qtL; /* our pile of leaves */
31
32 int rayqleft = 0; /* rays left to queue before flush */
33
34 static int4 falleaves; /* our list of fallen leaves */
35
36 #define composted(li) (qtL.bl <= qtL.tl ? \
37 ((li) < qtL.bl || (li) >= qtL.tl) : \
38 ((li) < qtL.bl && (li) >= qtL.tl))
39
40 #define TBUNDLESIZ 409 /* number of twigs in a bundle */
41
42 static RTREE **twigbundle; /* free twig blocks (NULL term.) */
43 static int nexttwig; /* next free twig */
44
45
46 static RTREE *
47 newtwig() /* allocate a twig */
48 {
49 register int bi;
50
51 if (twigbundle == NULL) { /* initialize */
52 twigbundle = (RTREE **)malloc(sizeof(RTREE *));
53 if (twigbundle == NULL)
54 goto memerr;
55 twigbundle[0] = NULL;
56 }
57 bi = nexttwig / TBUNDLESIZ;
58 if (twigbundle[bi] == NULL) { /* new block */
59 twigbundle = (RTREE **)realloc((char *)twigbundle,
60 (bi+2)*sizeof(RTREE *));
61 if (twigbundle == NULL)
62 goto memerr;
63 twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE));
64 if (twigbundle[bi] == NULL)
65 goto memerr;
66 twigbundle[bi+1] = NULL;
67 }
68 /* nexttwig++ % TBUNDLESIZ */
69 return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ));
70 memerr:
71 error(SYSTEM, "out of memory in newtwig");
72 }
73
74
75 qtFreeTree(really) /* free allocated twigs */
76 int really;
77 {
78 register int i;
79
80 qtrunk.flgs = CH_ANY; /* chop down tree */
81 if (twigbundle == NULL)
82 return;
83 i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ;
84 nexttwig = 0;
85 if (!really) { /* just clear allocated blocks */
86 while (i--)
87 bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE));
88 return;
89 }
90 /* else "really" means free up memory */
91 for (i = 0; twigbundle[i] != NULL; i++)
92 free((char *)twigbundle[i]);
93 free((char *)twigbundle);
94 twigbundle = NULL;
95 }
96
97
98 #define LEAFSIZ (3*sizeof(float)+sizeof(int4)+\
99 sizeof(TMbright)+6*sizeof(BYTE))
100
101 int
102 qtAllocLeaves(n) /* allocate space for n leaves */
103 register int n;
104 {
105 unsigned nbytes;
106 register unsigned i;
107
108 qtFreeTree(0); /* make sure tree is empty */
109 if (n <= 0)
110 return(0);
111 if (qtL.nl >= n)
112 return(qtL.nl);
113 else if (qtL.nl > 0)
114 free(qtL.base);
115 /* round space up to nearest power of 2 */
116 nbytes = n*LEAFSIZ + 8;
117 for (i = 1024; nbytes > i; i <<= 1)
118 ;
119 n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */
120 qtL.base = (char *)malloc(n*LEAFSIZ);
121 if (qtL.base == NULL)
122 return(0);
123 /* assign larger alignment types earlier */
124 qtL.wp = (float (*)[3])qtL.base;
125 qtL.wd = (int4 *)(qtL.wp + n);
126 qtL.brt = (TMbright *)(qtL.wd + n);
127 qtL.chr = (BYTE (*)[3])(qtL.brt + n);
128 qtL.rgb = (BYTE (*)[3])(qtL.chr + n);
129 qtL.nl = n;
130 qtL.tml = qtL.bl = qtL.tl = 0;
131 falleaves = -1;
132 return(n);
133 }
134
135 #undef LEAFSIZ
136
137
138 qtFreeLeaves() /* free our allocated leaves and twigs */
139 {
140 qtFreeTree(1); /* free tree also */
141 if (qtL.nl <= 0)
142 return;
143 free(qtL.base);
144 qtL.base = NULL;
145 qtL.nl = 0;
146 }
147
148
149 static
150 shaketree(tp) /* shake dead leaves from tree */
151 register RTREE *tp;
152 {
153 register int i, li;
154
155 for (i = 0; i < 4; i++)
156 if (tp->flgs & BRF(i)) {
157 shaketree(tp->k[i].b);
158 if (is_stump(tp->k[i].b))
159 tp->flgs &= ~BRF(i);
160 } else if (tp->flgs & LFF(i)) {
161 li = tp->k[i].li;
162 if (composted(li))
163 tp->flgs &= ~LFF(i);
