1 |
gregl |
3.1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */ |
2 |
|
|
|
3 |
|
|
#ifndef lint |
4 |
|
|
static char SCCSid[] = "$SunId$ SGI"; |
5 |
|
|
#endif |
6 |
|
|
|
7 |
|
|
/* |
8 |
|
|
* Quadtree driver support routines. |
9 |
|
|
*/ |
10 |
|
|
|
11 |
|
|
#include "standard.h" |
12 |
|
|
#include "rhd_qtree.h" |
13 |
|
|
|
14 |
gregl |
3.2 |
RTREE qtrunk; /* our quadtree trunk */ |
15 |
|
|
double qtDepthEps = .02; /* epsilon to compare depths (z fraction) */ |
16 |
|
|
int qtMinNodesiz = 2; /* minimum node dimension (pixels) */ |
17 |
|
|
|
18 |
gregl |
3.1 |
static RLEAF *leafpile; /* our collection of leaf values */ |
19 |
|
|
static int nleaves; /* count of leaves in our pile */ |
20 |
|
|
static int bleaf, tleaf; /* bottom and top (next) leaf index (ring) */ |
21 |
|
|
|
22 |
|
|
#define TBUNDLESIZ 409 /* number of twigs in a bundle */ |
23 |
|
|
|
24 |
|
|
static RTREE **twigbundle; /* free twig blocks (NULL term.) */ |
25 |
|
|
static int nexttwig; /* next free twig */ |
26 |
|
|
|
27 |
|
|
static RTREE emptytree; /* empty tree for test below */ |
28 |
|
|
|
29 |
|
|
#define is_stump(t) (!bcmp((char *)(t), (char *)&emptytree, sizeof(RTREE))) |
30 |
|
|
|
31 |
|
|
|
32 |
|
|
static RTREE * |
33 |
|
|
newtwig() /* allocate a twig */ |
34 |
|
|
{ |
35 |
|
|
register int bi; |
36 |
|
|
|
37 |
|
|
if (twigbundle == NULL) { /* initialize */ |
38 |
|
|
twigbundle = (RTREE **)malloc(sizeof(RTREE *)); |
39 |
|
|
if (twigbundle == NULL) |
40 |
|
|
goto memerr; |
41 |
|
|
twigbundle[0] = NULL; |
42 |
|
|
} |
43 |
|
|
bi = nexttwig / TBUNDLESIZ; |
44 |
|
|
if (twigbundle[bi] == NULL) { /* new block */ |
45 |
|
|
twigbundle = (RTREE **)realloc((char *)twigbundle, |
46 |
|
|
(bi+2)*sizeof(RTREE *)); |
47 |
|
|
if (twigbundle == NULL) |
48 |
|
|
goto memerr; |
49 |
|
|
twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE)); |
50 |
|
|
if (twigbundle[bi] == NULL) |
51 |
|
|
goto memerr; |
52 |
|
|
twigbundle[bi+1] = NULL; |
53 |
|
|
} |
54 |
|
|
/* nexttwig++ % TBUNDLESIZ */ |
55 |
|
|
return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ)); |
56 |
|
|
memerr: |
57 |
|
|
error(SYSTEM, "out of memory in newtwig"); |
58 |
|
|
} |
59 |
|
|
|
60 |
|
|
|
61 |
gregl |
3.3 |
qtFreeTree(really) /* free allocated twigs */ |
62 |
gregl |
3.1 |
int really; |
63 |
|
|
{ |
64 |
|
|
register int i; |
65 |
|
|
|
66 |
gregl |
3.4 |
tmClearHisto(); |
67 |
gregl |
3.1 |
bzero((char *)&qtrunk, sizeof(RTREE)); |
68 |
|
|
nexttwig = 0; |
69 |
|
|
if (twigbundle == NULL) |
70 |
|
|
return; |
71 |
|
|
if (!really) { /* just clear allocated blocks */ |
72 |
|
|
for (i = 0; twigbundle[i] != NULL; i++) |
