1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */ |
2 |
|
3 |
#ifndef lint |
4 |
static char SCCSid[] = "$SunId$ SGI"; |
5 |
#endif |
6 |
|
7 |
/* |
8 |
* Quadtree driver support routines. |
9 |
*/ |
10 |
|
11 |
#include "standard.h" |
12 |
#include "rhd_qtree.h" |
13 |
/* quantity of leaves to free at a time */ |
14 |
#ifndef LFREEPCT |
15 |
#define LFREEPCT 25 |
16 |
#endif |
17 |
/* maximum allowed angle difference (deg.) */ |
18 |
#ifndef MAXANG |
19 |
#define MAXANG 20. |
20 |
#endif |
21 |
|
22 |
#define MAXDIFF2 (long)( MAXANG*MAXANG /90./90.*(1L<<15)*(1L<<15)) |
23 |
|
24 |
#define abs(i) ((i) < 0 ? -(i) : (i)) |
25 |
|
26 |
RTREE qtrunk; /* our quadtree trunk */ |
27 |
double qtDepthEps = .05; /* epsilon to compare depths (z fraction) */ |
28 |
int qtMinNodesiz = 2; /* minimum node dimension (pixels) */ |
29 |
struct rleaves qtL; /* our pile of leaves */ |
30 |
|
31 |
#define TBUNDLESIZ 409 /* number of twigs in a bundle */ |
32 |
|
33 |
static RTREE **twigbundle; /* free twig blocks (NULL term.) */ |
34 |
static int nexttwig; /* next free twig */ |
35 |
|
36 |
#define ungetleaf(li) (qtL.tl=(li)) /* dangerous if used improperly */ |
37 |
|
38 |
|
39 |
static RTREE * |
40 |
newtwig() /* allocate a twig */ |
41 |
{ |
42 |
register int bi; |
43 |
|
44 |
if (twigbundle == NULL) { /* initialize */ |
45 |
twigbundle = (RTREE **)malloc(sizeof(RTREE *)); |
46 |
if (twigbundle == NULL) |
47 |
goto memerr; |
48 |
twigbundle[0] = NULL; |
49 |
} |
50 |
bi = nexttwig / TBUNDLESIZ; |
51 |
if (twigbundle[bi] == NULL) { /* new block */ |
52 |
twigbundle = (RTREE **)realloc((char *)twigbundle, |
53 |
(bi+2)*sizeof(RTREE *)); |
54 |
if (twigbundle == NULL) |
55 |
goto memerr; |
56 |
twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE)); |
57 |
if (twigbundle[bi] == NULL) |
58 |
goto memerr; |
59 |
twigbundle[bi+1] = NULL; |
60 |
} |
61 |
/* nexttwig++ % TBUNDLESIZ */ |
62 |
return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ)); |
63 |
memerr: |
64 |
error(SYSTEM, "out of memory in newtwig"); |
65 |
} |
66 |
|
67 |
|
68 |
qtFreeTree(really) /* free allocated twigs */ |
69 |
int really; |
70 |
{ |
71 |
register int i; |
72 |
|
73 |
qtrunk.flgs = CH_ANY; /* chop down tree */ |
74 |
if (twigbundle == NULL) |
75 |
return; |
76 |
i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ; |
77 |
nexttwig = 0; |
78 |
if (!really) { /* just clear allocated blocks */ |
79 |
while (i--) |
80 |
bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE)); |
81 |
return; |
82 |
} |
83 |
/* else "really" means free up memory */ |
84 |
for (i = 0; twigbundle[i] != NULL; i++) |
85 |
free((char *)twigbundle[i]); |
