ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhd_qtree.c
Revision: 3.9
Committed: Tue Nov 25 16:52:04 1997 UTC (26 years, 5 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.8: +1 -109 lines
Log Message:
moved routines specific to rectangle update to rhd_qtree2r.c

File Contents

# User Rev Content
1 gregl 3.1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ SGI";
5     #endif
6    
7     /*
8     * Quadtree driver support routines.
9     */
10    
11     #include "standard.h"
12     #include "rhd_qtree.h"
13 gregl 3.6 /* quantity of leaves to free at a time */
14     #ifndef LFREEPCT
15     #define LFREEPCT 25
16     #endif
17 gregl 3.1
18 gregl 3.2 RTREE qtrunk; /* our quadtree trunk */
19     double qtDepthEps = .02; /* epsilon to compare depths (z fraction) */
20     int qtMinNodesiz = 2; /* minimum node dimension (pixels) */
21 gregl 3.5 struct rleaves qtL; /* our pile of leaves */
22 gregl 3.2
23 gregl 3.1 #define TBUNDLESIZ 409 /* number of twigs in a bundle */
24    
25     static RTREE **twigbundle; /* free twig blocks (NULL term.) */
26     static int nexttwig; /* next free twig */
27    
28    
29     static RTREE *
30     newtwig() /* allocate a twig */
31     {
32     register int bi;
33    
34     if (twigbundle == NULL) { /* initialize */
35     twigbundle = (RTREE **)malloc(sizeof(RTREE *));
36     if (twigbundle == NULL)
37     goto memerr;
38     twigbundle[0] = NULL;
39     }
40     bi = nexttwig / TBUNDLESIZ;
41     if (twigbundle[bi] == NULL) { /* new block */
42     twigbundle = (RTREE **)realloc((char *)twigbundle,
43     (bi+2)*sizeof(RTREE *));
44     if (twigbundle == NULL)
45     goto memerr;
46     twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE));
47     if (twigbundle[bi] == NULL)
48     goto memerr;
49     twigbundle[bi+1] = NULL;
50     }
51     /* nexttwig++ % TBUNDLESIZ */
52     return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ));
53     memerr:
54     error(SYSTEM, "out of memory in newtwig");
55     }
56    
57    
58 gregl 3.3 qtFreeTree(really) /* free allocated twigs */
59 gregl 3.1 int really;
60     {
61     register int i;
62    
63 gregl 3.7 qtrunk.flgs = CH_ANY; /* chop down tree */
64 gregl 3.1 if (twigbundle == NULL)
65     return;
66 gregl 3.7 i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ;
67     nexttwig = 0;
68 gregl 3.1 if (!really) { /* just clear allocated blocks */
69 gregl 3.7 while (i--)
70 gregl 3.1 bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE));
71     return;
72     }
73     /* else "really" means free up memory */
74     for (i = 0; twigbundle[i] != NULL; i++)
75     free((char *)twigbundle[i]);
76     free((char *)twigbundle);
77     twigbundle = NULL;
78     }
79    
80    
81 gregl 3.5 static int
82 gregl 3.1 newleaf() /* allocate a leaf from our pile */
83     {
84 gregl 3.5 int li;
85 gregl 3.4
86 gregl 3.5 li = qtL.tl++;
87     if (qtL.tl >= qtL.nl) /* get next leaf in ring */
88     qtL.tl = 0;
89     if (qtL.tl == qtL.bl) /* need to shake some free */
90 gregl 3.1 qtCompost(LFREEPCT);
91 gregl 3.5 return(li);
92 gregl 3.1 }
93    
94    
95 gregl 3.5 #define LEAFSIZ (3*sizeof(float)+sizeof(TMbright)+6*sizeof(BYTE))
96    
97 gregl 3.1 int
98     qtAllocLeaves(n) /* allocate space for n leaves */
99 gregl 3.5 register int n;
100 gregl 3.1 {
101     unsigned nbytes;
102     register unsigned i;
103    
104 gregl 3.3 qtFreeTree(0); /* make sure tree is empty */
105 gregl 3.1 if (n <= 0)
106     return(0);
107 gregl 3.5 if (qtL.nl >= n)
108     return(qtL.nl);
109     else if (qtL.nl > 0)
110     free(qtL.base);
111 gregl 3.1 /* round space up to nearest power of 2 */
112 gregl 3.5 nbytes = n*LEAFSIZ + 8;
113 gregl 3.1 for (i = 1024; nbytes > i; i <<= 1)
114     ;
115 gregl 3.5 n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */
116     qtL.base = (char *)malloc(n*LEAFSIZ);