73 |
|
|
bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE)); |
74 |
|
|
return; |
75 |
|
|
} |
76 |
|
|
/* else "really" means free up memory */ |
77 |
|
|
for (i = 0; twigbundle[i] != NULL; i++) |
78 |
|
|
free((char *)twigbundle[i]); |
79 |
|
|
free((char *)twigbundle); |
80 |
|
|
twigbundle = NULL; |
81 |
|
|
} |
82 |
|
|
|
83 |
|
|
|
84 |
|
|
static RLEAF * |
85 |
|
|
newleaf() /* allocate a leaf from our pile */ |
86 |
|
|
{ |
87 |
gregl |
3.4 |
RLEAF *lp; |
88 |
|
|
|
89 |
|
|
lp = leafpile + tleaf++; |
90 |
|
|
if (tleaf >= nleaves) /* get next leaf in ring */ |
91 |
gregl |
3.1 |
tleaf = 0; |
92 |
|
|
if (tleaf == bleaf) /* need to shake some free */ |
93 |
|
|
qtCompost(LFREEPCT); |
94 |
gregl |
3.4 |
return(lp); |
95 |
gregl |
3.1 |
} |
96 |
|
|
|
97 |
|
|
|
98 |
|
|
int |
99 |
|
|
qtAllocLeaves(n) /* allocate space for n leaves */ |
100 |
|
|
int n; |
101 |
|
|
{ |
102 |
|
|
unsigned nbytes; |
103 |
|
|
register unsigned i; |
104 |
|
|
|
105 |
gregl |
3.3 |
qtFreeTree(0); /* make sure tree is empty */ |
106 |
gregl |
3.1 |
if (n <= 0) |
107 |
|
|
return(0); |
108 |
|
|
if (nleaves >= n) |
109 |
|
|
return(nleaves); |
110 |
|
|
else if (nleaves > 0) |
111 |
|
|
free((char *)leafpile); |
112 |
|
|
/* round space up to nearest power of 2 */ |
113 |
|
|
nbytes = n*sizeof(RLEAF) + 8; |
114 |
|
|
for (i = 1024; nbytes > i; i <<= 1) |
115 |
|
|
; |
116 |
|
|
n = (i - 8) / sizeof(RLEAF); |
117 |
|
|
leafpile = (RLEAF *)malloc(n*sizeof(RLEAF)); |
118 |
|
|
if (leafpile == NULL) |
119 |
|
|
return(-1); |
120 |
|
|
nleaves = n; |
121 |
|
|
bleaf = tleaf = 0; |
122 |
|
|
return(nleaves); |
123 |
|
|
} |
124 |
|
|
|
125 |
|
|
|
126 |
|
|
qtFreeLeaves() /* free our allocated leaves and twigs */ |
127 |
|
|
{ |
128 |
gregl |
3.3 |
qtFreeTree(1); /* free tree also */ |
129 |
gregl |
3.1 |
if (nleaves <= 0) |
130 |
|
|
return; |
131 |
|
|
free((char *)leafpile); |
132 |
|
|
leafpile = NULL; |
133 |
|
|
nleaves = 0; |
134 |
|
|
} |
135 |
|
|
|
136 |
|
|
|
137 |
|
|
static |
138 |
|
|
shaketree(tp) /* shake dead leaves from tree */ |
139 |
|
|
register RTREE *tp; |
140 |
|
|
{ |
141 |
|
|
register int i, li; |
142 |
|
|
|
143 |
|
|
for (i = 0; i < 4; i++) |
144 |
gregl |
3.2 |
if (tp->flgs & BRF(i)) |
145 |
|
|
shaketree(tp->k[i].b); |
146 |
|
|
else if (tp->k[i].l != NULL) { |
147 |
gregl |
3.1 |
li = tp->k[i].l - leafpile; |
148 |
|
|
if (bleaf < tleaf ? (li < bleaf || li >= tleaf) : |
149 |
|
|
(li < bleaf && li >= tleaf)) { |
150 |
|
|
tmAddHisto(&tp->k[i].l->brt, 1, -1); |
151 |
|
|
tp->k[i].l = NULL; |
152 |
|
|
} |
153 |
|
|
} |
154 |
|
|
} |
155 |
|
|
|
156 |
|
|
|
157 |
|
|
