ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/rhd_qtree.c
Revision: 3.12
Committed: Fri Dec 5 16:22:49 1997 UTC (26 years, 10 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.11: +15 -12 lines
Log Message:
changed logic so rays just off view are still saved

File Contents

# User Rev Content
1 gregl 3.1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ SGI";
5     #endif
6    
7     /*
8     * Quadtree driver support routines.
9     */
10    
11     #include "standard.h"
12     #include "rhd_qtree.h"
13 gregl 3.6 /* quantity of leaves to free at a time */
14     #ifndef LFREEPCT
15     #define LFREEPCT 25
16     #endif
17 gregl 3.10 /* maximum allowed angle difference (deg.) */
18     #ifndef MAXANG
19 gregl 3.12 #define MAXANG 20
20 gregl 3.10 #endif
21 gregl 3.12 #if MAXANG>0
22     #define MAXDIFF2 ( MAXANG*MAXANG * (PI*PI/180./180.))
23     #endif
24 gregl 3.1
25 gregl 3.10 #define abs(i) ((i) < 0 ? -(i) : (i))
26    
27 gregl 3.2 RTREE qtrunk; /* our quadtree trunk */
28 gregl 3.10 double qtDepthEps = .05; /* epsilon to compare depths (z fraction) */
29 gregl 3.2 int qtMinNodesiz = 2; /* minimum node dimension (pixels) */
30 gregl 3.5 struct rleaves qtL; /* our pile of leaves */
31 gregl 3.2
32 gregl 3.1 #define TBUNDLESIZ 409 /* number of twigs in a bundle */
33    
34     static RTREE **twigbundle; /* free twig blocks (NULL term.) */
35     static int nexttwig; /* next free twig */
36    
37 gregl 3.10 #define ungetleaf(li) (qtL.tl=(li)) /* dangerous if used improperly */
38 gregl 3.1
39 gregl 3.10
40 gregl 3.1 static RTREE *
41     newtwig() /* allocate a twig */
42     {
43     register int bi;
44    
45     if (twigbundle == NULL) { /* initialize */
46     twigbundle = (RTREE **)malloc(sizeof(RTREE *));
47     if (twigbundle == NULL)
48     goto memerr;
49     twigbundle[0] = NULL;
50     }
51     bi = nexttwig / TBUNDLESIZ;
52     if (twigbundle[bi] == NULL) { /* new block */
53     twigbundle = (RTREE **)realloc((char *)twigbundle,
54     (bi+2)*sizeof(RTREE *));
55     if (twigbundle == NULL)
56     goto memerr;
57     twigbundle[bi] = (RTREE *)calloc(TBUNDLESIZ, sizeof(RTREE));
58     if (twigbundle[bi] == NULL)
59     goto memerr;
60     twigbundle[bi+1] = NULL;
61     }
62     /* nexttwig++ % TBUNDLESIZ */
63     return(twigbundle[bi] + (nexttwig++ - bi*TBUNDLESIZ));
64     memerr:
65     error(SYSTEM, "out of memory in newtwig");
66     }
67    
68    
69 gregl 3.3 qtFreeTree(really) /* free allocated twigs */
70 gregl 3.1 int really;
71     {
72     register int i;
73    
74 gregl 3.7 qtrunk.flgs = CH_ANY; /* chop down tree */
75 gregl 3.1 if (twigbundle == NULL)
76     return;
77 gregl 3.7 i = (TBUNDLESIZ-1+nexttwig)/TBUNDLESIZ;
78     nexttwig = 0;