117     if (qtL.base == NULL)
118     return(0);
119     /* assign larger alignment types earlier */
120     qtL.wp = (float (*)[3])qtL.base;
121     qtL.brt = (TMbright *)(qtL.wp + n);
122     qtL.chr = (BYTE (*)[3])(qtL.brt + n);
123     qtL.rgb = (BYTE (*)[3])(qtL.chr + n);
124     qtL.nl = n;
125     qtL.tml = qtL.bl = qtL.tl = 0;
126     return(n);
127 gregl 3.1 }
128    
129 gregl 3.5 #undef LEAFSIZ
130 gregl 3.1
131 gregl 3.5
132 gregl 3.1 qtFreeLeaves() /* free our allocated leaves and twigs */
133     {
134 gregl 3.3 qtFreeTree(1); /* free tree also */
135 gregl 3.5 if (qtL.nl <= 0)
136 gregl 3.1 return;
137 gregl 3.5 free(qtL.base);
138     qtL.base = NULL;
139     qtL.nl = 0;
140 gregl 3.1 }
141    
142    
143     static
144     shaketree(tp) /* shake dead leaves from tree */
145     register RTREE *tp;
146     {
147     register int i, li;
148    
149     for (i = 0; i < 4; i++)
150 gregl 3.5 if (tp->flgs & BRF(i)) {
151 gregl 3.2 shaketree(tp->k[i].b);
152 gregl 3.5 if (is_stump(tp->k[i].b))
153     tp->flgs &= ~BRF(i);
154     } else if (tp->flgs & LFF(i)) {
155     li = tp->k[i].li;
156     if (qtL.bl < qtL.tl ?
157     (li < qtL.bl || li >= qtL.tl) :
158     (li < qtL.bl && li >= qtL.tl))
159     tp->flgs &= ~LFF(i);
160 gregl 3.1 }
161     }
162    
163    
164     int
165     qtCompost(pct) /* free up some leaves */
166     int pct;
167     {
168 gregl 3.5 int nused, nclear, nmapped;
169 gregl 3.4
170 gregl 3.1 /* figure out how many leaves to clear */
171 gregl 3.5 nclear = qtL.nl * pct / 100;
172     nused = qtL.tl - qtL.bl;
173     if (nused <= 0) nused += qtL.nl;
174     nclear -= qtL.nl - nused;
175 gregl 3.1 if (nclear <= 0)
176     return(0);
177     if (nclear >= nused) { /* clear them all */
178 gregl 3.3 qtFreeTree(0);
179 gregl 3.5 qtL.tml = qtL.bl = qtL.tl = 0;
180 gregl 3.1 return(nused);
181     }
182     /* else clear leaves from bottom */
183 gregl 3.5 nmapped = qtL.tml - qtL.bl;
184     if (nmapped < 0) nmapped += qtL.nl;
185     qtL.bl += nclear;
186     if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl;
187     if (nmapped <= nclear) qtL.tml = qtL.bl;
188 gregl 3.1 shaketree(&qtrunk);
189     return(nclear);
190     }
191    
192    
193 gregl 3.5 int
194 gregl 3.3 qtFindLeaf(x, y) /* find closest leaf to (x,y) */
195     int x, y;
196     {
197     register RTREE *tp = &qtrunk;
198 gregl 3.5 int li = -1;
199 gregl 3.3 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
200     int mx, my;
201     register int q;
202     /* check limits */
203     if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres)
204 gregl 3.5 return(-1);
205 gregl 3.3 /* find nearby leaf in our tree */
206     for ( ; ; ) {
207     for (q = 0; q < 4; q++) /* find any leaf this level */
208 gregl 3.5 if (tp->flgs & LFF(q)) {
209     li = tp->k[q].li;
210 gregl 3.3 break;
211     }
212     q = 0; /* which quadrant are we? */
213     mx = (x0 + x1) >> 1;
214     my = (y0 + y1) >> 1;
215     if (x < mx) x1 = mx;
216     else {x0 = mx; q |= 01;}
217     if (y < my) y1 = my;
218     else {y0 = my; q |= 02;}
219     if (tp->flgs & BRF(q)) { /* branch down if not a leaf */
220     tp = tp->k[q].b;
221     continue;
222     }
223 gregl 3.5 if (tp->flgs & LFF(q)) /* good shot! */
224     return(tp->k[q].li);
225     return(li); /* else return what we have */
226 gregl 3.3 }
227     }
228    
229    
230 gregl 3.1 static
231 gregl 3.5 addleaf(li) /* add a leaf to our tree */
232     int li;
233 gregl 3.1 {
234     register RTREE *tp = &qtrunk;
235     int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
236 gregl 3.5 int lo = -1;
237 gregl 3.1 int x, y, mx, my;
238     double z;
239     FVECT ip, wp;
240     register int q;
241     /* compute leaf location */
242 gregl 3.5 VCOPY(wp, qtL.wp[li]);
243 gregl 3.1 viewloc(ip, &odev.v, wp);
244     if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1.