int |
158 |
|
|
qtCompost(pct) /* free up some leaves */ |
159 |
|
|
int pct; |
160 |
|
|
{ |
161 |
|
|
int nused, nclear; |
162 |
gregl |
3.4 |
|
163 |
|
|
if (is_stump(&qtrunk)) |
164 |
|
|
return(0); |
165 |
gregl |
3.1 |
/* figure out how many leaves to clear */ |
166 |
|
|
nclear = nleaves * pct / 100; |
167 |
gregl |
3.4 |
nused = tleaf > bleaf ? tleaf-bleaf : tleaf+nleaves-bleaf; |
168 |
|
|
nclear -= nleaves - nused; /* less what's already free */ |
169 |
gregl |
3.1 |
if (nclear <= 0) |
170 |
|
|
return(0); |
171 |
|
|
if (nclear >= nused) { /* clear them all */ |
172 |
gregl |
3.3 |
qtFreeTree(0); |
173 |
gregl |
3.1 |
bleaf = tleaf = 0; |
174 |
|
|
return(nused); |
175 |
|
|
} |
176 |
|
|
/* else clear leaves from bottom */ |
177 |
gregl |
3.4 |
bleaf += nclear; |
178 |
|
|
if (bleaf >= nleaves) bleaf -= nleaves; |
179 |
gregl |
3.1 |
shaketree(&qtrunk); |
180 |
|
|
return(nclear); |
181 |
|
|
} |
182 |
|
|
|
183 |
|
|
|
184 |
gregl |
3.3 |
RLEAF * |
185 |
|
|
qtFindLeaf(x, y) /* find closest leaf to (x,y) */ |
186 |
|
|
int x, y; |
187 |
|
|
{ |
188 |
|
|
register RTREE *tp = &qtrunk; |
189 |
|
|
RLEAF *lp = NULL; |
190 |
|
|
int x0=0, y0=0, x1=odev.hres, y1=odev.vres; |
191 |
|
|
int mx, my; |
192 |
|
|
register int q; |
193 |
|
|
/* check limits */ |
194 |
|
|
if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres) |
195 |
|
|
return(NULL); |
196 |
|
|
/* find nearby leaf in our tree */ |
197 |
|
|
for ( ; ; ) { |
198 |
|
|
for (q = 0; q < 4; q++) /* find any leaf this level */ |
199 |
|
|
if (!(tp->flgs & BRF(q)) && tp->k[q].l != NULL) { |
200 |
|
|
lp = tp->k[q].l; |
201 |
|
|
break; |
202 |
|
|
} |
203 |
|
|
q = 0; /* which quadrant are we? */ |
204 |
|
|
mx = (x0 + x1) >> 1; |
205 |
|
|
my = (y0 + y1) >> 1; |
206 |
|
|
if (x < mx) x1 = mx; |
207 |
|
|
else {x0 = mx; q |= 01;} |
208 |
|
|
if (y < my) y1 = my; |
209 |
|
|
else {y0 = my; q |= 02;} |
210 |
|
|
if (tp->flgs & BRF(q)) { /* branch down if not a leaf */ |
211 |
|
|
tp = tp->k[q].b; |
212 |
|
|
continue; |
213 |
|
|
} |
214 |
|
|
if (tp->k[q].l != NULL) /* good shot! */ |
215 |
|
|
return(tp->k[q].l); |
216 |
|
|
return(lp); /* else return what we have */ |
217 |
|
|
} |
218 |
|
|
} |
219 |
|
|
|
220 |
|
|
|
221 |
gregl |
3.1 |
static |
222 |
|
|
addleaf(lp) /* add a leaf to our tree */ |
223 |
|
|
RLEAF *lp; |
224 |
|
|
{ |
225 |
|
|
register RTREE *tp = &qtrunk; |
226 |
|
|
int x0=0, y0=0, x1=odev.hres, y1=odev.vres; |
227 |
|
|
RLEAF *lo = NULL; |
228 |
|
|
int x, y, mx, my; |
229 |
|
|
double z; |
230 |
|
|
FVECT ip, wp; |
231 |
|
|
register int q; |
232 |
|
|
/* compute leaf location */ |
233 |
|
|
