ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/holo.c
Revision: 3.4
Committed: Tue Nov 11 14:40:59 1997 UTC (26 years, 5 months ago) by gregl
Content type: text/plain
Branch: MAIN
Changes since 3.3: +27 -1 lines
Log Message:
added hdcell() routine to compute cell corners

File Contents

# Content
1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ SGI";
5 #endif
6
7 /*
8 * Routines for converting holodeck coordinates, etc.
9 *
10 * 10/22/97 GWLarson
11 */
12
13 #include "holo.h"
14
15 float hd_depthmap[DCINF-DCLIN];
16
17 static double logstep;
18
19 static int wg0[6] = {1,1,2,2,0,0};
20 static int wg1[6] = {2,2,0,0,1,1};
21
22
23 hdcompgrid(hp) /* compute derived grid vector and index */
24 register HOLO *hp;
25 {
26 FVECT AxB;
27 double d;
28 register FLOAT *v;
29 register int i, j;
30 /* initialize depth map */
31 if (hd_depthmap[0] < 1.) {
32 d = 1. + .5/DCLIN;
33 for (i = 0; i < DCINF-DCLIN; i++) {
34 hd_depthmap[i] = d;
35 d *= 1. + 1./DCLIN;
36 }
37 logstep = log(1. + 1./DCLIN);
38 }
39 /* compute grid coordinate vectors */
40 for (i = 0; i < 3; i++) {
41 fcross(AxB, hp->xv[(i+1)%3], v=hp->xv[(i+2)%3]);
42 VCOPY(hp->wn[i], AxB);
43 if (normalize(hp->wn[i]) == 0.)
44 error(USER, "degenerate holodeck section");
45 hp->wo[i<<1] = DOT(hp->wn[i],hp->orig);
46 hp->wo[i<<1|1] = hp->wo[i<<1] + DOT(hp->wn[i],hp->xv[i]);
47 fcross(hp->gv[i][0], v, AxB);
48 d = DOT(v,v) / DOT(hp->gv[i][0],hp->gv[i][0]) *
49 hp->grid[(i+1)%3];
50 for (j = 0; j < 3; j++)
51 hp->gv[i][0][j] *= d;
52 fcross(hp->gv[i][1], AxB, v=hp->xv[(i+1)%3]);
53 d = DOT(v,v) / DOT(hp->gv[i][1],hp->gv[i][1]) *
54 hp->grid[(i+2)%3];
55 for (j = 0; j < 3; j++)
56 hp->gv[i][1][j] *= d;
57 }
58 /* compute linear depth range */
59 hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
60 /* compute wall super-indices from grid */
61 hp->wi[0] = 1; /**** index values begin at 1 ****/
62 for (i = 1; i < 6; i++) {
63 hp->wi[i] = 0;
64 for (j = i; j < 6; j++)
65 hp->wi[i] += hp->grid[wg0[j]] * hp->grid[wg1[j]];
66 hp->wi[i] *= hp->grid[wg0[i-1]] * hp->grid[wg1[i-1]];
67 hp->wi[i] += hp->wi[i-1];
68 }
69 }
70
71
72 HOLO *
73 hdalloc(hproto) /* allocate and set holodeck section based on grid */
74 HDGRID *hproto;
75 {
76 HOLO hdhead;
77 register HOLO *hp;
78 int n;
79 /* copy grid to temporary header */
80 bcopy((char *)hproto, (char *)&hdhead, sizeof(HDGRID));
81 /* compute grid vectors and sizes */
82 hdcompgrid(&hdhead);
83 /* allocate header with directory */
84 n = sizeof(HOLO)+nbeams(&hdhead)*sizeof(BEAMI);
85 if ((hp = (HOLO *)malloc(n)) == NULL)
86 return(NULL);
87 /* copy header information */
88 copystruct(hp, &hdhead);
89 /* allocate and clear beam list */
90 hp->bl = (BEAM **)malloc((nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
91 if (hp->bl == NULL) {
92 free((char *)hp);
93 return(NULL);
94 }
95 bzero((char *)hp->bl, (nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
96 hp->bl[0] = (BEAM *)(hp->bl+nbeams(hp)+1); /* set blglob(hp) */
97 hp->fd = -1;
98 hp->dirty = 0;
99 hp->priv = NULL;
100 /* clear beam directory */
101 bzero((char *)hp->bi, (nbeams(hp)+1)*sizeof(BEAMI));
102 return(hp); /* all is well */
103 }
104
105
106 hdbcoord(gc, hp, i) /* compute beam coordinates from index */
107 GCOORD gc[2]; /* returned */
108 register HOLO *hp;
109 register int i;
110 {
