| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: rhd_ctab.c,v 3.6 2011/05/20 02:06:39 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Allocate and control dynamic color table.
|
| 6 |
*
|
| 7 |
* We start off with a uniform partition of color space.
|
| 8 |
* As pixels are sent to the frame buffer, a histogram is built.
|
| 9 |
* When a new color table is requested, the histogram is used
|
| 10 |
* to make a pseudo-optimal partition, after which the
|
| 11 |
* histogram is cleared. This algorithm
|
| 12 |
* performs only as well as the next drawing's color
|
| 13 |
* distribution is correlated to the last.
|
| 14 |
*
|
| 15 |
* This module is essentially identical to src/rt/colortab.c,
|
| 16 |
* except there is no color mapping, since the tm library is used.
|
| 17 |
*/
|
| 18 |
|
| 19 |
#include <string.h>
|
| 20 |
|
| 21 |
#include "standard.h"
|
| 22 |
#include "rhdisp.h"
|
| 23 |
#include "color.h"
|
| 24 |
/* histogram resolution */
|
| 25 |
#define NRED 24
|
| 26 |
#define NGRN 32
|
| 27 |
#define NBLU 16
|
| 28 |
#define HMAX NGRN
|
| 29 |
/* minimum box count for adaptive partition */
|
| 30 |
#define MINSAMP 7
|
| 31 |
/* maximum distance^2 before color reassign */
|
| 32 |
#define MAXDST2 12
|
| 33 |
/* color partition tree */
|
| 34 |
#define CNODE short
|
| 35 |
#define set_branch(p,c) ((c)<<2|(p))
|
| 36 |
#define set_pval(pv) ((pv)<<2|3)
|
| 37 |
#define is_branch(cn) (((cn)&3)!=3)
|
| 38 |
#define is_pval(cn) (((cn)&3)==3)
|
| 39 |
#define part(cn) ((cn)>>2)
|
| 40 |
#define prim(cn) ((cn)&3)
|
| 41 |
#define pval(cn) ((cn)>>2)
|
| 42 |
/* our color table */
|
| 43 |
static struct tabent {
|
| 44 |
long sum[3]; /* sum of colors using this entry */
|
| 45 |
int n; /* number of colors */
|
| 46 |
uby8 ent[3]; /* current table value */
|
| 47 |
} *clrtab = NULL;
|
| 48 |
/* color cube partition */
|
| 49 |
static CNODE *ctree = NULL;
|
| 50 |
/* histogram of colors used */
|
| 51 |
static unsigned short histo[NRED][NGRN][NBLU];
|
| 52 |
/* initial color cube boundary */
|
| 53 |
static int CLRCUBE[3][2] = {{0,NRED},{0,NGRN},{0,NBLU}};
|
| 54 |
|
| 55 |
static void cut(CNODE *tree, int level, int box[3][2], int c0, int c1);
|
| 56 |
static int split(int box[3][2]);
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
int
|
| 61 |
new_ctab( /* start new color table with max ncolors */
|
| 62 |
int ncolors
|
| 63 |
)
|
| 64 |
{
|
| 65 |
int treesize;
|
| 66 |
|
| 67 |
if (ncolors < 1)
|
| 68 |
return(0);
|
| 69 |
/* free old tables */
|
| 70 |
if (clrtab != NULL)
|
| 71 |
free((void *)clrtab);
|
| 72 |
if (ctree != NULL)