VCOPY(wp, lp->wp); |
234 |
|
|
viewloc(ip, &odev.v, wp); |
235 |
|
|
if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1. |
236 |
|
|
|| ip[1] < 0. || ip[1] >= 1.) |
237 |
|
|
return; |
238 |
|
|
x = ip[0] * odev.hres; |
239 |
|
|
y = ip[1] * odev.vres; |
240 |
|
|
z = ip[2]; |
241 |
|
|
/* find the place for it */ |
242 |
|
|
for ( ; ; ) { |
243 |
|
|
q = 0; /* which quadrant? */ |
244 |
|
|
mx = (x0 + x1) >> 1; |
245 |
|
|
my = (y0 + y1) >> 1; |
246 |
|
|
if (x < mx) x1 = mx; |
247 |
|
|
else {x0 = mx; q |= 01;} |
248 |
|
|
if (y < my) y1 = my; |
249 |
|
|
else {y0 = my; q |= 02;} |
250 |
|
|
if (tp->flgs & BRF(q)) { /* move to next branch */ |
251 |
|
|
tp->flgs |= CHF(q); /* not sure; guess */ |
252 |
|
|
tp = tp->k[q].b; |
253 |
|
|
continue; |
254 |
|
|
} |
255 |
|
|
if (tp->k[q].l == NULL) { /* found stem for leaf */ |
256 |
|
|
tp->k[q].l = lp; |
257 |
|
|
tp->flgs |= CHF(q); |
258 |
|
|
break; |
259 |
|
|
} |
260 |
|
|
/* check existing leaf */ |
261 |
|
|
if (lo != tp->k[q].l) { |
262 |
|
|
lo = tp->k[q].l; |
263 |
|
|
VCOPY(wp, lo->wp); |
264 |
|
|
viewloc(ip, &odev.v, wp); |
265 |
|
|
} |
266 |
|
|
/* is node minimum size? */ |
267 |
|
|
if (x1-x0 <= qtMinNodesiz || y1-y0 <= qtMinNodesiz) { |
268 |
|
|
if (z > (1.-qtDepthEps)*ip[2]) /* who is closer? */ |
269 |
|
|
return; /* old one is */ |
270 |
|
|
tp->k[q].l = lp; /* new one is */ |
271 |
|
|
tp->flgs |= CHF(q); |
272 |
|
|
tmAddHisto(&lo->brt, 1, -1); /* drop old one */ |
273 |
|
|
break; |
274 |
|
|
} |
275 |
|
|
tp->flgs |= CHBRF(q); /* else grow tree */ |
276 |
|
|
tp = tp->k[q].b = newtwig(); |
277 |
|
|
tp->flgs |= CH_ANY; /* all new */ |
278 |
|
|
q = 0; /* old leaf -> new branch */ |
279 |
|
|
mx = ip[0] * odev.hres; |
280 |
|
|
my = ip[1] * odev.vres; |
281 |
|
|
if (mx >= (x0 + x1) >> 1) q |= 01; |
282 |
|
|
if (my >= (y0 + y1) >> 1) q |= 02; |
283 |
|
|
tp->k[q].l = lo; |
284 |
|
|
} |
285 |
|
|
tmAddHisto(&lp->brt, 1, 1); /* add leaf to histogram */ |
286 |
|
|
} |
287 |
|
|
|
288 |
|
|
|
289 |
|
|
dev_value(c, p) /* add a pixel value to our output queue */ |
290 |
|
|
COLR c; |
291 |
|
|
FVECT p; |
292 |
|
|
{ |
293 |
|
|
register RLEAF *lp; |
294 |
|
|
|
295 |
|
|
lp = newleaf(); |
296 |
|
|
VCOPY(lp->wp, p); |
297 |
|
|
tmCvColrs(&lp->brt, lp->chr, c, 1); |
298 |
|
|
addleaf(lp); |
299 |
|
|
} |
300 |
|
|
|
301 |
|
|
|
302 |
|
|
qtReplant() /* replant our tree using new view */ |
303 |
|
|
{ |
304 |
|
|
register int i; |
305 |
|
|
|
306 |
|
|
if (bleaf == tleaf) /* anything to replant? */ |
307 |
|
|
return; |
308 |
gregl |
3.3 |
qtFreeTree(0); /* blow the tree away */ |
309 |
gregl |
3.1 |
/* now rebuild it */ |
