ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/holo.c
Revision: 3.5
Committed: Tue Nov 11 15:14:02 1997 UTC (26 years, 4 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.4: +33 -35 lines
Log Message:
consolidated code for hdcell() and hdray()

File Contents

# Content
1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ SGI";
5 #endif
6
7 /*
8 * Routines for converting holodeck coordinates, etc.
9 *
10 * 10/22/97 GWLarson
11 */
12
13 #include "holo.h"
14
15 float hd_depthmap[DCINF-DCLIN];
16
17 static double logstep;
18
19 static int wg0[6] = {1,1,2,2,0,0};
20 static int wg1[6] = {2,2,0,0,1,1};
21
22
23 hdcompgrid(hp) /* compute derived grid vector and index */
24 register HOLO *hp;
25 {
26 FVECT AxB;
27 double d;
28 register FLOAT *v;
29 register int i, j;
30 /* initialize depth map */
31 if (hd_depthmap[0] < 1.) {
32 d = 1. + .5/DCLIN;
33 for (i = 0; i < DCINF-DCLIN; i++) {
34 hd_depthmap[i] = d;
35 d *= 1. + 1./DCLIN;
36 }
37 logstep = log(1. + 1./DCLIN);
38 }
39 /* compute grid coordinate vectors */
40 for (i = 0; i < 3; i++) {
41 fcross(AxB, hp->xv[(i+1)%3], v=hp->xv[(i+2)%3]);
42 VCOPY(hp->wn[i], AxB);
43 if (normalize(hp->wn[i]) == 0.)
44 error(USER, "degenerate holodeck section");
45 hp->wo[i<<1] = DOT(hp->wn[i],hp->orig);
46 hp->wo[i<<1|1] = hp->wo[i<<1] + DOT(hp->wn[i],hp->xv[i]);
47 fcross(hp->gv[i][0], v, AxB);
48 d = DOT(v,v) / DOT(hp->gv[i][0],hp->gv[i][0]) *
49 hp->grid[(i+1)%3];
50 for (j = 0; j < 3; j++)
51 hp->gv[i][0][j] *= d;
52 fcross(hp->gv[i][1], AxB, v=hp->xv[(i+1)%3]);
53 d = DOT(v,v) / DOT(hp->gv[i][1],hp->gv[i][1]) *
54 hp->grid[(i+2)%3];
55 for (j = 0; j < 3; j++)
56 hp->gv[i][1][j] *= d;
57 }
58 /* compute linear depth range */
59 hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
60 /* compute wall super-indices from grid */
61 hp->wi[0] = 1; /**** index values begin at 1 ****/
62 for (i = 1; i < 6; i++) {
63 hp->wi[i] = 0;
64 for (j = i; j < 6; j++)
65 hp->wi[i] += hp->grid[wg0[j]] * hp->grid[wg1[j]];
66 hp->wi[i] *= hp->grid[wg0[i-1]] * hp->grid[wg1[i-1]];
67 hp->wi[i] += hp->wi[i-1];
68 }
69 }
70
71
72 HOLO *
73 hdalloc(hproto) /* allocate and set holodeck section based on grid */
74 HDGRID *hproto;
75 {
76 HOLO hdhead;
77 register HOLO *hp;
78 int n;
79 /* copy grid to temporary header */
80 bcopy((char *)hproto, (char *)&hdhead, sizeof(HDGRID));
81 /* compute grid vectors and sizes */
82 hdcompgrid(&hdhead);
83 /* allocate header with directory */
84 n = sizeof(HOLO)+nbeams(&hdhead)*sizeof(BEAMI);
85 if ((hp = (HOLO *)malloc(n)) == NULL)
86 return(NULL);
87 /* copy header information */
88 copystruct(hp, &hdhead);
89 /* allocate and clear beam list */
90 hp->bl = (BEAM **)malloc((nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
91 if (hp->bl == NULL) {
92 free((char *)hp);
93 return(NULL);
94 }
95 bzero((char *)hp->bl, (nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
96 hp->bl[0] = (BEAM *)(hp->bl+nbeams(hp)+1); /* set blglob(hp) */
97 hp->fd = -1;
98 hp->dirty = 0;
99 hp->priv = NULL;
100 /* clear beam directory */
101 bzero((char *)hp->bi, (nbeams(hp)+1)*sizeof(BEAMI));
102 return(hp); /* all is well */
103 }
104
105
106 hdbcoord(gc, hp, i) /* compute beam coordinates from index */
107 GCOORD gc[2]; /* returned */
108 register HOLO *hp;
109 register int i;
110 {
111 register int j, n;
112 int n2, reverse;
113 GCOORD g2[2];
114 /* check range */