79 gregl 3.1 if (!really) { /* just clear allocated blocks */
80 gregl 3.7 while (i--)
81 gregl 3.1 bzero((char *)twigbundle[i], TBUNDLESIZ*sizeof(RTREE));
82     return;
83     }
84     /* else "really" means free up memory */
85     for (i = 0; twigbundle[i] != NULL; i++)
86     free((char *)twigbundle[i]);
87     free((char *)twigbundle);
88     twigbundle = NULL;
89     }
90    
91    
92 gregl 3.5 static int
93 gregl 3.1 newleaf() /* allocate a leaf from our pile */
94     {
95 gregl 3.5 int li;
96 gregl 3.4
97 gregl 3.5 li = qtL.tl++;
98     if (qtL.tl >= qtL.nl) /* get next leaf in ring */
99     qtL.tl = 0;
100     if (qtL.tl == qtL.bl) /* need to shake some free */
101 gregl 3.1 qtCompost(LFREEPCT);
102 gregl 3.5 return(li);
103 gregl 3.1 }
104    
105    
106 gregl 3.11 #define LEAFSIZ (3*sizeof(float)+sizeof(int4)+\
107 gregl 3.10 sizeof(TMbright)+6*sizeof(BYTE))
108 gregl 3.5
109 gregl 3.1 int
110     qtAllocLeaves(n) /* allocate space for n leaves */
111 gregl 3.5 register int n;
112 gregl 3.1 {
113     unsigned nbytes;
114     register unsigned i;
115    
116 gregl 3.3 qtFreeTree(0); /* make sure tree is empty */
117 gregl 3.1 if (n <= 0)
118     return(0);
119 gregl 3.5 if (qtL.nl >= n)
120     return(qtL.nl);
121     else if (qtL.nl > 0)
122     free(qtL.base);
123 gregl 3.1 /* round space up to nearest power of 2 */
124 gregl 3.5 nbytes = n*LEAFSIZ + 8;
125 gregl 3.1 for (i = 1024; nbytes > i; i <<= 1)
126     ;
127 gregl 3.5 n = (i - 8) / LEAFSIZ; /* should we make sure n is even? */
128     qtL.base = (char *)malloc(n*LEAFSIZ);
129     if (qtL.base == NULL)
130     return(0);
131     /* assign larger alignment types earlier */
132     qtL.wp = (float (*)[3])qtL.base;
133 gregl 3.11 qtL.wd = (int4 *)(qtL.wp + n);
134 gregl 3.10 qtL.brt = (TMbright *)(qtL.wd + n);
135 gregl 3.5 qtL.chr = (BYTE (*)[3])(qtL.brt + n);
136     qtL.rgb = (BYTE (*)[3])(qtL.chr + n);
137     qtL.nl = n;
138     qtL.tml = qtL.bl = qtL.tl = 0;
139     return(n);
140 gregl 3.1 }
141    
142 gregl 3.5 #undef LEAFSIZ
143 gregl 3.1
144 gregl 3.5
145 gregl 3.1 qtFreeLeaves() /* free our allocated leaves and twigs */
146     {
147 gregl 3.3 qtFreeTree(1); /* free tree also */
148 gregl 3.5 if (qtL.nl <= 0)
149 gregl 3.1 return;
150 gregl 3.5 free(qtL.base);
151     qtL.base = NULL;
152     qtL.nl = 0;
153 gregl 3.1 }
154    
155    
156     static
157     shaketree(tp) /* shake dead leaves from tree */
158     register RTREE *tp;
159     {
160     register int i, li;
161    
162     for (i = 0; i < 4; i++)
163 gregl 3.5 if (tp->flgs & BRF(i)) {
164 gregl 3.2 shaketree(tp->k[i].b);
165 gregl 3.5 if (is_stump(tp->k[i].b))
166     tp->flgs &= ~BRF(i);
167     } else if (tp->flgs & LFF(i)) {
168     li = tp->k[i].li;
169     if (qtL.bl < qtL.tl ?