310 |
|
|
for (i = bleaf; i != tleaf; ) { |
311 |
|
|
addleaf(leafpile+i); |
312 |
|
|
if (++i >= nleaves) i = 0; |
313 |
|
|
} |
314 |
|
|
tmComputeMapping(0., 0., 0.); /* update the display */ |
315 |
|
|
qtUpdate(); |
316 |
|
|
} |
317 |
|
|
|
318 |
|
|
|
319 |
|
|
static |
320 |
|
|
redraw(ca, tp, x0, y0, x1, y1, l) /* redraw portion of a tree */ |
321 |
|
|
BYTE ca[3]; /* returned average color */ |
322 |
|
|
register RTREE *tp; |
323 |
|
|
int x0, y0, x1, y1; |
324 |
|
|
int l[2][2]; |
325 |
|
|
{ |
326 |
|
|
int csm[3], nc; |
327 |
|
|
BYTE rgb[3]; |
328 |
|
|
int quads = CH_ANY; |
329 |
|
|
int mx, my; |
330 |
|
|
register int i; |
331 |
|
|
/* compute midpoint */ |
332 |
|
|
mx = (x0 + x1) >> 1; |
333 |
|
|
my = (y0 + y1) >> 1; |
334 |
|
|
/* see what to do */ |
335 |
|
|
if (l[0][0] >= mx) |
336 |
|
|
quads &= ~(CHF(2)|CHF(0)); |
337 |
|
|
else if (l[0][1] <= mx) |
338 |
|
|
quads &= ~(CHF(3)|CHF(1)); |
339 |
|
|
if (l[1][0] >= my) |
340 |
|
|
quads &= ~(CHF(1)|CHF(0)); |
341 |
|
|
else if (l[1][1] <= my) |
342 |
|
|
quads &= ~(CHF(3)|CHF(2)); |
343 |
|
|
tp->flgs &= ~quads; /* mark them done */ |
344 |
|
|
csm[0] = csm[1] = csm[2] = nc = 0; |
345 |
|
|
/* do leaves first */ |
346 |
|
|
for (i = 0; i < 4; i++) |
347 |
|
|
if (quads & CHF(i) && !(tp->flgs & BRF(i)) && |
348 |
|
|
tp->k[i].l != NULL) { |
349 |
|
|
tmMapPixels(rgb, &tp->k[i].l->brt, tp->k[i].l->chr, 1); |
350 |
|
|
dev_paintr(rgb, i&01 ? mx : x0, i&02 ? my : y0, |
351 |
|
|
i&01 ? x1 : mx, i&02 ? y1 : my); |
352 |
|
|
csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; |
353 |
|
|
nc++; |
354 |
|
|
quads &= ~CHF(i); |
355 |
|
|
} |
356 |
|
|
/* now do branches */ |
357 |
|
|
for (i = 0; i < 4; i++) |
358 |
|
|
if (quads & CHF(i) && tp->flgs & BRF(i)) { |
359 |
|
|
redraw(rgb, tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0, |
360 |
|
|
i&01 ? x1 : mx, i&02 ? y1 : my, l); |
361 |
|
|
csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; |
362 |
|
|
nc++; |
363 |
|
|
quads &= ~CHF(i); |
364 |
|
|
} |
365 |
|
|
if (nc > 1) { |
366 |
|
|
ca[0] = csm[0]/nc; ca[1] = csm[1]/nc; ca[2] = csm[2]/nc; |
367 |
|
|
} else { |
368 |
|
|
ca[0] = csm[0]; ca[1] = csm[1]; ca[2] = csm[2]; |
369 |
|
|
} |
370 |
|
|
if (!quads) return; |
371 |
|
|
/* fill in gaps with average */ |
372 |
|
|
for (i = 0; i < 4; i++) |
373 |
|
|
if (quads & CHF(i)) |
374 |
|
|
dev_paintr(ca, i&01 ? mx : x0, i&02 ? my : y0, |
375 |
|
|
i&01 ? x1 : mx, i&02 ? y1 : my); |
376 |
|
|
} |
377 |
|
|
|
378 |
|
|
|
379 |
|
|
static |
380 |
|
|
update(ca, tp, x0, y0, x1, y1) /* update tree display as needed */ |
381 |
|
|
BYTE ca[3]; /* returned average color */ |