86 |
free((char *)twigbundle); |
87 |
twigbundle = NULL; |
88 |
} |
89 |
|
90 |
|
91 |
static int |
92 |
newleaf() /* allocate a leaf from our pile */ |
93 |
{ |
94 |
int li; |
95 |
|
96 |
li = qtL.tl++; |
97 |
if (qtL.tl >= qtL.nl) /* get next leaf in ring */ |
98 |
qtL.tl = 0; |
99 |
if (qtL.tl == qtL.bl) /* need to shake some free */ |
100 |
qtCompost(LFREEPCT); |
101 |
return(li); |
102 |
} |
103 |
|
104 |
|
105 |
#define LEAFSIZ (3*sizeof(float)+2*sizeof(short)+\ |
106 |
sizeof(TMbright)+6*sizeof(BYTE)) |
107 |
|
108 |
int |
109 |
qtAllocLeaves(n) /* allocate space for n leaves */ |
110 |
register int n; |
111 |
{ |
112 |
unsigned nbytes; |
113 |
register unsigned i; |
114 |
|
115 |
qtFreeTree(0); /* make sure tree is empty */ |
116 |
if (n <= 0) |
117 |
return(0); |
118 |
if (qtL.nl >= n) |
119 |
return(qtL.nl); |
120 |
else if (qtL.nl > 0) |
121 |
free(qtL.base); |
122 |
/* round space up to nearest power of 2 */ |
123 |
nbytes = n*LEAFSIZ + 8; |
124 |
for (i = 1024; nbytes > i; i <<= 1) |
125 |
; |
126 |
n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */ |
127 |
qtL.base = (char *)malloc(n*LEAFSIZ); |
128 |
if (qtL.base == NULL) |
129 |
return(0); |
130 |
/* assign larger alignment types earlier */ |
131 |
qtL.wp = (float (*)[3])qtL.base; |
132 |
qtL.wd = (short (*)[2])(qtL.wp + n); |
133 |
qtL.brt = (TMbright *)(qtL.wd + n); |
134 |
qtL.chr = (BYTE (*)[3])(qtL.brt + n); |
135 |
qtL.rgb = (BYTE (*)[3])(qtL.chr + n); |
136 |
qtL.nl = n; |
137 |
qtL.tml = qtL.bl = qtL.tl = 0; |
138 |
return(n); |
139 |
} |
140 |
|
141 |
#undef LEAFSIZ |
142 |
|
143 |
|
144 |
qtFreeLeaves() /* free our allocated leaves and twigs */ |
145 |
{ |
146 |
qtFreeTree(1); /* free tree also */ |
147 |
if (qtL.nl <= 0) |
148 |
return; |
149 |
free(qtL.base); |
150 |
qtL.base = NULL; |
151 |
qtL.nl = 0; |
152 |
} |
153 |
|
154 |
|
155 |
static |
156 |
shaketree(tp) /* shake dead leaves from tree */ |
157 |
register RTREE *tp; |
158 |
{ |
159 |
register int i, li; |
160 |
|
161 |
for (i = 0; i < 4; i++) |
162 |
if (tp->flgs & BRF(i)) { |
163 |
shaketree(tp->k[i].b); |
164 |
if (is_stump(tp->k[i].b)) |
165 |
tp->flgs &= ~BRF(i); |
166 |
} else if (tp->flgs & LFF(i)) { |
167 |
li = tp->k[i].li; |
168 |
if (qtL.bl < qtL.tl ? |
169 |
(li < qtL.bl || li >= qtL.tl) : |
170 |
(li < qtL.bl && li >= qtL.tl)) |
171 |
tp->flgs &= ~LFF(i); |
172 |
} |
173 |
} |
174 |
|
175 |
|
176 |
int |
177 |
qtCompost(pct) /* free up some leaves */ |
178 |
int pct; |
179 |
{ |
180 |
int nused, nclear, nmapped; |
181 |
|
182 |
/* figure out how many leaves to clear */ |
183 |
nclear = qtL.nl * pct / 100; |
184 |
nused = qtL.tl - qtL.bl; |