111 register int j, n;
112 int n2, reverse;
113 GCOORD g2[2];
114 /* check range */
115 if (i < 1 | i > nbeams(hp))
116 return(0);
117 if (reverse = i >= hp->wi[5])
118 i -= hp->wi[5] - 1;
119 for (j = 0; j < 5; j++) /* find w0 */
120 if (hp->wi[j+1] > i)
121 break;
122 i -= hp->wi[gc[0].w=j];
123 /* find w1 */
124 n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]];
125 while (++j < 5) {
126 n = n2 * hp->grid[wg0[j]] * hp->grid[wg1[j]];
127 if (n > i)
128 break;
129 i -= n;
130 }
131 gc[1].w = j;
132 /* find position on w0 */
133 n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]];
134 n = i / n2;
135 gc[0].i[1] = n / hp->grid[wg0[gc[0].w]];
136 gc[0].i[0] = n - gc[0].i[1]*hp->grid[wg0[gc[0].w]];
137 i -= n*n2;
138 /* find position on w1 */
139 gc[1].i[1] = i / hp->grid[wg0[gc[1].w]];
140 gc[1].i[0] = i - gc[1].i[1]*hp->grid[wg0[gc[1].w]];
141 if (reverse) {
142 copystruct(g2, gc+1);
143 copystruct(gc+1, gc);
144 copystruct(gc, g2);
145 }
146 return(1); /* we're done */
147 }
148
149
150 int
151 hdbindex(hp, gc) /* compute index from beam coordinates */
152 register HOLO *hp;
153 register GCOORD gc[2];
154 {
155 GCOORD g2[2];
156 int reverse;
157 register int i, j;
158 /* check ordering and limits */
159 if (reverse = gc[0].w > gc[1].w) {
160 copystruct(g2, gc+1);
161 copystruct(g2+1, gc);
162 gc = g2;
163 } else if (gc[0].w == gc[1].w)
164 return(0);
165 if (gc[0].w < 0 | gc[1].w > 5)
166 return(0);
167 i = 0; /* compute index */
168 for (j = gc[0].w+1; j < gc[1].w; j++)
169 i += hp->grid[wg0[j]] * hp->grid[wg1[j]];
170 i *= hp->grid[wg0[gc[0].w]] * hp->grid[wg1[gc[0].w]];
171 i += hp->wi[gc[0].w];
172 i += (hp->grid[wg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
173 hp->grid[wg0[gc[1].w]] * hp->grid[wg1[gc[1].w]] ;
174 i += hp->grid[wg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
175 if (reverse)
176 i += hp->wi[5] - 1;
177 return(i);
178 }
179
180
181 hdcell(cp, hp, gc) /* compute cell coordinates */
182 register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
183 HOLO *hp;
184 register GCOORD *gc;
185 {
186 register int i;
187 register FLOAT *v;
188 double d;
189 /* compute each corner */
190 for (i = 0; i < 4; i++) {
191 VCOPY(cp[i], hp->orig);
192 if (gc->w & 1) {
193 v = hp->xv[gc->w>>1];
194 cp[i][0] += *v++; cp[i][1] += *v++; cp[i][2] += *v;
195 }
196 d = (double)( gc->i[0] + (i&1) ) / hp->grid[wg0[gc->w]];
197 v = hp->xv[wg0[gc->w]];
198 cp[i][0] += d * *v++; cp[i][1] += d * *v++; cp[i][2] += d * *v;
199
200 d = (double)( gc->i[1] + (i>>1) ) / hp->grid[wg1[gc->w]];
201 v = hp->xv[wg1[gc->w]];
202 cp[i][0] += d * *v++; cp[i][1] += d * *v++; cp[i][2] += d * *v;
203 }
204 }
205
206
207 hdlseg(lseg, hp, i) /* compute line segment for beam */
208 register int lseg[2][3];
209 register HOLO *hp;
210 int i;
211 {
212 GCOORD gc[2];
213 register int k;
214
215 if (!hdbcoord(gc, hp, i)) /* compute grid coordinates */
216 return(0);
217 for (k = 0; k < 2; k++) { /* compute end points */
218 lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
219 lseg[k][wg0[gc[k].w]] = gc[k].i[0];
220 lseg[k][wg1[gc[k].w]] = gc[k].i[1];
221 }
222 return(1);
223 }
224
225
226 unsigned
227 hdcode(hp, d) /* compute depth code for d */
228 HOLO *hp;
229 double d;
230 {
231 double tl = hp->tlin;
232 register unsigned c;
233
234 if (d <= 0.)
