ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhd_qtree.c
Revision: 3.7
Committed: Tue Nov 25 11:15:20 1997 UTC (26 years, 5 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.6: +12 -42 lines
Log Message:
changed redraw function to simply mark branches and leaves for update

File Contents

# User Rev Content
1 gregl 3.1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ SGI";
5     #endif
6    
7     /*
8     * Quadtree driver support routines.
9     */
10    
11     #include "standard.h"
12     #include "rhd_qtree.h"
13 gregl 3.6 /* quantity of leaves to free at a time */
14     #ifndef LFREEPCT
15     #define LFREEPCT 25
16     #endif
17 gregl 3.1
18 gregl 3.2 RTREE qtrunk; /* our quadtree trunk */
19     double qtDepthEps = .02; /* epsilon to compare depths (z fraction) */
20     int qtMinNodesiz = 2; /* minimum node dimension (pixels) */
21 gregl 3.5 struct rleaves qtL; /* our pile of leaves */
22 gregl 3.2
23 gregl 3.1 #define TBUNDLESIZ 409 /* number of twigs in a bundle */
24    
25     static RTREE **twigbundle; /* free twig blocks (NULL term.) */
26     static int nexttwig; /* next free twig */
27    
28 gregl 3.5 #define is_stump(t) (!((t)->flgs & (BR_ANY|LF_ANY)))
29 gregl 3.1
30    
31     static RTREE *
32     newtwig() /* allocate a twig */
33     {
34     register int bi;
35    
36     if (twigbundle == NULL) { /* initialize */
37     twigbundle = (RTREE **)malloc(sizeof(RTREE *));
38     if (twigbundle == NULL)
39     goto memerr;
40     twigbundle[0] = NULL;
41     }
42     bi = nexttwig / TBUNDLESIZ;
43     if (twigbundle[bi] == NULL) { /* new block */
44     twigbundle = (RTREE **)realloc((char *)twigbundle,
45     (bi+2)*sizeof(RTREE *));
46     if (twigbundle == NULL)
47     goto memerr;
48     twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE));
49     if (twigbundle[bi] == NULL)
50     goto memerr;
51     twigbundle[bi+1] = NULL;
52     }
53     /* nexttwig++ % TBUNDLESIZ */
54     return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ));
55     memerr:
56     error(SYSTEM, "out of memory in newtwig");
57     }
58    
59    
60 gregl 3.3 qtFreeTree(really) /* free allocated twigs */
61 gregl 3.1 int really;
62     {
63     register int i;
64    
65 gregl 3.7 qtrunk.flgs = CH_ANY; /* chop down tree */
66 gregl 3.1 if (twigbundle == NULL)
67     return;
68 gregl 3.7 i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ;
69     nexttwig = 0;
70 gregl 3.1 if (!really) { /* just clear allocated blocks */
71 gregl 3.7 while (i--)
72 gregl 3.1 bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE));
73     return;
74     }
75     /* else "really" means free up memory */
76     for (i = 0; twigbundle[i] != NULL; i++)
77     free((char *)twigbundle[i]);
78     free((char *)twigbundle);
79     twigbundle = NULL;
80     }
81    
82    
83 gregl 3.5 static int
84 gregl 3.1 newleaf() /* allocate a leaf from our pile */
85     {
86 gregl 3.5 int li;
87 gregl 3.4
88 gregl 3.5 li = qtL.tl++;
89     if (qtL.tl >= qtL.nl) /* get next leaf in ring */
90     qtL.tl = 0;
91     if (qtL.tl == qtL.bl) /* need to shake some free */
92 gregl 3.1 qtCompost(LFREEPCT);
93 gregl 3.5 return(li);
94 gregl 3.1 }
95    
96    
97 gregl 3.5 #define LEAFSIZ (3*sizeof(float)+sizeof(TMbright)+6*sizeof(BYTE))
98    
99 gregl 3.1 int
100     qtAllocLeaves(n) /* allocate space for n leaves */
101 gregl 3.5 register int n;
102 gregl 3.1 {
103     unsigned nbytes;
104     register unsigned i;
105    
106 gregl 3.3 qtFreeTree(0); /* make sure tree is empty */
107 gregl 3.1 if (n <= 0)
108     return(0);
109 gregl 3.5 if (qtL.nl >= n)
110     return(qtL.nl);
111     else if (qtL.nl > 0)
112     free(qtL.base);
113 gregl 3.1 /* round space up to nearest power of 2 */
114 gregl 3.5 nbytes = n*LEAFSIZ + 8;
115 gregl 3.1 for (i = 1024; nbytes > i; i <<= 1)
116     ;
117 gregl 3.5 n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */
118     qtL.base = (char *)malloc(n*LEAFSIZ);
119     if (qtL.base == NULL)
120     return(0);
121     /* assign larger alignment types earlier */
122     qtL.wp = (float (*)[3])qtL.base;
123     qtL.brt = (TMbright *)(qtL.wp + n);
124     qtL.chr = (BYTE (*)[3])(qtL.brt + n);
125     qtL.rgb = (BYTE (*)[3])(qtL.chr + n);
126     qtL.nl = n;
127     qtL.tml = qtL.bl = qtL.tl = 0;
128     return(n);
129 gregl 3.1 }
130    
131 gregl 3.5 #undef LEAFSIZ
132 gregl 3.1
133 gregl 3.5
134 gregl 3.1 qtFreeLeaves() /* free our allocated leaves and twigs */
135     {
136 gregl 3.3 qtFreeTree(1); /* free tree also */
137 gregl 3.5 if (qtL.nl <= 0)
138 gregl 3.1 return;
139 gregl 3.5 free(qtL.base);
140     qtL.base = NULL;
141     qtL.nl = 0;
142 gregl 3.1 }
143    
144    
145     static
146     shaketree(tp) /* shake dead leaves from tree */
147     register RTREE *tp;
148     {
149     register int i, li;
150    
151     for (i = 0; i < 4; i++)
152 gregl 3.5 if (tp->flgs & BRF(i)) {
153 gregl 3.2 shaketree(tp->k[i].b);
154 gregl 3.5 if (is_stump(tp->k[i].b))
155     tp->flgs &= ~BRF(i);
156     } else if (tp->flgs & LFF(i)) {
157     li = tp->k[i].li;
158     if (qtL.bl < qtL.tl ?
159     (li < qtL.bl || li >= qtL.tl) :
160     (li < qtL.bl && li >= qtL.tl))
161     tp->flgs &= ~LFF(i);
162 gregl 3.1 }
163     }
164    
165    
166     int
167     qtCompost(pct) /* free up some leaves */
168     int pct;
169     {
170 gregl 3.5 int nused, nclear, nmapped;
171 gregl 3.4
172 gregl 3.1 /* figure out how many leaves to clear */
173 gregl 3.5 nclear = qtL.nl * pct / 100;
174     nused = qtL.tl - qtL.bl;
175     if (nused <= 0) nused += qtL.nl;
176     nclear -= qtL.nl - nused;
177 gregl 3.1 if (nclear <= 0)
178     return(0);
179     if (nclear >= nused) { /* clear them all */
180 gregl 3.3 qtFreeTree(0);
181 gregl 3.5 qtL.tml = qtL.bl = qtL.tl = 0;
182 gregl 3.1 return(nused);
183     }
184     /* else clear leaves from bottom */
185 gregl 3.5 nmapped = qtL.tml - qtL.bl;
186     if (nmapped < 0) nmapped += qtL.nl;
187     qtL.bl += nclear;
188     if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl;
189     if (nmapped <= nclear) qtL.tml = qtL.bl;
190 gregl 3.1 shaketree(&qtrunk);
191     return(nclear);
192     }
193    
194    
195 gregl 3.5 int
196 gregl 3.3 qtFindLeaf(x, y) /* find closest leaf to (x,y) */
197     int x, y;
198     {
199     register RTREE *tp = &qtrunk;
200 gregl 3.5 int li = -1;
201 gregl 3.3 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
202     int mx, my;
203     register int q;
204     /* check limits */
205     if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres)
206 gregl 3.5 return(-1);
207 gregl 3.3 /* find nearby leaf in our tree */
208     for ( ; ; ) {
209     for (q = 0; q < 4; q++) /* find any leaf this level */
210 gregl 3.5 if (tp->flgs & LFF(q)) {
211     li = tp->k[q].li;
212 gregl 3.3 break;
213     }
214     q = 0; /* which quadrant are we? */
215     mx = (x0 + x1) >> 1;
216     my = (y0 + y1) >> 1;
217     if (x < mx) x1 = mx;
218     else {x0 = mx; q |= 01;}
219     if (y < my) y1 = my;
220     else {y0 = my; q |= 02;}
221     if (tp->flgs & BRF(q)) { /* branch down if not a leaf */
222     tp = tp->k[q].b;
223     continue;
224     }
225 gregl 3.5 if (tp->flgs & LFF(q)) /* good shot! */
226     return(tp->k[q].li);
227     return(li); /* else return what we have */
228 gregl 3.3 }
229     }
230    
231    
232 gregl 3.1 static
233 gregl 3.5 addleaf(li) /* add a leaf to our tree */
234     int li;
235 gregl 3.1 {
236     register RTREE *tp = &qtrunk;
237     int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
238 gregl 3.5 int lo = -1;
239 gregl 3.1 int x, y, mx, my;
240     double z;
241     FVECT ip, wp;
242     register int q;
243     /* compute leaf location */
244 gregl 3.5 VCOPY(wp, qtL.wp[li]);
245 gregl 3.1 viewloc(ip, &odev.v, wp);
246     if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1.