185 |
if (nused <= 0) nused += qtL.nl; |
186 |
nclear -= qtL.nl - nused; |
187 |
if (nclear <= 0) |
188 |
return(0); |
189 |
if (nclear >= nused) { /* clear them all */ |
190 |
qtFreeTree(0); |
191 |
qtL.tml = qtL.bl = qtL.tl = 0; |
192 |
return(nused); |
193 |
} |
194 |
/* else clear leaves from bottom */ |
195 |
nmapped = qtL.tml - qtL.bl; |
196 |
if (nmapped < 0) nmapped += qtL.nl; |
197 |
qtL.bl += nclear; |
198 |
if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl; |
199 |
if (nmapped <= nclear) qtL.tml = qtL.bl; |
200 |
shaketree(&qtrunk); |
201 |
return(nclear); |
202 |
} |
203 |
|
204 |
|
205 |
static |
206 |
encodedir(pa, dv) /* encode a normalized direction vector */ |
207 |
short pa[2]; |
208 |
FVECT dv; |
209 |
{ |
210 |
pa[1] = 0; |
211 |
if (dv[2] >= 1.) |
212 |
pa[0] = (1L<<15)-1; |
213 |
else if (dv[2] <= -1.) |
214 |
pa[0] = -((1L<<15)-1); |
215 |
else { |
216 |
pa[0] = ((1L<<15)-1)/(PI/2.) * asin(dv[2]); |
217 |
pa[1] = ((1L<<15)-1)/PI * atan2(dv[1], dv[0]); |
218 |
} |
219 |
} |
220 |
|
221 |
|
222 |
#define ALTSHFT 5 |
223 |
#define NALT (1<<ALTSHFT) |
224 |
#define azisft(alt) azisftab[abs(alt)>>(15-ALTSHFT)] |
225 |
|
226 |
static unsigned short azisftab[NALT]; |
227 |
|
228 |
static |
229 |
azisftinit(alt) /* initialize azimuth scale factor table */ |
230 |
int alt; |
231 |
{ |
232 |
register int i; |
233 |
|
234 |
for (i = NALT; i--; ) |
235 |
azisftab[i] = 2.*(1L<<15) * cos(PI/2.*(i+.5)/NALT); |
236 |
return(azisft(alt)); |
237 |
} |
238 |
|
239 |
#define azisf(alt) (azisftab[0] ? azisft(alt) : azisftinit(alt)) >> 15 |
240 |
|
241 |
static long |
242 |
dir2diff(pa1, pa2) /* relative distance^2 between directions */ |
243 |
short pa1[2], pa2[2]; |
244 |
{ |
245 |
long altd2, azid2; |
246 |
int alt; |
247 |
|
248 |
altd2 = pa1[0] - pa2[0]; /* get altitude difference^2 */ |
249 |
altd2 *= altd2; |
250 |
if (altd2 > MAXDIFF2) |
251 |
return(altd2); /* too large already */ |
252 |
azid2 = pa1[1] - pa2[1]; /* get adjusted azimuth difference^2 */ |
253 |
if (azid2 < 0) azid2 = -azid2; |
254 |
if (azid2 >= 1L<<15) { /* wrap sphere */ |
255 |
azid2 -= 1L<<16; |
256 |
if (azid2 < 0) azid2 = -azid2; |
257 |
} |
258 |
alt = (pa1[0]+pa2[0])/2; |
259 |
azid2 = azid2*azisf(alt); /* evaluation order is important */ |
260 |
azid2 *= azid2; |
261 |
return(altd2 + azid2); |
262 |
} |
263 |
|
264 |
|
265 |
int |
266 |
qtFindLeaf(x, y) /* find closest leaf to (x,y) */ |
267 |
int x, y; |
268 |
{ |
269 |
register RTREE *tp = &qtrunk; |
270 |
int li = -1; |
271 |
int x0=0, y0=0, x1=odev.hres, y1=odev.vres; |
272 |
int mx, my; |
273 |
register int q; |
274 |
/* check limits */ |
275 |
