ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhd_qtree.c
Revision: 3.10
Committed: Fri Dec 5 09:40:05 1997 UTC (26 years, 4 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.9: +103 -14 lines
Log Message:
added code for determining closest ray direction in addleaf()

File Contents

# Content
1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ SGI";
5 #endif
6
7 /*
8 * Quadtree driver support routines.
9 */
10
11 #include "standard.h"
12 #include "rhd_qtree.h"
13 /* quantity of leaves to free at a time */
14 #ifndef LFREEPCT
15 #define LFREEPCT 25
16 #endif
17 /* maximum allowed angle difference (deg.) */
18 #ifndef MAXANG
19 #define MAXANG 20.
20 #endif
21
22 #define MAXDIFF2 (long)( MAXANG*MAXANG /90./90.*(1L<<15)*(1L<<15))
23
24 #define abs(i) ((i) < 0 ? -(i) : (i))
25
26 RTREE qtrunk; /* our quadtree trunk */
27 double qtDepthEps = .05; /* epsilon to compare depths (z fraction) */
28 int qtMinNodesiz = 2; /* minimum node dimension (pixels) */
29 struct rleaves qtL; /* our pile of leaves */
30
31 #define TBUNDLESIZ 409 /* number of twigs in a bundle */
32
33 static RTREE **twigbundle; /* free twig blocks (NULL term.) */
34 static int nexttwig; /* next free twig */
35
36 #define ungetleaf(li) (qtL.tl=(li)) /* dangerous if used improperly */
37
38
39 static RTREE *
40 newtwig() /* allocate a twig */
41 {
42 register int bi;
43
44 if (twigbundle == NULL) { /* initialize */
45 twigbundle = (RTREE **)malloc(sizeof(RTREE *));
46 if (twigbundle == NULL)
47 goto memerr;
48 twigbundle[0] = NULL;
49 }
50 bi = nexttwig / TBUNDLESIZ;
51 if (twigbundle[bi] == NULL) { /* new block */
52 twigbundle = (RTREE **)realloc((char *)twigbundle,
53 (bi+2)*sizeof(RTREE *));
54 if (twigbundle == NULL)
55 goto memerr;
56 twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE));
57 if (twigbundle[bi] == NULL)
58 goto memerr;
59 twigbundle[bi+1] = NULL;
60 }
61 /* nexttwig++ % TBUNDLESIZ */
62 return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ));
63 memerr:
64 error(SYSTEM, "out of memory in newtwig");
65 }
66
67
68 qtFreeTree(really) /* free allocated twigs */
69 int really;
70 {
71 register int i;
72
73 qtrunk.flgs = CH_ANY; /* chop down tree */
74 if (twigbundle == NULL)
75 return;
76 i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ;
77 nexttwig = 0;
78 if (!really) { /* just clear allocated blocks */
79 while (i--)
80 bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE));
81 return;
82 }
83 /* else "really" means free up memory */
84 for (i = 0; twigbundle[i] != NULL; i++)
85 free((char *)twigbundle[i]);
86 free((char *)twigbundle);
87 twigbundle = NULL;
88 }
89
90
91 static int
92 newleaf() /* allocate a leaf from our pile */
93 {
94 int li;
95
96 li = qtL.tl++;
97 if (qtL.tl >= qtL.nl) /* get next leaf in ring */