235 return(0);
236 if (d >= .99*FHUGE)
237 return(DCINF);
238 if (d < tl)
239 return((unsigned)(d*DCLIN/tl));
240 c = (unsigned)(log(d/tl)/logstep) + DCLIN;
241 return(c > DCINF ? DCINF : c);
242 }
243
244
245 double
246 hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
247 FVECT ro, rd; /* returned */
248 register HOLO *hp;
249 register GCOORD gc[2];
250 BYTE r[2][2];
251 {
252 FVECT p[2];
253 register int i;
254 register FLOAT *v;
255 double d;
256 /* compute entry and exit points */
257 for (i = 0; i < 2; i++) {
258 VCOPY(p[i], hp->orig);
259 if (gc[i].w & 1) {
260 v = hp->xv[gc[i].w>>1];
261 p[i][0] += *v++; p[i][1] += *v++; p[i][2] += *v;
262 }
263 d = ( gc[i].i[0] + (1./256.)*(r[i][0]+.5) ) /
264 hp->grid[wg0[gc[i].w]];
265 v = hp->xv[wg0[gc[i].w]];
266 p[i][0] += d * *v++; p[i][1] += d * *v++; p[i][2] += d * *v;
267 d = ( gc[i].i[1] + (1./256.)*(r[i][1]+.5) ) /
268 hp->grid[wg1[gc[i].w]];
269 v = hp->xv[wg1[gc[i].w]];
270 p[i][0] += d * *v++; p[i][1] += d * *v++; p[i][2] += d * *v;
271 }
272 VCOPY(ro, p[0]); /* assign ray origin and direction */
273 rd[0] = p[1][0] - p[0][0];
274 rd[1] = p[1][1] - p[0][1];
275 rd[2] = p[1][2] - p[0][2];
276 return(normalize(rd)); /* return maximum inside distance */
277 }
278
279
280 double
281 hdinter(gc, r, hp, ro, rd) /* compute ray intersection with section */
282 register GCOORD gc[2]; /* returned */
283 BYTE r[2][2]; /* returned */
284 register HOLO *hp;
285 FVECT ro, rd; /* rd should be normalized */
286 {
287 FVECT p[2], vt;
288 double d, t0, t1, d0, d1;
289 register FLOAT *v;
290 register int i;
291 /* first, intersect walls */
292 gc[0].w = gc[1].w = -1;
293 t0 = -FHUGE; t1 = FHUGE;
294 for (i = 0; i < 3; i++) { /* for each wall pair */
295 d = -DOT(rd, hp->wn[i]); /* plane distance */
296 if (d <= FTINY && d >= -FTINY) /* check for parallel */
297 continue;
298 d1 = DOT(ro, hp->wn[i]); /* ray distances */
299 d0 = (d1 - hp->wo[i<<1]) / d;
300 d1 = (d1 - hp->wo[i<<1|1]) / d;
301 if (d0 < d1) { /* check against best */
302 if (d0 > t0) {
303 t0 = d0;
304 gc[0].w = i<<1;
305 }
306 if (d1 < t1) {
307 t1 = d1;
308 gc[1].w = i<<1 | 1;
309 }
310 } else {
311 if (d1 > t0) {
312 t0 = d1;
313 gc[0].w = i<<1 | 1;
314 }
315 if (d0 < t1) {
316 t1 = d0;
317 gc[1].w = i<<1;
318 }
319 }
320 }
321 if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
322 return(FHUGE);
323 /* compute intersections */
324 for (i = 0; i < 3; i++) {
325 p[0][i] = ro[i] + rd[i]*t0;
326 p[1][i] = ro[i] + rd[i]*t1;
327 }
328 /* now, compute grid coordinates */
329 for (i = 0; i < 2; i++) {
330 vt[0] = p[i][0] - hp->orig[0];
331 vt[1] = p[i][1] - hp->orig[1];
332 vt[2] = p[i][2] - hp->orig[2];
333 if (gc[i].w & 1) {
334 v = hp->xv[gc[i].w>>1];
335 vt[0] -= *v++; vt[1] -= *v++; vt[2] -= *v;
336 }
337 v = hp->gv[gc[i].w>>1][0];
338 d = DOT(vt, v);
339 if (d < 0. || (gc[i].i[0] = d) >= hp->grid[wg0[gc[i].w]])
340 return(FHUGE); /* outside wall */
341 r[i][0] = 256. * (d - gc[i].i[0]);
342 v = hp->gv[gc[i].w>>1][1];
343 d = DOT(vt, v);
344 if (d < 0. || (gc[i].i[1] = d) >= hp->grid[wg1[gc[i].w]])
345 return(FHUGE); /* outside wall */
346 r[i][1] = 256. * (d - gc[i].i[1]);
347 }
348 /* return distance from entry point */
349 vt[0] = ro[0] - p[0][0];
350 vt[1] = ro[1] - p[0][1];
351 vt[2] = ro[2] - p[0][2];
352 return(DOT(vt,rd));
353 }