164 }
165 }
166
167
168 int
169 qtCompost(pct) /* free up some leaves */
170 int pct;
171 {
172 register int4 *fl;
173 int nused, nclear, nmapped;
174 /* figure out how many leaves to clear */
175 nclear = qtL.nl * pct / 100;
176 nused = qtL.tl - qtL.bl;
177 if (nused <= 0) nused += qtL.nl;
178 nclear -= qtL.nl - nused;
179 if (nclear <= 0)
180 return(0);
181 if (nclear >= nused) { /* clear them all */
182 qtFreeTree(0);
183 qtL.tml = qtL.bl = qtL.tl = 0;
184 falleaves = -1;
185 return(nused);
186 }
187 /* else clear leaves from bottom */
188 nmapped = qtL.tml - qtL.bl;
189 if (nmapped < 0) nmapped += qtL.nl;
190 qtL.bl += nclear;
191 if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl;
192 if (nmapped <= nclear) qtL.tml = qtL.bl;
193 shaketree(&qtrunk); /* dereference composted leaves */
194 for (fl = &falleaves; *fl >= 0; fl = qtL.wd + *fl)
195 while (composted(*fl))
196 if ((*fl = qtL.wd[*fl]) < 0)
197 return(nclear);
198 return(nclear);
199 }
200
201
202 int
203 qtFindLeaf(x, y) /* find closest leaf to (x,y) */
204 int x, y;
205 {
206 register RTREE *tp = &qtrunk;
207 int li = -1;
208 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
209 int mx, my;
210 register int q;
211 /* check limits */
212 if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres)
213 return(-1);
214 /* find nearby leaf in our tree */
215 for ( ; ; ) {
216 for (q = 0; q < 4; q++) /* find any leaf this level */
217 if (tp->flgs & LFF(q)) {
218 li = tp->k[q].li;
219 break;
220 }
221 q = 0; /* which quadrant are we? */
222 mx = (x0 + x1) >> 1;
223 my = (y0 + y1) >> 1;
224 if (x < mx) x1 = mx;
225 else {x0 = mx; q |= 01;}
226 if (y < my) y1 = my;
227 else {y0 = my; q |= 02;}
228 if (tp->flgs & BRF(q)) { /* branch down if not a leaf */
229 tp = tp->k[q].b;
230 continue;
231 }
232 if (tp->flgs & LFF(q)) /* good shot! */
233 return(tp->k[q].li);
234 return(li); /* else return what we have */
235 }
236 }
237
238
239 static
240 putleaf(li, drop) /* put a leaf in our tree */
241 register int li;
242 int drop;
243 {
244 register RTREE *tp = &qtrunk;
245 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
246 register int lo = -1;
247 double d2;
248 int x, y, mx, my;
249 double z;
250 FVECT ip, wp, vd;
251 register int q;
252 /* check for dead leaf */
253 if (!qtL.chr[li][1] && !(qtL.chr[li][0] | qtL.chr[li][2]))
254 return(0);
255 /* compute leaf location in view */
256 VCOPY(wp, qtL.wp[li]);
257 viewloc(ip, &odev.v, wp);
258 if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1.
259 || ip[1] < 0. || ip[1] >= 1.)
260 goto dropit; /* behind or outside view */
261 #ifdef DEBUG
262 if (odev.v.type == VT_PAR | odev.v.vfore > FTINY)
263 error(INTERNAL, "bad view assumption in putleaf");
264 #endif
265 for (q = 0; q < 3; q++)
266 vd[q] = (wp[q] - odev.v.vp[q])/ip[2];
267 d2 = fdir2diff(qtL.wd[li], vd);
268 #ifdef MAXDIFF2
269 if (d2 > MAXDIFF2)
270 goto dropit; /* leaf dir. too far off */
271 #endif
272 x = ip[0] * odev.hres;
273 y = ip[1] * odev.vres;
274 z = ip[2];
275 /* find the place for it */
276 for ( ; ; ) {
277 q = 0; /* which quadrant? */
278 mx = (x0 + x1) >> 1;
279 my = (y0 + y1) >> 1;
280 if (x < mx) x1 = mx;
281 else {x0 = mx; q |= 01;}
282 if (y < my) y1 = my;
283 else {y0 = my; q |= 02;}
284 if (tp->flgs & BRF(q)) { /* move to next branch */
285 tp->flgs |= CHF(q); /* not sure; guess */
286 tp = tp->k[q].b;
287 continue;
288 }