98 qtL.tl = 0;
99 if (qtL.tl == qtL.bl) /* need to shake some free */
100 qtCompost(LFREEPCT);
101 return(li);
102 }
103
104
105 #define LEAFSIZ (3*sizeof(float)+2*sizeof(short)+\
106 sizeof(TMbright)+6*sizeof(BYTE))
107
108 int
109 qtAllocLeaves(n) /* allocate space for n leaves */
110 register int n;
111 {
112 unsigned nbytes;
113 register unsigned i;
114
115 qtFreeTree(0); /* make sure tree is empty */
116 if (n <= 0)
117 return(0);
118 if (qtL.nl >= n)
119 return(qtL.nl);
120 else if (qtL.nl > 0)
121 free(qtL.base);
122 /* round space up to nearest power of 2 */
123 nbytes = n*LEAFSIZ + 8;
124 for (i = 1024; nbytes > i; i <<= 1)
125 ;
126 n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */
127 qtL.base = (char *)malloc(n*LEAFSIZ);
128 if (qtL.base == NULL)
129 return(0);
130 /* assign larger alignment types earlier */
131 qtL.wp = (float (*)[3])qtL.base;
132 qtL.wd = (short (*)[2])(qtL.wp + n);
133 qtL.brt = (TMbright *)(qtL.wd + n);
134 qtL.chr = (BYTE (*)[3])(qtL.brt + n);
135 qtL.rgb = (BYTE (*)[3])(qtL.chr + n);
136 qtL.nl = n;
137 qtL.tml = qtL.bl = qtL.tl = 0;
138 return(n);
139 }
140
141 #undef LEAFSIZ
142
143
144 qtFreeLeaves() /* free our allocated leaves and twigs */
145 {
146 qtFreeTree(1); /* free tree also */
147 if (qtL.nl <= 0)
148 return;
149 free(qtL.base);
150 qtL.base = NULL;
151 qtL.nl = 0;
152 }
153
154
155 static
156 shaketree(tp) /* shake dead leaves from tree */
157 register RTREE *tp;
158 {
159 register int i, li;
160
161 for (i = 0; i < 4; i++)
162 if (tp->flgs & BRF(i)) {
163 shaketree(tp->k[i].b);
164 if (is_stump(tp->k[i].b))
165 tp->flgs &= ~BRF(i);
166 } else if (tp->flgs & LFF(i)) {
167 li = tp->k[i].li;
168 if (qtL.bl < qtL.tl ?
169 (li < qtL.bl || li >= qtL.tl) :
170 (li < qtL.bl && li >= qtL.tl))
171 tp->flgs &= ~LFF(i);
172 }
173 }
174
175
176 int
177 qtCompost(pct) /* free up some leaves */
178 int pct;
179 {
180 int nused, nclear, nmapped;
181
182 /* figure out how many leaves to clear */
183 nclear = qtL.nl * pct / 100;
184 nused = qtL.tl - qtL.bl;
185 if (nused <= 0) nused += qtL.nl;
186 nclear -= qtL.nl - nused;
187 if (nclear <= 0)
188 return(0);
189 if (nclear >= nused) { /* clear them all */
190 qtFreeTree(0);
191 qtL.tml = qtL.bl = qtL.tl = 0;
192 return(nused);
193 }
194 /* else clear leaves from bottom */
195 nmapped = qtL.tml - qtL.bl;
196 if (nmapped < 0) nmapped += qtL.nl;
197 qtL.bl += nclear;
198 if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl;
199 if (nmapped <= nclear) qtL.tml = qtL.bl;
200 shaketree(&qtrunk);
201 return(nclear);
202 }
203
204
205 static
206 encodedir(pa, dv) /* encode a normalized direction vector */
207 short pa[2];
208 FVECT dv;
209 {
210 pa[1] = 0;
211 if (dv[2] >= 1.)
212 pa[0] = (1L<<15)-1;
213 else if (dv[2] <= -1.)