382 |
|
|
register RTREE *tp; |
383 |
|
|
int x0, y0, x1, y1; |
384 |
|
|
{ |
385 |
|
|
int csm[3], nc; |
386 |
|
|
BYTE rgb[3]; |
387 |
|
|
int gaps = 0; |
388 |
|
|
int mx, my; |
389 |
|
|
register int i; |
390 |
|
|
/* compute midpoint */ |
391 |
|
|
mx = (x0 + x1) >> 1; |
392 |
|
|
my = (y0 + y1) >> 1; |
393 |
|
|
csm[0] = csm[1] = csm[2] = nc = 0; |
394 |
|
|
/* do leaves first */ |
395 |
|
|
for (i = 0; i < 4; i++) |
396 |
|
|
if ((tp->flgs & CHBRF(i)) == CHF(i)) { |
397 |
|
|
if (tp->k[i].l == NULL) { |
398 |
|
|
gaps |= 1<<i; /* empty stem */ |
399 |
|
|
continue; |
400 |
|
|
} |
401 |
|
|
tmMapPixels(rgb, &tp->k[i].l->brt, tp->k[i].l->chr, 1); |
402 |
|
|
dev_paintr(rgb, i&01 ? mx : x0, i&02 ? my : y0, |
403 |
|
|
i&01 ? x1 : mx, i&02 ? y1 : my); |
404 |
|
|
csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; |
405 |
|
|
nc++; |
406 |
|
|
} |
407 |
|
|
/* now do branches */ |
408 |
|
|
for (i = 0; i < 4; i++) |
409 |
|
|
if ((tp->flgs & CHBRF(i)) == CHBRF(i)) { |
410 |
|
|
update(rgb, tp->k[i].b, i&01 ? mx : x0, i&02 ? my : y0, |
411 |
|
|
i&01 ? x1 : mx, i&02 ? y1 : my); |
412 |
|
|
csm[0] += rgb[0]; csm[1] += rgb[1]; csm[2] += rgb[2]; |
413 |
|
|
nc++; |
414 |
|
|
} |
415 |
|
|
if (nc > 1) { |
416 |
|
|
ca[0] = csm[0]/nc; ca[1] = csm[1]/nc; ca[2] = csm[2]/nc; |
417 |
|
|
} else { |
418 |
|
|
ca[0] = csm[0]; ca[1] = csm[1]; ca[2] = csm[2]; |
419 |
|
|
} |
420 |
|
|
/* fill in gaps with average */ |
421 |
|
|
for (i = 0; gaps && i < 4; gaps >>= 1, i++) |
422 |
|
|
if (gaps & 01) |
423 |
|
|
dev_paintr(ca, i&01 ? mx : x0, i&02 ? my : y0, |
424 |
|
|
i&01 ? x1 : mx, i&02 ? y1 : my); |
425 |
|
|
tp->flgs &= ~CH_ANY; /* all done */ |
426 |
|
|
} |
427 |
|
|
|
428 |
|
|
|
429 |
|
|
qtRedraw(x0, y0, x1, y1) /* redraw part of our screen */ |
430 |
|
|
int x0, y0, x1, y1; |
431 |
|
|
{ |
432 |
|
|
int lim[2][2]; |
433 |
|
|
BYTE ca[3]; |
434 |
|
|
|
435 |
|
|
if (is_stump(&qtrunk)) |
436 |
|
|
return; |
437 |
gregl |
3.4 |
if ((lim[0][0]=x0) <= 0 & (lim[1][0]=y0) <= 0 & |
438 |
|
|
(lim[0][1]=x1) >= odev.hres-1 & (lim[1][1]=y1) >= odev.vres-1 |
439 |
|
|
|| tmTop->lumap == NULL) |
440 |
|
|
if (tmComputeMapping(0., 0., 0.) != TM_E_OK) |
441 |
|
|
return; |
442 |
gregl |
3.1 |
redraw(ca, &qtrunk, 0, 0, odev.hres, odev.vres, lim); |
443 |
|
|
} |
444 |
|
|
|
445 |
|
|
|
446 |
|
|
qtUpdate() /* update our tree display */ |
447 |
|
|
{ |
448 |
|
|
BYTE ca[3]; |
449 |
|
|
|
450 |
|
|
if (is_stump(&qtrunk)) |
451 |
|
|
return; |
452 |
|
|
if (tmTop->lumap == NULL) |
453 |
|
|
tmComputeMapping(0., 0., 0.); |
454 |
|
|
update(ca, &qtrunk, 0, 0, odev.hres, odev.vres); |
455 |
|
|
} |