247     || ip[1] < 0. || ip[1] >= 1.)
248     return;
249     x = ip[0] * odev.hres;
250     y = ip[1] * odev.vres;
251     z = ip[2];
252     /* find the place for it */
253     for ( ; ; ) {
254     q = 0; /* which quadrant? */
255     mx = (x0 + x1) >> 1;
256     my = (y0 + y1) >> 1;
257     if (x < mx) x1 = mx;
258     else {x0 = mx; q |= 01;}
259     if (y < my) y1 = my;
260     else {y0 = my; q |= 02;}
261     if (tp->flgs & BRF(q)) { /* move to next branch */
262     tp->flgs |= CHF(q); /* not sure; guess */
263     tp = tp->k[q].b;
264     continue;
265     }
266 gregl 3.5 if (!(tp->flgs & LFF(q))) { /* found stem for leaf */
267     tp->k[q].li = li;
268     tp->flgs |= CHLFF(q);
269 gregl 3.1 break;
270     }
271     /* check existing leaf */
272 gregl 3.5 if (lo != tp->k[q].li) {
273     lo = tp->k[q].li;
274     VCOPY(wp, qtL.wp[lo]);
275 gregl 3.1 viewloc(ip, &odev.v, wp);
276     }
277     /* is node minimum size? */
278     if (x1-x0 <= qtMinNodesiz || y1-y0 <= qtMinNodesiz) {
279     if (z > (1.-qtDepthEps)*ip[2]) /* who is closer? */
280     return; /* old one is */
281 gregl 3.5 tp->k[q].li = li; /* new one is */
282 gregl 3.1 tp->flgs |= CHF(q);
283     break;
284     }
285 gregl 3.5 tp->flgs &= ~LFF(q); /* else grow tree */
286     tp->flgs |= CHBRF(q);
287 gregl 3.1 tp = tp->k[q].b = newtwig();
288     q = 0; /* old leaf -> new branch */
289     mx = ip[0] * odev.hres;
290     my = ip[1] * odev.vres;
291     if (mx >= (x0 + x1) >> 1) q |= 01;
292     if (my >= (y0 + y1) >> 1) q |= 02;
293 gregl 3.5 tp->k[q].li = lo;
294     tp->flgs |= LFF(q)|CH_ANY; /* all new */
295 gregl 3.1 }
296     }
297    
298    
299     dev_value(c, p) /* add a pixel value to our output queue */
300     COLR c;
301     FVECT p;
302     {
303 gregl 3.5 register int li;
304 gregl 3.1
305 gregl 3.5 li = newleaf();
306     VCOPY(qtL.wp[li], p);
307     tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1);
308     addleaf(li);
309 gregl 3.1 }
310    
311    
312     qtReplant() /* replant our tree using new view */
313     {
314     register int i;
315 gregl 3.5 /* anything to replant? */
316     if (qtL.bl == qtL.tl)
317 gregl 3.1 return;
318 gregl 3.5 qtFreeTree(0); /* blow the old tree away */
319     /* regrow it in new place */
320     for (i = qtL.bl; i != qtL.tl; ) {
321     addleaf(i);
322     if (++i >= qtL.nl) i = 0;
323 gregl 3.1 }
324     }
325    
326    
327 gregl 3.5 qtMapLeaves(redo) /* map our leaves to RGB */
328     int redo;
329     {
330     int aorg, alen, borg, blen;
331 gregl 3.6 /* recompute mapping? */
332     if (redo)
333     qtL.tml = qtL.bl;
334 gregl 3.5 /* already done? */
335     if (qtL.tml == qtL.tl)
336     return(1);
337     /* compute segments */
338     aorg = qtL.tml;
339     if (qtL.tl >= aorg) {
340     alen = qtL.tl - aorg;
341     blen = 0;
342     } else {
343     alen = qtL.nl - aorg;
344     borg = 0;
345     blen = qtL.tl;
346     }
347     /* (re)compute tone mapping? */
348     if (qtL.tml == qtL.bl) {
349     tmClearHisto();
350     tmAddHisto(qtL.brt+aorg, alen, 1);
351     if (blen > 0)
352     tmAddHisto(qtL.brt+borg, blen, 1);
353     if (tmComputeMapping(0., 0., 0.) != TM_E_OK)
354     return(0);
355     }
356     if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg,
357     qtL.chr+aorg, alen) != TM_E_OK)
358     return(0);
359     if (blen > 0)
360     tmMapPixels(qtL.rgb+borg, qtL.brt+borg,
361     qtL.chr+borg, blen);
362     qtL.tml = qtL.tl;
363     return(1);