214 pa[0] = -((1L<<15)-1);
215 else {
216 pa[0] = ((1L<<15)-1)/(PI/2.) * asin(dv[2]);
217 pa[1] = ((1L<<15)-1)/PI * atan2(dv[1], dv[0]);
218 }
219 }
220
221
222 #define ALTSHFT 5
223 #define NALT (1<<ALTSHFT)
224 #define azisft(alt) azisftab[abs(alt)>>(15-ALTSHFT)]
225
226 static unsigned short azisftab[NALT];
227
228 static
229 azisftinit(alt) /* initialize azimuth scale factor table */
230 int alt;
231 {
232 register int i;
233
234 for (i = NALT; i--; )
235 azisftab[i] = 2.*(1L<<15) * cos(PI/2.*(i+.5)/NALT);
236 return(azisft(alt));
237 }
238
239 #define azisf(alt) (azisftab[0] ? azisft(alt) : azisftinit(alt)) >> 15
240
241 static long
242 dir2diff(pa1, pa2) /* relative distance^2 between directions */
243 short pa1[2], pa2[2];
244 {
245 long altd2, azid2;
246 int alt;
247
248 altd2 = pa1[0] - pa2[0]; /* get altitude difference^2 */
249 altd2 *= altd2;
250 if (altd2 > MAXDIFF2)
251 return(altd2); /* too large already */
252 azid2 = pa1[1] - pa2[1]; /* get adjusted azimuth difference^2 */
253 if (azid2 < 0) azid2 = -azid2;
254 if (azid2 >= 1L<<15) { /* wrap sphere */
255 azid2 -= 1L<<16;
256 if (azid2 < 0) azid2 = -azid2;
257 }
258 alt = (pa1[0]+pa2[0])/2;
259 azid2 = azid2*azisf(alt); /* evaluation order is important */
260 azid2 *= azid2;
261 return(altd2 + azid2);
262 }
263
264
265 int
266 qtFindLeaf(x, y) /* find closest leaf to (x,y) */
267 int x, y;
268 {
269 register RTREE *tp = &qtrunk;
270 int li = -1;
271 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
272 int mx, my;
273 register int q;
274 /* check limits */
275 if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres)
276 return(-1);
277 /* find nearby leaf in our tree */
278 for ( ; ; ) {
279 for (q = 0; q < 4; q++) /* find any leaf this level */
280 if (tp->flgs & LFF(q)) {
281 li = tp->k[q].li;
282 break;
283 }
284 q = 0; /* which quadrant are we? */
285 mx = (x0 + x1) >> 1;
286 my = (y0 + y1) >> 1;
287 if (x < mx) x1 = mx;
288 else {x0 = mx; q |= 01;}
289 if (y < my) y1 = my;
290 else {y0 = my; q |= 02;}
291 if (tp->flgs & BRF(q)) { /* branch down if not a leaf */
292 tp = tp->k[q].b;
293 continue;
294 }
295 if (tp->flgs & LFF(q)) /* good shot! */
296 return(tp->k[q].li);
297 return(li); /* else return what we have */
298 }
299 }
300
301
302 static
303 addleaf(li) /* add a leaf to our tree */
304 int li;
305 {
306 register RTREE *tp = &qtrunk;
307 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
308 int lo = -1;
309 long d2;
310 short dc[2];
311 int x, y, mx, my;
312 double z;
313 FVECT ip, wp;
314 register int q;
315 /* compute leaf location in view */
316 VCOPY(wp, qtL.wp[li]);
317 viewloc(ip, &odev.v, wp);
318 if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1.
319 || ip[1] < 0. || ip[1] >= 1.)