|
| 73 |
free((void *)ctree);
|
| 74 |
/* get new tables */
|
| 75 |
for (treesize = 1; treesize < ncolors; treesize <<= 1)
|
| 76 |
;
|
| 77 |
treesize <<= 1;
|
| 78 |
clrtab = (struct tabent *)calloc(ncolors, sizeof(struct tabent));
|
| 79 |
ctree = (CNODE *)malloc(treesize*sizeof(CNODE));
|
| 80 |
if (clrtab == NULL || ctree == NULL)
|
| 81 |
return(0);
|
| 82 |
/* partition color space */
|
| 83 |
cut(ctree, 0, CLRCUBE, 0, ncolors);
|
| 84 |
/* clear histogram */
|
| 85 |
memset((void *)histo, '\0', sizeof(histo));
|
| 86 |
/* return number of colors used */
|
| 87 |
return(ncolors);
|
| 88 |
}
|
| 89 |
|
| 90 |
|
| 91 |
int
|
| 92 |
get_pixel( /* get pixel for color */
|
| 93 |
uby8 rgb[3],
|
| 94 |
void (*set_pixel)(int h, int r, int g, int b)
|
| 95 |
)
|
| 96 |
{
|
| 97 |
int r, g, b;
|
| 98 |
int cv[3];
|
| 99 |
CNODE *tp;
|
| 100 |
int h;
|
| 101 |
/* get desired color */
|
| 102 |
r = rgb[RED];
|
| 103 |
g = rgb[GRN];
|
| 104 |
b = rgb[BLU];
|
| 105 |
/* reduce resolution */
|
| 106 |
cv[RED] = (r*NRED)>>8;
|
| 107 |
cv[GRN] = (g*NGRN)>>8;
|
| 108 |
cv[BLU] = (b*NBLU)>>8;
|
| 109 |
/* add to histogram */
|
| 110 |
histo[cv[RED]][cv[GRN]][cv[BLU]]++;
|
| 111 |
/* find pixel in tree */
|
| 112 |
for (tp = ctree, h = 0; is_branch(*tp); h++)
|
| 113 |
if (cv[prim(*tp)] < part(*tp))
|
| 114 |
tp += 1<<h; /* left branch */
|
| 115 |
else
|
| 116 |
tp += 1<<(h+1); /* right branch */
|
| 117 |
h = pval(*tp);
|
| 118 |
/* add to color table */
|
| 119 |
clrtab[h].sum[RED] += r;
|
| 120 |
clrtab[h].sum[GRN] += g;
|
| 121 |
clrtab[h].sum[BLU] += b;
|
| 122 |
clrtab[h].n++;
|
| 123 |
/* recompute average */
|
| 124 |
r = clrtab[h].sum[RED] / clrtab[h].n;
|
| 125 |
g = clrtab[h].sum[GRN] / clrtab[h].n;
|
| 126 |
b = clrtab[h].sum[BLU] / clrtab[h].n;
|
| 127 |
/* check for movement */
|
| 128 |
if (clrtab[h].n == 1 ||
|
| 129 |
(r-clrtab[h].ent[RED])*(r-clrtab[h].ent[RED]) +
|
| 130 |
(g-clrtab[h].ent[GRN])*(g-clrtab[h].ent[GRN]) +
|
| 131 |
(b-clrtab[h].ent[BLU])*(b-clrtab[h].ent[BLU]) > MAXDST2) {
|
| 132 |
clrtab[h].ent[RED] = r;
|
| 133 |
clrtab[h].ent[GRN] = g; /* reassign pixel */
|
| 134 |
clrtab[h].ent[BLU] = b;
|
| 135 |
#ifdef DEBUG
|
| 136 |
{
|
| 137 |
extern char errmsg[];
|
| 138 |
sprintf(errmsg, "pixel %d = (%d,%d,%d) (%d refs)\n",
|
| 139 |
h, r, g, b, clrtab[h].n);
|
| 140 |
eputs(errmsg);
|
| 141 |
}
|
| 142 |
#endif
|
| 143 |
(*set_pixel)(h, r, g, b);
|
| 144 |
}
|
| 145 |
return(h); /* return pixel value */
|
| 146 |
}
|
| 147 |
|
| 148 |
|
| 149 |
static void
|
| 150 |
cut( /* partition color space */
|
| 151 |
CNODE *tree,