115 if (i < 1 | i > nbeams(hp))
116 return(0);
117 if (reverse = i >= hp->wi[5])
118 i -= hp->wi[5] - 1;
119 for (j = 0; j < 5; j++) /* find w0 */
120 if (hp->wi[j+1] > i)
121 break;
122 i -= hp->wi[gc[0].w=j];
123 /* find w1 */
124 n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]];
125 while (++j < 5) {
126 n = n2 * hp->grid[wg0[j]] * hp->grid[wg1[j]];
127 if (n > i)
128 break;
129 i -= n;
130 }
131 gc[1].w = j;
132 /* find position on w0 */
133 n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]];
134 n = i / n2;
135 gc[0].i[1] = n / hp->grid[wg0[gc[0].w]];
136 gc[0].i[0] = n - gc[0].i[1]*hp->grid[wg0[gc[0].w]];
137 i -= n*n2;
138 /* find position on w1 */
139 gc[1].i[1] = i / hp->grid[wg0[gc[1].w]];
140 gc[1].i[0] = i - gc[1].i[1]*hp->grid[wg0[gc[1].w]];
141 if (reverse) {
142 copystruct(g2, gc+1);
143 copystruct(gc+1, gc);
144 copystruct(gc, g2);
145 }
146 return(1); /* we're done */
147 }
148
149
150 int
151 hdbindex(hp, gc) /* compute index from beam coordinates */
152 register HOLO *hp;
153 register GCOORD gc[2];
154 {
155 GCOORD g2[2];
156 int reverse;
157 register int i, j;
158 /* check ordering and limits */
159 if (reverse = gc[0].w > gc[1].w) {
160 copystruct(g2, gc+1);
161 copystruct(g2+1, gc);
162 gc = g2;
163 } else if (gc[0].w == gc[1].w)
164 return(0);
165 if (gc[0].w < 0 | gc[1].w > 5)
166 return(0);
167 i = 0; /* compute index */
168 for (j = gc[0].w+1; j < gc[1].w; j++)
169 i += hp->grid[wg0[j]] * hp->grid[wg1[j]];
170 i *= hp->grid[wg0[gc[0].w]] * hp->grid[wg1[gc[0].w]];
171 i += hp->wi[gc[0].w];
172 i += (hp->grid[wg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
173 hp->grid[wg0[gc[1].w]] * hp->grid[wg1[gc[1].w]] ;
174 i += hp->grid[wg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
175 if (reverse)
176 i += hp->wi[5] - 1;
177 return(i);
178 }
179
180
181 hdcell(cp, hp, gc) /* compute cell coordinates */
182 register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
183 register HOLO *hp;
184 register GCOORD *gc;
185 {
186 register FLOAT *v;
187 double d;
188 /* compute common component */
189 VCOPY(cp[0], hp->orig);
190 if (gc->w & 1) {
191 v = hp->xv[gc->w>>1];
192 cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
193 }
194 v = hp->xv[wg0[gc->w]];
195 d = (double)gc->i[0] / hp->grid[wg0[gc->w]];
196 VSUM(cp[0], cp[0], v, d);
197 v = hp->xv[wg1[gc->w]];
198 d = (double)gc->i[1] / hp->grid[wg1[gc->w]];
199 VSUM(cp[0], cp[0], v, d);
200 /* compute x1 sums */
201 v = hp->xv[wg0[gc->w]];
202 d = 1.0 / hp->grid[wg0[gc->w]];
203 VSUM(cp[1], cp[0], v, d);
204 VSUM(cp[3], cp[0], v, d);
205 /* compute y1 sums */
206 v = hp->xv[wg1[gc->w]];
207 d = 1.0 / hp->grid[wg1[gc->w]];
208 VSUM(cp[2], cp[0], v, d);
209 VSUM(cp[3], cp[3], v, d);
210 }
211
212
213 hdlseg(lseg, hp, i) /* compute line segment for beam */
214 register int lseg[2][3];
215 register HOLO *hp;
216 int i;
217 {
218 GCOORD gc[2];
219 register int k;
220
221 if (!hdbcoord(gc, hp, i)) /* compute grid coordinates */
222 return(0);
223 for (k = 0; k < 2; k++) { /* compute end points */
224 lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
225 lseg[k][wg0[gc[k].w]] = gc[k].i[0];
226 lseg[k][wg1[gc[k].w]] = gc[k].i[1];
227 }
228 return(1);
229 }
230
231
232 unsigned
233 hdcode(hp, d) /* compute depth code for d */
234 HOLO *hp;
235 double d;
236 {
237 double tl = hp->tlin;
238 register unsigned c;
239
240 if (d <= 0.)