if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres) |
276 |
return(-1); |
277 |
/* find nearby leaf in our tree */ |
278 |
for ( ; ; ) { |
279 |
for (q = 0; q < 4; q++) /* find any leaf this level */ |
280 |
if (tp->flgs & LFF(q)) { |
281 |
li = tp->k[q].li; |
282 |
break; |
283 |
} |
284 |
q = 0; /* which quadrant are we? */ |
285 |
mx = (x0 + x1) >> 1; |
286 |
my = (y0 + y1) >> 1; |
287 |
if (x < mx) x1 = mx; |
288 |
else {x0 = mx; q |= 01;} |
289 |
if (y < my) y1 = my; |
290 |
else {y0 = my; q |= 02;} |
291 |
if (tp->flgs & BRF(q)) { /* branch down if not a leaf */ |
292 |
tp = tp->k[q].b; |
293 |
continue; |
294 |
} |
295 |
if (tp->flgs & LFF(q)) /* good shot! */ |
296 |
return(tp->k[q].li); |
297 |
return(li); /* else return what we have */ |
298 |
} |
299 |
} |
300 |
|
301 |
|
302 |
static |
303 |
addleaf(li) /* add a leaf to our tree */ |
304 |
int li; |
305 |
{ |
306 |
register RTREE *tp = &qtrunk; |
307 |
int x0=0, y0=0, x1=odev.hres, y1=odev.vres; |
308 |
int lo = -1; |
309 |
long d2; |
310 |
short dc[2]; |
311 |
int x, y, mx, my; |
312 |
double z; |
313 |
FVECT ip, wp; |
314 |
register int q; |
315 |
/* compute leaf location in view */ |
316 |
VCOPY(wp, qtL.wp[li]); |
317 |
viewloc(ip, &odev.v, wp); |
318 |
if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1. |
319 |
|| ip[1] < 0. || ip[1] >= 1.) |
320 |
return(0); /* behind or outside view */ |
321 |
#ifdef DEBUG |
322 |
if (odev.v.type == VT_PAR | odev.v.vfore > FTINY) |
323 |
error(INTERNAL, "bad view assumption in addleaf"); |
324 |
#endif |
325 |
for (q = 0; q < 3; q++) |
326 |
wp[q] = (wp[q] - odev.v.vp[q])/ip[2]; |
327 |
encodedir(dc, wp); /* compute pixel direction */ |
328 |
d2 = dir2diff(dc, qtL.wd[li]); |
329 |
if (d2 > MAXDIFF2) |
330 |
return(0); /* leaf dir. too far off */ |
331 |
x = ip[0] * odev.hres; |
332 |
y = ip[1] * odev.vres; |
333 |
z = ip[2]; |
334 |
/* find the place for it */ |
335 |
for ( ; ; ) { |
336 |
q = 0; /* which quadrant? */ |
337 |
mx = (x0 + x1) >> 1; |
338 |
my = (y0 + y1) >> 1; |
339 |
if (x < mx) x1 = mx; |
340 |
else {x0 = mx; q |= 01;} |
341 |
if (y < my) y1 = my; |
342 |
else {y0 = my; q |= 02;} |
343 |
if (tp->flgs & BRF(q)) { /* move to next branch */ |
344 |
tp->flgs |= CHF(q); /* not sure; guess */ |
345 |
tp = tp->k[q].b; |
346 |
continue; |
347 |
} |
348 |
if (!(tp->flgs & LFF(q))) { /* found stem for leaf */ |
349 |
tp->k[q].li = li; |
350 |
tp->flgs |= CHLFF(q); |
351 |
break; |
352 |
} |
353 |
if (lo != tp->k[q].li) { /* check old leaf */ |
354 |
lo = tp->k[q].li; |
355 |
VCOPY(wp, qtL.wp[lo]); |
356 |
viewloc(ip, &odev.v, wp); |
357 |
} |
358 |
/* is node minimum size? */ |
359 |