|
| 152 |
int level,
|
| 153 |
int box[3][2],
|
| 154 |
int c0,
|
| 155 |
int c1
|
| 156 |
)
|
| 157 |
{
|
| 158 |
int kb[3][2];
|
| 159 |
|
| 160 |
if (c1-c0 <= 1) { /* assign pixel */
|
| 161 |
*tree = set_pval(c0);
|
| 162 |
return;
|
| 163 |
}
|
| 164 |
/* split box */
|
| 165 |
*tree = split(box);
|
| 166 |
memcpy((void *)kb, (void *)box, sizeof(kb));
|
| 167 |
/* do left (lesser) branch */
|
| 168 |
kb[prim(*tree)][1] = part(*tree);
|
| 169 |
cut(tree+(1<<level), level+1, kb, c0, (c0+c1)>>1);
|
| 170 |
/* do right branch */
|
| 171 |
kb[prim(*tree)][0] = part(*tree);
|
| 172 |
kb[prim(*tree)][1] = box[prim(*tree)][1];
|
| 173 |
cut(tree+(1<<(level+1)), level+1, kb, (c0+c1)>>1, c1);
|
| 174 |
}
|
| 175 |
|
| 176 |
|
| 177 |
static int
|
| 178 |
split( /* find median cut for box */
|
| 179 |
int box[3][2]
|
| 180 |
)
|
| 181 |
{
|
| 182 |
#define c0 r
|
| 183 |
int r, g, b;
|
| 184 |
int pri;
|
| 185 |
long t[HMAX], med;
|
| 186 |
/* find dominant axis */
|
| 187 |
pri = RED;
|
| 188 |
if (box[GRN][1]-box[GRN][0] > box[pri][1]-box[pri][0])
|
| 189 |
pri = GRN;
|
| 190 |
if (box[BLU][1]-box[BLU][0] > box[pri][1]-box[pri][0])
|
| 191 |
pri = BLU;
|
| 192 |
/* sum histogram over box */
|
| 193 |
med = 0;
|
| 194 |
switch (pri) {
|
| 195 |
case RED:
|
| 196 |
for (r = box[RED][0]; r < box[RED][1]; r++) {
|
| 197 |
t[r] = 0;
|
| 198 |
for (g = box[GRN][0]; g < box[GRN][1]; g++)
|
| 199 |
for (b = box[BLU][0]; b < box[BLU][1]; b++)
|
| 200 |
t[r] += histo[r][g][b];
|
| 201 |
med += t[r];
|
| 202 |
}
|
| 203 |
break;
|
| 204 |
case GRN:
|
| 205 |
for (g = box[GRN][0]; g < box[GRN][1]; g++) {
|
| 206 |
t[g] = 0;
|
| 207 |
for (b = box[BLU][0]; b < box[BLU][1]; b++)
|
| 208 |
for (r = box[RED][0]; r < box[RED][1]; r++)
|
| 209 |
t[g] += histo[r][g][b];
|
| 210 |
med += t[g];
|
| 211 |
}
|
| 212 |
break;
|
| 213 |
case BLU:
|
| 214 |
for (b = box[BLU][0]; b < box[BLU][1]; b++) {
|
| 215 |
t[b] = 0;
|
| 216 |
for (r = box[RED][0]; r < box[RED][1]; r++)
|
| 217 |
for (g = box[GRN][0]; g < box[GRN][1]; g++)
|
| 218 |
t[b] += histo[r][g][b];
|
| 219 |
med += t[b];
|
| 220 |
}
|
| 221 |
break;
|
| 222 |
}
|
| 223 |
if (med < MINSAMP) /* if too sparse, split at midpoint */
|
| 224 |
return(set_branch(pri,(box[pri][0]+box[pri][1])>>1));
|
| 225 |
/* find median position */
|
| 226 |
med >>= 1;
|
| 227 |
for (c0 = box[pri][0]; med > 0; c0++)
|
| 228 |
med -= t[c0];
|
| 229 |
if (c0 > (box[pri][0]+box[pri][1])>>1) /* if past the midpoint */
|
| 230 |
c0--; /* part left of median */
|
| 231 |
return(set_branch(pri,c0));
|
| 232 |
#undef c0
|
| 233 |
}
|