170     (li < qtL.bl || li >= qtL.tl) :
171     (li < qtL.bl && li >= qtL.tl))
172     tp->flgs &= ~LFF(i);
173 gregl 3.1 }
174     }
175    
176    
177     int
178     qtCompost(pct) /* free up some leaves */
179     int pct;
180     {
181 gregl 3.5 int nused, nclear, nmapped;
182 gregl 3.4
183 gregl 3.1 /* figure out how many leaves to clear */
184 gregl 3.5 nclear = qtL.nl * pct / 100;
185     nused = qtL.tl - qtL.bl;
186     if (nused <= 0) nused += qtL.nl;
187     nclear -= qtL.nl - nused;
188 gregl 3.1 if (nclear <= 0)
189     return(0);
190     if (nclear >= nused) { /* clear them all */
191 gregl 3.3 qtFreeTree(0);
192 gregl 3.5 qtL.tml = qtL.bl = qtL.tl = 0;
193 gregl 3.1 return(nused);
194     }
195     /* else clear leaves from bottom */
196 gregl 3.5 nmapped = qtL.tml - qtL.bl;
197     if (nmapped < 0) nmapped += qtL.nl;
198     qtL.bl += nclear;
199     if (qtL.bl >= qtL.nl) qtL.bl -= qtL.nl;
200     if (nmapped <= nclear) qtL.tml = qtL.bl;
201 gregl 3.1 shaketree(&qtrunk);
202     return(nclear);
203     }
204    
205    
206 gregl 3.11 #define DCSCALE 11585.2 /* (1<<13)*sqrt(2) */
207     #define FXNEG 01
208     #define FYNEG 02
209     #define FZNEG 04
210 gregl 3.12 #define F1X 010
211     #define F2Z 020
212 gregl 3.11 #define F1SFT 5
213     #define F2SFT 18
214     #define FMASK 0x1fff
215    
216     static int4
217     encodedir(dv) /* encode a normalized direction vector */
218 gregl 3.10 FVECT dv;
219     {
220 gregl 3.11 register int4 dc = 0;
221     int cd[3], cm;
222     register int i;
223    
224     for (i = 0; i < 3; i++)
225     if (dv[i] < 0.) {
226     cd[i] = dv[i] * -DCSCALE;
227     dc |= 1<<i;
228     } else
229     cd[i] = dv[i] * DCSCALE;
230     if (cd[0] <= cd[1]) {
231 gregl 3.12 dc |= F1X | cd[0] << F1SFT;
232 gregl 3.11 cm = cd[1];
233     } else {
234     dc |= cd[1] << F1SFT;
235     cm = cd[0];
236 gregl 3.10 }
237 gregl 3.11 if (cd[2] <= cm)
238 gregl 3.12 dc |= F2Z | cd[2] << F2SFT;
239 gregl 3.11 else
240     dc |= cm << F2SFT;
241     return(dc);
242 gregl 3.10 }
243    
244    
245 gregl 3.11 static
246     decodedir(dv, dc) /* decode a normalized direction vector */
247 gregl 3.12 register FVECT dv; /* returned */
248 gregl 3.11 register int4 dc;
249     {
250     double d1, d2, der;
251 gregl 3.10
252 gregl 3.11 d1 = ((dc>>F1SFT & FMASK)+.5)/DCSCALE;
253     d2 = ((dc>>F2SFT & FMASK)+.5)/DCSCALE;
254     der = sqrt(1. - d1*d1 - d2*d2);
255 gregl 3.12 if (dc & F1X) {
256 gregl 3.11 dv[0] = d1;
257 gregl 3.12 if (dc & F2Z) { dv[1] = der; dv[2] = d2; }
258 gregl 3.11 else { dv[1] = d2; dv[2] = der; }
259     } else {
260     dv[1] = d1;
261 gregl 3.12 if (dc & F2Z) { dv[0] = der; dv[2] = d2; }
262 gregl 3.11 else { dv[0] = d2; dv[2] = der; }
263     }
264     if (dc & FXNEG) dv[0] = -dv[0];
265     if (dc & FYNEG) dv[1] = -dv[1];
266     if (dc & FZNEG) dv[2] = -dv[2];
267     }
268 gregl 3.10
269 gregl 3.11
270     static double
271     dir2diff(dc1, dc2) /* relative radians^2 between directions */
272     int4 dc1, dc2;
273 gregl 3.10 {
274 gregl 3.11 FVECT v1, v2;
275 gregl 3.10
276 gregl 3.11 decodedir(v1, dc1);
277     decodedir(v2, dc2);