364     }
365    
366    
367 gregl 3.1 static
368 gregl 3.7 redraw(tp, x0, y0, x1, y1, l) /* mark portion of a tree for redraw */
369 gregl 3.1 register RTREE *tp;
370     int x0, y0, x1, y1;
371     int l[2][2];
372     {
373     int quads = CH_ANY;
374     int mx, my;
375     register int i;
376     /* compute midpoint */
377     mx = (x0 + x1) >> 1;
378     my = (y0 + y1) >> 1;
379     /* see what to do */
380     if (l[0][0] >= mx)
381     quads &= ~(CHF(2)|CHF(0));
382 gregl 3.7 else if (l[0][1] < mx)
383 gregl 3.1 quads &= ~(CHF(3)|CHF(1));
384     if (l[1][0] >= my)
385     quads &= ~(CHF(1)|CHF(0));
386 gregl 3.7 else if (l[1][1] < my)
387 gregl 3.1 quads &= ~(CHF(3)|CHF(2));
388 gregl 3.7 tp->flgs |= quads; /* mark quadrants for update */
389     /* climb the branches */
390 gregl 3.1 for (i = 0; i < 4; i++)
391 gregl 3.7 if (tp->flgs & BRF(i) && quads & CHF(i))
392     redraw(tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0,
393 gregl 3.1 i&01 ? x1 : mx, i&02 ? y1 : my, l);
394     }
395    
396    
397     static
398     update(ca, tp, x0, y0, x1, y1) /* update tree display as needed */
399     BYTE ca[3]; /* returned average color */
400     register RTREE *tp;
401     int x0, y0, x1, y1;
402     {
403     int csm[3], nc;
404 gregl 3.5 register BYTE *cp;
405 gregl 3.1 BYTE rgb[3];
406     int gaps = 0;
407     int mx, my;
408     register int i;
409     /* compute midpoint */
410     mx = (x0 + x1) >> 1;
411     my = (y0 + y1) >> 1;
412     csm[0] = csm[1] = csm[2] = nc = 0;
413     /* do leaves first */
414 gregl 3.5 for (i = 0; i < 4; i++) {
415     if (!(tp->flgs & CHF(i)))
416     continue;
417     if (tp->flgs & LFF(i)) {
418     dev_paintr(cp=qtL.rgb[tp->k[i].li],
419     i&01 ? mx : x0, i&02 ? my : y0,
420 gregl 3.1 i&01 ? x1 : mx, i&02 ? y1 : my);
421 gregl 3.5 csm[0] += cp[0]; csm[1] += cp[1]; csm[2] += cp[2];
422 gregl 3.1 nc++;
423 gregl 3.5 } else if (!(tp->flgs & BRF(i)))
424     gaps |= 1<<i; /* empty stem */
425     }
426 gregl 3.1 /* now do branches */
427     for (i = 0; i < 4; i++)
428     if ((tp->flgs & CHBRF(i)) == CHBRF(i)) {
429     update(rgb, tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0,
430     i&01 ? x1 : mx, i&02 ? y1 : my);
431     csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2];
432     nc++;
433     }
434     if (nc > 1) {
435     ca[0] = csm[0]/nc; ca[1] = csm[1]/nc; ca[2] = csm[2]/nc;
436     } else {
437     ca[0] = csm[0]; ca[1] = csm[1]; ca[2] = csm[2];
438     }
439     /* fill in gaps with average */
440     for (i = 0; gaps && i < 4; gaps >>= 1, i++)
441     if (gaps & 01)
442     dev_paintr(ca, i&01 ? mx : x0, i&02 ? my : y0,
443     i&01 ? x1 : mx, i&02 ? y1 : my);
444     tp->flgs &= ~CH_ANY; /* all done */
445     }
446    
447    
448 gregl 3.5 qtRedraw(x0, y0, x1, y1) /* redraw part or all of our screen */
449 gregl 3.1 int x0, y0, x1, y1;
450     {
451     int lim[2][2];
452    
453     if (is_stump(&qtrunk))
454     return;
455 gregl 3.5 if (!qtMapLeaves((lim[0][0]=x0) <= 0 & (lim[1][0]=y0) <= 0 &
456     (lim[0][1]=x1) >= odev.hres-1 & (lim[1][1]=y1) >= odev.vres-1))
457     return;
458 gregl 3.7 redraw(&qtrunk, 0, 0, odev.hres, odev.vres, lim);
459 gregl 3.1 }
460    
461    
462     qtUpdate() /* update our tree display */
463     {
464     BYTE ca[3];
465    
466     if (is_stump(&qtrunk))
467     return;
468 gregl 3.5 if (!qtMapLeaves(0))
469     return;
470 gregl 3.1 update(ca, &qtrunk, 0, 0, odev.hres, odev.vres);
471     }