if (y1-y0 <= qtMinNodesiz || x1-x0 <= qtMinNodesiz) { |
360 |
if (z > (1.+qtDepthEps)*ip[2]) |
361 |
return(0); /* old one closer */ |
362 |
if (z >= (1.-qtDepthEps)*ip[2] && |
363 |
dir2diff(dc, qtL.wd[lo]) < d2) |
364 |
return(0); /* old one better */ |
365 |
tp->k[q].li = li; /* else new one is */ |
366 |
tp->flgs |= CHF(q); |
367 |
break; |
368 |
} |
369 |
tp->flgs &= ~LFF(q); /* else grow tree */ |
370 |
tp->flgs |= CHBRF(q); |
371 |
tp = tp->k[q].b = newtwig(); |
372 |
q = 0; /* old leaf -> new branch */ |
373 |
mx = ip[0] * odev.hres; |
374 |
my = ip[1] * odev.vres; |
375 |
if (mx >= (x0 + x1) >> 1) q |= 01; |
376 |
if (my >= (y0 + y1) >> 1) q |= 02; |
377 |
tp->k[q].li = lo; |
378 |
tp->flgs |= LFF(q)|CH_ANY; /* all new */ |
379 |
} |
380 |
return(1); /* done */ |
381 |
} |
382 |
|
383 |
|
384 |
dev_value(c, p, v) /* add a pixel value to our quadtree */ |
385 |
COLR c; |
386 |
FVECT p, v; |
387 |
{ |
388 |
register int li; |
389 |
|
390 |
li = newleaf(); |
391 |
VCOPY(qtL.wp[li], p); |
392 |
encodedir(qtL.wd[li], v); |
393 |
tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1); |
394 |
if (!addleaf(li)) |
395 |
ungetleaf(li); |
396 |
} |
397 |
|
398 |
|
399 |
qtReplant() /* replant our tree using new view */ |
400 |
{ |
401 |
register int i; |
402 |
/* anything to replant? */ |
403 |
if (qtL.bl == qtL.tl) |
404 |
return; |
405 |
qtFreeTree(0); /* blow the old tree away */ |
406 |
/* regrow it in new place */ |
407 |
for (i = qtL.bl; i != qtL.tl; ) { |
408 |
addleaf(i); |
409 |
if (++i >= qtL.nl) i = 0; |
410 |
} |
411 |
} |
412 |
|
413 |
|
414 |
qtMapLeaves(redo) /* map our leaves to RGB */ |
415 |
int redo; |
416 |
{ |
417 |
int aorg, alen, borg, blen; |
418 |
/* recompute mapping? */ |
419 |
if (redo) |
420 |
qtL.tml = qtL.bl; |
421 |
/* already done? */ |
422 |
if (qtL.tml == qtL.tl) |
423 |
return(1); |
424 |
/* compute segments */ |
425 |
aorg = qtL.tml; |
426 |
if (qtL.tl >= aorg) { |
427 |
alen = qtL.tl - aorg; |
428 |
blen = 0; |
429 |
} else { |
430 |
alen = qtL.nl - aorg; |
431 |
borg = 0; |
432 |
blen = qtL.tl; |
433 |
} |
434 |
/* (re)compute tone mapping? */ |
435 |
if (qtL.tml == qtL.bl) { |
436 |
tmClearHisto(); |
437 |
tmAddHisto(qtL.brt+aorg, alen, 1); |
438 |
if (blen > 0) |
439 |
tmAddHisto(qtL.brt+borg, blen, 1); |
440 |
if (tmComputeMapping(0., 0., 0.) != TM_E_OK) |
441 |
return(0); |
442 |
} |
443 |
if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg, |
444 |
qtL.chr+aorg, alen) != TM_E_OK) |
445 |
return(0); |
446 |
if (blen > 0) |
447 |
tmMapPixels(qtL.rgb+borg, qtL.brt+borg, |
448 |
qtL.chr+borg, blen); |
449 |
qtL.tml = qtL.tl; |
450 |
return(1); |
451 |
} |