278    
279     return(2. - 2.*DOT(v1,v2));
280 gregl 3.10 }
281    
282    
283 gregl 3.11 static double
284     fdir2diff(dc1, v2) /* relative radians^2 between directions */
285     int4 dc1;
286     register FVECT v2;
287 gregl 3.10 {
288 gregl 3.11 FVECT v1;
289 gregl 3.10
290 gregl 3.11 decodedir(v1, dc1);
291    
292     return(2. - 2.*DOT(v1,v2));
293 gregl 3.10 }
294    
295    
296 gregl 3.5 int
297 gregl 3.3 qtFindLeaf(x, y) /* find closest leaf to (x,y) */
298     int x, y;
299     {
300     register RTREE *tp = &qtrunk;
301 gregl 3.5 int li = -1;
302 gregl 3.3 int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
303     int mx, my;
304     register int q;
305     /* check limits */
306     if (x < 0 || x >= odev.hres || y < 0 || y >= odev.vres)
307 gregl 3.5 return(-1);
308 gregl 3.3 /* find nearby leaf in our tree */
309     for ( ; ; ) {
310     for (q = 0; q < 4; q++) /* find any leaf this level */
311 gregl 3.5 if (tp->flgs & LFF(q)) {
312     li = tp->k[q].li;
313 gregl 3.3 break;
314     }
315     q = 0; /* which quadrant are we? */
316     mx = (x0 + x1) >> 1;
317     my = (y0 + y1) >> 1;
318     if (x < mx) x1 = mx;
319     else {x0 = mx; q |= 01;}
320     if (y < my) y1 = my;
321     else {y0 = my; q |= 02;}
322     if (tp->flgs & BRF(q)) { /* branch down if not a leaf */
323     tp = tp->k[q].b;
324     continue;
325     }
326 gregl 3.5 if (tp->flgs & LFF(q)) /* good shot! */
327     return(tp->k[q].li);
328     return(li); /* else return what we have */
329 gregl 3.3 }
330     }
331    
332    
333 gregl 3.1 static
334 gregl 3.5 addleaf(li) /* add a leaf to our tree */
335     int li;
336 gregl 3.1 {
337     register RTREE *tp = &qtrunk;
338     int x0=0, y0=0, x1=odev.hres, y1=odev.vres;
339 gregl 3.5 int lo = -1;
340 gregl 3.11 double d2;
341 gregl 3.1 int x, y, mx, my;
342     double z;
343 gregl 3.11 FVECT ip, wp, vd;
344 gregl 3.1 register int q;
345 gregl 3.10 /* compute leaf location in view */
346 gregl 3.5 VCOPY(wp, qtL.wp[li]);
347 gregl 3.1 viewloc(ip, &odev.v, wp);
348     if (ip[2] <= 0. || ip[0] < 0. || ip[0] >= 1.
349     || ip[1] < 0. || ip[1] >= 1.)
350 gregl 3.12 return(-1); /* behind or outside view */
351 gregl 3.10 #ifdef DEBUG
352     if (odev.v.type == VT_PAR | odev.v.vfore > FTINY)
353     error(INTERNAL, "bad view assumption in addleaf");
354     #endif
355     for (q = 0; q < 3; q++)
356 gregl 3.11 vd[q] = (wp[q] - odev.v.vp[q])/ip[2];
357     d2 = fdir2diff(qtL.wd[li], vd);
358 gregl 3.12 #ifdef MAXDIFF2
359 gregl 3.10 if (d2 > MAXDIFF2)
360     return(0); /* leaf dir. too far off */
361 gregl 3.12 #endif
362 gregl 3.1 x = ip[0] * odev.hres;
363     y = ip[1] * odev.vres;
364     z = ip[2];
365     /* find the place for it */
366     for ( ; ; ) {
367     q = 0; /* which quadrant? */
368     mx = (x0 + x1) >> 1;
369     my = (y0 + y1) >> 1;
370     if (x < mx) x1 = mx;
371     else {x0 = mx; q |= 01;}
372     if (y < my) y1 = my;
373     else {y0 = my; q |= 02;}
374     if (tp->flgs & BRF(q)) { /* move to next branch */
375     tp->flgs |= CHF(q); /* not sure; guess */
376     tp = tp->k[q].b;
377     continue;
378     }