289 if (!(tp->flgs & LFF(q))) { /* found stem for leaf */
290 tp->k[q].li = li;
291 tp->flgs |= CHLFF(q);
292 return(1);
293 }
294 if (lo != tp->k[q].li) { /* check old leaf */
295 lo = tp->k[q].li;
296 VCOPY(wp, qtL.wp[lo]);
297 viewloc(ip, &odev.v, wp);
298 }
299 /* is node minimum size? */
300 if (y1-y0 <= qtMinNodesiz || x1-x0 <= qtMinNodesiz) {
301 if (z > (1.+qtDepthEps)*ip[2])
302 break; /* old one closer */
303 if (z >= (1.-qtDepthEps)*ip[2] &&
304 fdir2diff(qtL.wd[lo], vd) < d2)
305 break; /* old one better */
306 tp->k[q].li = li; /* attach new */
307 tp->flgs |= CHF(q);
308 li = lo; /* drop old... */
309 break;
310 }
311 tp->flgs &= ~LFF(q); /* else grow tree */
312 tp->flgs |= CHBRF(q);
313 tp = tp->k[q].b = newtwig();
314 q = 0; /* old leaf -> new branch */
315 mx = ip[0] * odev.hres;
316 my = ip[1] * odev.vres;
317 if (mx >= (x0 + x1) >> 1) q |= 01;
318 if (my >= (y0 + y1) >> 1) q |= 02;
319 tp->flgs = CH_ANY|LFF(q); /* all new */
320 tp->k[q].li = lo;
321 }
322 dropit:
323 if (drop)
324 if (li+1 == (qtL.tl ? qtL.tl : qtL.nl))
325 qtL.tl = li; /* special case */
326 else {
327 qtL.chr[li][0] = qtL.chr[li][1] = qtL.chr[li][2] = 0;
328 qtL.wd[li] = falleaves;
329 falleaves = li;
330 }
331 return(li == lo);
332 }
333
334
335 dev_value(c, p, v) /* add a pixel value to our quadtree */
336 COLR c;
337 FVECT p, v;
338 {
339 register int li;
340 int mapit;
341 /* grab a leaf */
342 if (!imm_mode && falleaves >= 0) { /* check for fallen leaves */
343 li = falleaves;
344 falleaves = qtL.wd[li];
345 mapit = qtL.tml <= qtL.tl ?
346 (li < qtL.tml || li >= qtL.tl) :
347 (li < qtL.tml && li >= qtL.tl) ;
348 } else { /* else allocate new one */
349 li = qtL.tl++;
350 if (qtL.tl >= qtL.nl) /* next leaf in ring */
351 qtL.tl = 0;
352 if (qtL.tl == qtL.bl) /* need to shake some free */
353 qtCompost(LFREEPCT);
354 mapit = 0; /* we'll map it later */
355 }
356 VCOPY(qtL.wp[li], p);
357 qtL.wd[li] = encodedir(v);
358 tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1);
359 if (putleaf(li, 1)) {
360 if (mapit)
361 tmMapPixels(qtL.rgb+li, qtL.brt+li, qtL.chr+li, 1);
362 if (--rayqleft == 0)
363 dev_flush(); /* flush output */
364 }
365 }
366
367
368 qtReplant() /* replant our tree using new view */
369 {
370 register int i;
371 /* anything to replant? */
372 if (qtL.bl == qtL.tl)
373 return;
374 qtFreeTree(0); /* blow the old tree away */
375 /* regrow it in new place */
376 for (i = qtL.bl; i != qtL.tl; ) {
377 putleaf(i, 0);
378 if (++i >= qtL.nl) i = 0;
379 }
380 }
381
382
383 qtMapLeaves(redo) /* map our leaves to RGB */
384 int redo;
385 {
386 int aorg, alen, borg, blen;
387 /* recompute mapping? */
388 if (redo)
389 qtL.tml = qtL.bl;
390 /* already done? */
391 if (qtL.tml == qtL.tl)
392 return(1);
393 /* compute segments */
394 aorg = qtL.tml;
395 if (qtL.tl >= aorg) {
396 alen = qtL.tl - aorg;
397 blen = 0;
398 } else {
399 alen = qtL.nl - aorg;
400 borg = 0;
401 blen = qtL.tl;
402 }
403 /* (re)compute tone mapping? */
404 if (qtL.tml == qtL.bl) {
405 tmClearHisto();
406 tmAddHisto(qtL.brt+aorg, alen, 1);
407 if (blen > 0)
408 tmAddHisto(qtL.brt+borg, blen, 1);
409 if (tmComputeMapping(0., 0., 0.) != TM_E_OK)
410 return(0);
411 }
412 if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg,
413 qtL.chr+aorg, alen) != TM_E_OK)
414 return(0);
415 if (blen > 0)
416 tmMapPixels(qtL.rgb+borg, qtL.brt+borg,
417 qtL.chr+borg, blen);
418 qtL.tml = qtL.tl;
419 return(1);
420 }