245     || ip[1] < 0. || ip[1] >= 1.)
246     return;
247     x = ip[0] * odev.hres;
248     y = ip[1] * odev.vres;
249     z = ip[2];
250     /* find the place for it */
251     for ( ; ; ) {
252     q = 0; /* which quadrant? */
253     mx = (x0 + x1) >> 1;
254     my = (y0 + y1) >> 1;
255     if (x < mx) x1 = mx;
256     else {x0 = mx; q |= 01;}
257     if (y < my) y1 = my;
258     else {y0 = my; q |= 02;}
259     if (tp->flgs & BRF(q)) { /* move to next branch */
260     tp->flgs |= CHF(q); /* not sure; guess */
261     tp = tp->k[q].b;
262     continue;
263     }
264 gregl 3.5 if (!(tp->flgs & LFF(q))) { /* found stem for leaf */
265     tp->k[q].li = li;
266     tp->flgs |= CHLFF(q);
267 gregl 3.1 break;
268     }
269     /* check existing leaf */
270 gregl 3.5 if (lo != tp->k[q].li) {
271     lo = tp->k[q].li;
272     VCOPY(wp, qtL.wp[lo]);
273 gregl 3.1 viewloc(ip, &odev.v, wp);
274     }
275     /* is node minimum size? */
276     if (x1-x0 <= qtMinNodesiz || y1-y0 <= qtMinNodesiz) {
277     if (z > (1.-qtDepthEps)*ip[2]) /* who is closer? */
278     return; /* old one is */
279 gregl 3.5 tp->k[q].li = li; /* new one is */
280 gregl 3.1 tp->flgs |= CHF(q);
281     break;
282     }
283 gregl 3.5 tp->flgs &= ~LFF(q); /* else grow tree */
284     tp->flgs |= CHBRF(q);
285 gregl 3.1 tp = tp->k[q].b = newtwig();
286     q = 0; /* old leaf -> new branch */
287     mx = ip[0] * odev.hres;
288     my = ip[1] * odev.vres;
289     if (mx >= (x0 + x1) >> 1) q |= 01;
290     if (my >= (y0 + y1) >> 1) q |= 02;
291 gregl 3.5 tp->k[q].li = lo;
292     tp->flgs |= LFF(q)|CH_ANY; /* all new */
293 gregl 3.1 }
294     }
295    
296    
297 gregl 3.9 dev_value(c, p) /* add a pixel value to our quadtree */
298 gregl 3.1 COLR c;
299     FVECT p;
300     {
301 gregl 3.5 register int li;
302 gregl 3.1
303 gregl 3.5 li = newleaf();
304     VCOPY(qtL.wp[li], p);
305     tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1);
306     addleaf(li);
307 gregl 3.1 }
308    
309    
310     qtReplant() /* replant our tree using new view */
311     {
312     register int i;
313 gregl 3.5 /* anything to replant? */
314     if (qtL.bl == qtL.tl)
315 gregl 3.1 return;
316 gregl 3.5 qtFreeTree(0); /* blow the old tree away */
317     /* regrow it in new place */
318     for (i = qtL.bl; i != qtL.tl; ) {
319     addleaf(i);
320     if (++i >= qtL.nl) i = 0;
321 gregl 3.1 }
322     }
323    
324    
325 gregl 3.5 qtMapLeaves(redo) /* map our leaves to RGB */
326     int redo;
327     {
328     int aorg, alen, borg, blen;
329 gregl 3.6 /* recompute mapping? */
330     if (redo)
331     qtL.tml = qtL.bl;
332 gregl 3.5 /* already done? */
333     if (qtL.tml == qtL.tl)
334     return(1);
335     /* compute segments */
336     aorg = qtL.tml;
337     if (qtL.tl >= aorg) {
338     alen = qtL.tl - aorg;
339     blen = 0;
340     } else {
341     alen = qtL.nl - aorg;
342     borg = 0;
343     blen = qtL.tl;
344     }
345     /* (re)compute tone mapping? */
346     if (qtL.tml == qtL.bl) {
347     tmClearHisto();
348     tmAddHisto(qtL.brt+aorg, alen, 1);
349     if (blen > 0)
350     tmAddHisto(qtL.brt+borg, blen, 1);
351     if (tmComputeMapping(0., 0., 0.) != TM_E_OK)
352     return(0);
353     }
354     if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg,
355     qtL.chr+aorg, alen) != TM_E_OK)
356     return(0);
357     if (blen > 0)
358     tmMapPixels(qtL.rgb+borg, qtL.brt+borg,
359     qtL.chr+borg, blen);
360     qtL.tml = qtL.tl;
361     return(1);
362 gregl 3.1 }