379 gregl 3.5 if (!(tp->flgs & LFF(q))) { /* found stem for leaf */
380     tp->k[q].li = li;
381     tp->flgs |= CHLFF(q);
382 gregl 3.1 break;
383     }
384 gregl 3.10 if (lo != tp->k[q].li) { /* check old leaf */
385 gregl 3.5 lo = tp->k[q].li;
386     VCOPY(wp, qtL.wp[lo]);
387 gregl 3.1 viewloc(ip, &odev.v, wp);
388     }
389     /* is node minimum size? */
390 gregl 3.10 if (y1-y0 <= qtMinNodesiz || x1-x0 <= qtMinNodesiz) {
391     if (z > (1.+qtDepthEps)*ip[2])
392     return(0); /* old one closer */
393     if (z >= (1.-qtDepthEps)*ip[2] &&
394 gregl 3.11 fdir2diff(qtL.wd[lo], vd) < d2)
395 gregl 3.10 return(0); /* old one better */
396     tp->k[q].li = li; /* else new one is */
397 gregl 3.1 tp->flgs |= CHF(q);
398     break;
399     }
400 gregl 3.5 tp->flgs &= ~LFF(q); /* else grow tree */
401     tp->flgs |= CHBRF(q);
402 gregl 3.1 tp = tp->k[q].b = newtwig();
403     q = 0; /* old leaf -> new branch */
404     mx = ip[0] * odev.hres;
405     my = ip[1] * odev.vres;
406     if (mx >= (x0 + x1) >> 1) q |= 01;
407     if (my >= (y0 + y1) >> 1) q |= 02;
408 gregl 3.11 tp->flgs = CH_ANY|LFF(q); /* all new */
409 gregl 3.5 tp->k[q].li = lo;
410 gregl 3.1 }
411 gregl 3.10 return(1); /* done */
412 gregl 3.1 }
413    
414    
415 gregl 3.10 dev_value(c, p, v) /* add a pixel value to our quadtree */
416 gregl 3.1 COLR c;
417 gregl 3.10 FVECT p, v;
418 gregl 3.1 {
419 gregl 3.5 register int li;
420 gregl 3.1
421 gregl 3.5 li = newleaf();
422     VCOPY(qtL.wp[li], p);
423 gregl 3.11 qtL.wd[li] = encodedir(v);
424 gregl 3.5 tmCvColrs(&qtL.brt[li], qtL.chr[li], c, 1);
425 gregl 3.10 if (!addleaf(li))
426     ungetleaf(li);
427 gregl 3.1 }
428    
429    
430     qtReplant() /* replant our tree using new view */
431     {
432     register int i;
433 gregl 3.5 /* anything to replant? */
434     if (qtL.bl == qtL.tl)
435 gregl 3.1 return;
436 gregl 3.5 qtFreeTree(0); /* blow the old tree away */
437     /* regrow it in new place */
438     for (i = qtL.bl; i != qtL.tl; ) {
439     addleaf(i);
440     if (++i >= qtL.nl) i = 0;
441 gregl 3.1 }
442     }
443    
444    
445 gregl 3.5 qtMapLeaves(redo) /* map our leaves to RGB */
446     int redo;
447     {
448     int aorg, alen, borg, blen;
449 gregl 3.6 /* recompute mapping? */
450     if (redo)
451     qtL.tml = qtL.bl;
452 gregl 3.5 /* already done? */
453     if (qtL.tml == qtL.tl)
454     return(1);
455     /* compute segments */
456     aorg = qtL.tml;
457     if (qtL.tl >= aorg) {
458     alen = qtL.tl - aorg;
459     blen = 0;
460     } else {
461     alen = qtL.nl - aorg;
462     borg = 0;
463     blen = qtL.tl;
464     }
465     /* (re)compute tone mapping? */
466     if (qtL.tml == qtL.bl) {
467     tmClearHisto();
468     tmAddHisto(qtL.brt+aorg, alen, 1);
469     if (blen > 0)
470     tmAddHisto(qtL.brt+borg, blen, 1);
471     if (tmComputeMapping(0., 0., 0.) != TM_E_OK)
472     return(0);
473     }
474     if (tmMapPixels(qtL.rgb+aorg, qtL.brt+aorg,
475     qtL.chr+aorg, alen) != TM_E_OK)
476     return(0);
477     if (blen > 0)
478     tmMapPixels(qtL.rgb+borg, qtL.brt+borg,
479     qtL.chr+borg, blen);
480     qtL.tml = qtL.tl;
481     return(1);
482 gregl 3.1 }