320 return(0); /* behind or outside view */
321 #ifdef DEBUG
322 if (odev.v.type == VT_PAR | odev.v.vfore > FTINY)
323 error(INTERNAL, "bad view assumption in addleaf");
324 #endif
325 for (q = 0; q < 3; q++)
326 wp[q] = (wp[q] - odev.v.vp[q])/ip[2];
327 encodedir(dc, wp); /* compute pixel direction */
328 d2 = dir2diff(dc, qtL.wd[li]);
329 if (d2 > MAXDIFF2)
330 return(0); /* leaf dir. too far off */
331 x = ip[0] * odev.hres;
332 y = ip[1] * odev.vres;
333 z = ip[2];
334 /* find the place for it */
335 for ( ; ; ) {
336 q = 0; /* which quadrant? */
337 mx = (x0 + x1) >> 1;
338 my = (y0 + y1) >> 1;
339 if (x < mx) x1 = mx;
340 else {x0 = mx; q |= 01;}
341 if (y < my) y1 = my;
342 else {y0 = my; q |= 02;}
343 if (tp->flgs & BRF(q)) { /* move to next branch */
344 tp->flgs |= CHF(q); /* not sure; guess */
345 tp = tp->k[q].b;
346 continue;
347 }
348 if (!(tp->flgs & LFF(q))) { /* found stem for leaf */
349 tp->k[q].li = li;
350 tp->flgs |= CHLFF(q);
351 break;
352 }
353 if (lo != tp->k[q].li) { /* check old leaf */
354 lo = tp->k[q].li;
355 VCOPY(wp, qtL.wp[lo]);
356 viewloc(ip, &odev.v, wp);
357 }
358 /* is node minimum size? */
359 if (y1-y0 <= qtMinNodesiz || x1-x0 <= qtMinNodesiz) {
360 if (z > (1.+qtDepthEps)*ip[2])
361 return(0); /* old one closer */
362 if (z >= (1.-qtDepthEps)*ip[2] &&
363 dir2diff(dc, qtL.wd[lo]) < d2)
364 return(0); /* old one better */
365 tp->k[q].li = li; /* else new one is */
366 tp->flgs |= CHF(q);
367 break;
368 }
369 tp->flgs &= ~LFF(q); /* else grow tree */
370 tp->flgs |= CHBRF(q);
371 tp = tp->k[q].b = newtwig();
372 q = 0; /* old leaf -> new branch */
373 mx = ip[0] * odev.hres;
374 my = ip[1] * odev.vres;
375 if (mx >= (x0 + x1) >> 1) q |= 01;
376 if (my >= (y0 + y1) >> 1) q |= 02;
377 tp->k[q].li = lo;
378 tp->flgs |= LFF(q)|CH_ANY; /* all new */
379 }
380 return(1); /* done */
381 }
382
383
384 dev_value(c, p, v) /* add a pixel value to our quadtree */
385 COLR c;
386 FVECT p, v;
387 {
388 register int li;
389
390 li = newleaf();
391 VCOPY(qtL.wp[li], p);
392 encodedir(qtL.wd[li], v);
393 tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1);
394 if (!addleaf(li))
395 ungetleaf(li);
396 }
397
398
399 qtReplant() /* replant our tree using new view */
400 {
401 register int i;
402 /* anything to replant? */
403 if (qtL.bl == qtL.tl)
404 return;
405 qtFreeTree(0); /* blow the old tree away */
406 /* regrow it in new place */
407 for (i = qtL.bl; i != qtL.tl; ) {
408 addleaf(i);
409 if (++i >= qtL.nl) i = 0;
410 }
411 }
412
413
414 qtMapLeaves(redo) /* map our leaves to RGB */
415 int redo;
416 {
417 int aorg, alen, borg, blen;
418 /* recompute mapping? */
419 if (redo)
420 qtL.tml = qtL.bl;
421 /* already done? */
422 if (qtL.tml == qtL.tl)
423 return(1);
424 /* compute segments */
425 aorg = qtL.tml;
426 if (qtL.tl >= aorg) {
427 alen = qtL.tl - aorg;
428 blen = 0;
429 } else {
430 alen = qtL.nl - aorg;
431 borg = 0;
432 blen = qtL.tl;
433 }
434 /* (re)compute tone mapping? */
435 if (qtL.tml == qtL.bl) {
436 tmClearHisto();
437 tmAddHisto(qtL.brt+aorg, alen, 1);
438 if (blen > 0)
439 tmAddHisto(qtL.brt+borg, blen, 1);
440 if (tmComputeMapping(0., 0., 0.) != TM_E_OK)
441 return(0);
442 }
443 if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg,
444 qtL.chr+aorg, alen) != TM_E_OK)
445 return(0);
446 if (blen > 0)
447 tmMapPixels(qtL.rgb+borg, qtL.brt+borg,
448 qtL.chr+borg, blen);
449 qtL.tml = qtL.tl;
450 return(1);
451 }