241 return(0);
242 if (d >= .99*FHUGE)
243 return(DCINF);
244 if (d < tl)
245 return((unsigned)(d*DCLIN/tl));
246 c = (unsigned)(log(d/tl)/logstep) + DCLIN;
247 return(c > DCINF ? DCINF : c);
248 }
249
250
251 double
252 hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
253 FVECT ro, rd; /* returned */
254 HOLO *hp;
255 GCOORD gc[2];
256 BYTE r[2][2];
257 {
258 FVECT cp[4], p[2];
259 register int i, j;
260 double d0, d1;
261 /* compute entry and exit points */
262 for (i = 0; i < 2; i++) {
263 hdcell(cp, hp, gc+i);
264 d0 = (1./256.)*(r[i][0]+.5);
265 d1 = (1./256.)*(r[i][1]+.5);
266 for (j = 0; j < 3; j++)
267 p[i][j] = (1.-d0-d1)*cp[0][j] +
268 d0*cp[1][j] + d1*cp[2][j];
269 }
270 VCOPY(ro, p[0]); /* assign ray origin and direction */
271 rd[0] = p[1][0] - p[0][0];
272 rd[1] = p[1][1] - p[0][1];
273 rd[2] = p[1][2] - p[0][2];
274 return(normalize(rd)); /* return maximum inside distance */
275 }
276
277
278 double
279 hdinter(gc, r, hp, ro, rd) /* compute ray intersection with section */
280 register GCOORD gc[2]; /* returned */
281 BYTE r[2][2]; /* returned */
282 register HOLO *hp;
283 FVECT ro, rd; /* rd should be normalized */
284 {
285 FVECT p[2], vt;
286 double d, t0, t1, d0, d1;
287 register FLOAT *v;
288 register int i;
289 /* first, intersect walls */
290 gc[0].w = gc[1].w = -1;
291 t0 = -FHUGE; t1 = FHUGE;
292 for (i = 0; i < 3; i++) { /* for each wall pair */
293 d = -DOT(rd, hp->wn[i]); /* plane distance */
294 if (d <= FTINY && d >= -FTINY) /* check for parallel */
295 continue;
296 d1 = DOT(ro, hp->wn[i]); /* ray distances */
297 d0 = (d1 - hp->wo[i<<1]) / d;
298 d1 = (d1 - hp->wo[i<<1|1]) / d;
299 if (d0 < d1) { /* check against best */
300 if (d0 > t0) {
301 t0 = d0;
302 gc[0].w = i<<1;
303 }
304 if (d1 < t1) {
305 t1 = d1;
306 gc[1].w = i<<1 | 1;
307 }
308 } else {
309 if (d1 > t0) {
310 t0 = d1;
311 gc[0].w = i<<1 | 1;
312 }
313 if (d0 < t1) {
314 t1 = d0;
315 gc[1].w = i<<1;
316 }
317 }
318 }
319 if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
320 return(FHUGE);
321 /* compute intersections */
322 for (i = 0; i < 3; i++) {
323 p[0][i] = ro[i] + rd[i]*t0;
324 p[1][i] = ro[i] + rd[i]*t1;
325 }
326 /* now, compute grid coordinates */
327 for (i = 0; i < 2; i++) {
328 vt[0] = p[i][0] - hp->orig[0];
329 vt[1] = p[i][1] - hp->orig[1];
330 vt[2] = p[i][2] - hp->orig[2];
331 if (gc[i].w & 1) {
332 v = hp->xv[gc[i].w>>1];
333 vt[0] -= *v++; vt[1] -= *v++; vt[2] -= *v;
334 }
335 v = hp->gv[gc[i].w>>1][0];
336 d = DOT(vt, v);
337 if (d < 0. || (gc[i].i[0] = d) >= hp->grid[wg0[gc[i].w]])
338 return(FHUGE); /* outside wall */
339 r[i][0] = 256. * (d - gc[i].i[0]);
340 v = hp->gv[gc[i].w>>1][1];
341 d = DOT(vt, v);
342 if (d < 0. || (gc[i].i[1] = d) >= hp->grid[wg1[gc[i].w]])
343 return(FHUGE); /* outside wall */
344 r[i][1] = 256. * (d - gc[i].i[1]);
345 }
346 /* return distance from entry point */
347 vt[0] = ro[0] - p[0][0];
348 vt[1] = ro[1] - p[0][1];
349 vt[2] = ro[2] - p[0][2];
350 return(DOT(vt,rd));
351 }