/* Copyright (c) 1997 Silicon Graphics, Inc. */ #ifndef lint static char SCCSid[] = "$SunId$ SGI"; #endif /* * Routines for converting holodeck coordinates, etc. * * 10/22/97 GWLarson */ #include "holo.h" float hd_depthmap[DCINF-DCLIN]; static double logstep; static int wg0[6] = {1,1,2,2,0,0}; static int wg1[6] = {2,2,0,0,1,1}; hdcompgrid(hp) /* compute derived grid vector and index */ register HOLO *hp; { FVECT AxB; double d; register FLOAT *v; register int i, j; /* initialize depth map */ if (hd_depthmap[0] < 1.) { d = 1. + .5/DCLIN; for (i = 0; i < DCINF-DCLIN; i++) { hd_depthmap[i] = d; d *= 1. + 1./DCLIN; } logstep = log(1. + 1./DCLIN); } /* compute grid coordinate vectors */ for (i = 0; i < 3; i++) { fcross(AxB, hp->xv[(i+1)%3], v=hp->xv[(i+2)%3]); VCOPY(hp->wn[i], AxB); if (normalize(hp->wn[i]) == 0.) error(USER, "degenerate holodeck section"); hp->wo[i<<1] = DOT(hp->wn[i],hp->orig); hp->wo[i<<1|1] = hp->wo[i<<1] + DOT(hp->wn[i],hp->xv[i]); fcross(hp->gv[i][0], v, AxB); d = DOT(v,v) / DOT(hp->gv[i][0],hp->gv[i][0]) * hp->grid[(i+1)%3]; for (j = 0; j < 3; j++) hp->gv[i][0][j] *= d; fcross(hp->gv[i][1], AxB, v=hp->xv[(i+1)%3]); d = DOT(v,v) / DOT(hp->gv[i][1],hp->gv[i][1]) * hp->grid[(i+2)%3]; for (j = 0; j < 3; j++) hp->gv[i][1][j] *= d; } /* compute linear depth range */ hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]); /* compute wall super-indices from grid */ hp->wi[0] = 1; /**** index values begin at 1 ****/ for (i = 1; i < 6; i++) { hp->wi[i] = 0; for (j = i; j < 6; j++) hp->wi[i] += hp->grid[wg0[j]] * hp->grid[wg1[j]]; hp->wi[i] *= hp->grid[wg0[i-1]] * hp->grid[wg1[i-1]]; hp->wi[i] += hp->wi[i-1]; } } HOLO * hdalloc(hproto) /* allocate and set holodeck section based on grid */ HDGRID *hproto; { HOLO hdhead; register HOLO *hp; int n; /* copy grid to temporary header */ bcopy((char *)hproto, (char *)&hdhead, sizeof(HDGRID)); /* compute grid vectors and sizes */ hdcompgrid(&hdhead); /* allocate header with directory */ n = sizeof(HOLO)+nbeams(&hdhead)*sizeof(BEAMI); if ((hp = (HOLO *)malloc(n)) == NULL) return(NULL); /* copy header information */ copystruct(hp, &hdhead); /* allocate and clear beam list */ hp->bl = (BEAM **)malloc((nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM)); if (hp->bl == NULL) { free((char *)hp); return(NULL); } bzero((char *)hp->bl, (nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM)); hp->bl[0] = (BEAM *)(hp->bl+nbeams(hp)+1); /* set blglob(hp) */ hp->fd = -1; hp->dirty = 0; hp->priv = NULL; /* clear beam directory */ bzero((char *)hp->bi, (nbeams(hp)+1)*sizeof(BEAMI)); return(hp); /* all is well */ } hdbcoord(gc, hp, i) /* compute beam coordinates from index */ GCOORD gc[2]; /* returned */ register HOLO *hp; register int i; { register int j, n; int n2, reverse; GCOORD g2[2]; /* check range */ if (i < 1 | i > nbeams(hp)) return(0); if (reverse = i >= hp->wi[5]) i -= hp->wi[5] - 1; for (j = 0; j < 5; j++) /* find w0 */ if (hp->wi[j+1] > i) break; i -= hp->wi[gc[0].w=j]; /* find w1 */ n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]]; while (++j < 5) { n = n2 * hp->grid[wg0[j]] * hp->grid[wg1[j]]; if (n > i) break; i -= n; } gc[1].w = j; /* find position on w0 */ n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]]; n = i / n2; gc[0].i[1] = n / hp->grid[wg0[gc[0].w]]; gc[0].i[0] = n - gc[0].i[1]*hp->grid[wg0[gc[0].w]]; i -= n*n2; /* find position on w1 */ gc[1].i[1] = i / hp->grid[wg0[gc[1].w]]; gc[1].i[0] = i - gc[1].i[1]*hp->grid[wg0[gc[1].w]]; if (reverse) { copystruct(g2, gc+1); copystruct(gc+1, gc); copystruct(gc, g2); } return(1); /* we're done */ } int hdbindex(hp, gc) /* compute index from beam coordinates */ register HOLO *hp; register GCOORD gc[2]; { GCOORD g2[2]; int reverse; register int i, j; /* check ordering and limits */ if (reverse = gc[0].w > gc[1].w) { copystruct(g2, gc+1); copystruct(g2+1, gc); gc = g2; } else if (gc[0].w == gc[1].w) return(0); if (gc[0].w < 0 | gc[1].w > 5) return(0); i = 0; /* compute index */ for (j = gc[0].w+1; j < gc[1].w; j++) i += hp->grid[wg0[j]] * hp->grid[wg1[j]]; i *= hp->grid[wg0[gc[0].w]] * hp->grid[wg1[gc[0].w]]; i += hp->wi[gc[0].w]; i += (hp->grid[wg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) * hp->grid[wg0[gc[1].w]] * hp->grid[wg1[gc[1].w]] ; i += hp->grid[wg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0]; if (reverse) i += hp->wi[5] - 1; return(i); } hdcell(cp, hp, gc) /* compute cell coordinates */ register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */ HOLO *hp; register GCOORD *gc; { register int i; register FLOAT *v; double d; /* compute each corner */ for (i = 0; i < 4; i++) { VCOPY(cp[i], hp->orig); if (gc->w & 1) { v = hp->xv[gc->w>>1]; cp[i][0] += *v++; cp[i][1] += *v++; cp[i][2] += *v; } d = (double)( gc->i[0] + (i&1) ) / hp->grid[wg0[gc->w]]; v = hp->xv[wg0[gc->w]]; cp[i][0] += d * *v++; cp[i][1] += d * *v++; cp[i][2] += d * *v; d = (double)( gc->i[1] + (i>>1) ) / hp->grid[wg1[gc->w]]; v = hp->xv[wg1[gc->w]]; cp[i][0] += d * *v++; cp[i][1] += d * *v++; cp[i][2] += d * *v; } } hdlseg(lseg, hp, i) /* compute line segment for beam */ register int lseg[2][3]; register HOLO *hp; int i; { GCOORD gc[2]; register int k; if (!hdbcoord(gc, hp, i)) /* compute grid coordinates */ return(0); for (k = 0; k < 2; k++) { /* compute end points */ lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ; lseg[k][wg0[gc[k].w]] = gc[k].i[0]; lseg[k][wg1[gc[k].w]] = gc[k].i[1]; } return(1); } unsigned hdcode(hp, d) /* compute depth code for d */ HOLO *hp; double d; { double tl = hp->tlin; register unsigned c; if (d <= 0.) return(0); if (d >= .99*FHUGE) return(DCINF); if (d < tl) return((unsigned)(d*DCLIN/tl)); c = (unsigned)(log(d/tl)/logstep) + DCLIN; return(c > DCINF ? DCINF : c); } double hdray(ro, rd, hp, gc, r) /* compute ray within a beam */ FVECT ro, rd; /* returned */ register HOLO *hp; register GCOORD gc[2]; BYTE r[2][2]; { FVECT p[2]; register int i; register FLOAT *v; double d; /* compute entry and exit points */ for (i = 0; i < 2; i++) { VCOPY(p[i], hp->orig); if (gc[i].w & 1) { v = hp->xv[gc[i].w>>1]; p[i][0] += *v++; p[i][1] += *v++; p[i][2] += *v; } d = ( gc[i].i[0] + (1./256.)*(r[i][0]+.5) ) / hp->grid[wg0[gc[i].w]]; v = hp->xv[wg0[gc[i].w]]; p[i][0] += d * *v++; p[i][1] += d * *v++; p[i][2] += d * *v; d = ( gc[i].i[1] + (1./256.)*(r[i][1]+.5) ) / hp->grid[wg1[gc[i].w]]; v = hp->xv[wg1[gc[i].w]]; p[i][0] += d * *v++; p[i][1] += d * *v++; p[i][2] += d * *v; } VCOPY(ro, p[0]); /* assign ray origin and direction */ rd[0] = p[1][0] - p[0][0]; rd[1] = p[1][1] - p[0][1]; rd[2] = p[1][2] - p[0][2]; return(normalize(rd)); /* return maximum inside distance */ } double hdinter(gc, r, hp, ro, rd) /* compute ray intersection with section */ register GCOORD gc[2]; /* returned */ BYTE r[2][2]; /* returned */ register HOLO *hp; FVECT ro, rd; /* rd should be normalized */ { FVECT p[2], vt; double d, t0, t1, d0, d1; register FLOAT *v; register int i; /* first, intersect walls */ gc[0].w = gc[1].w = -1; t0 = -FHUGE; t1 = FHUGE; for (i = 0; i < 3; i++) { /* for each wall pair */ d = -DOT(rd, hp->wn[i]); /* plane distance */ if (d <= FTINY && d >= -FTINY) /* check for parallel */ continue; d1 = DOT(ro, hp->wn[i]); /* ray distances */ d0 = (d1 - hp->wo[i<<1]) / d; d1 = (d1 - hp->wo[i<<1|1]) / d; if (d0 < d1) { /* check against best */ if (d0 > t0) { t0 = d0; gc[0].w = i<<1; } if (d1 < t1) { t1 = d1; gc[1].w = i<<1 | 1; } } else { if (d1 > t0) { t0 = d1; gc[0].w = i<<1 | 1; } if (d0 < t1) { t1 = d0; gc[1].w = i<<1; } } } if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */ return(FHUGE); /* compute intersections */ for (i = 0; i < 3; i++) { p[0][i] = ro[i] + rd[i]*t0; p[1][i] = ro[i] + rd[i]*t1; } /* now, compute grid coordinates */ for (i = 0; i < 2; i++) { vt[0] = p[i][0] - hp->orig[0]; vt[1] = p[i][1] - hp->orig[1]; vt[2] = p[i][2] - hp->orig[2]; if (gc[i].w & 1) { v = hp->xv[gc[i].w>>1]; vt[0] -= *v++; vt[1] -= *v++; vt[2] -= *v; } v = hp->gv[gc[i].w>>1][0]; d = DOT(vt, v); if (d < 0. || (gc[i].i[0] = d) >= hp->grid[wg0[gc[i].w]]) return(FHUGE); /* outside wall */ r[i][0] = 256. * (d - gc[i].i[0]); v = hp->gv[gc[i].w>>1][1]; d = DOT(vt, v); if (d < 0. || (gc[i].i[1] = d) >= hp->grid[wg1[gc[i].w]]) return(FHUGE); /* outside wall */ r[i][1] = 256. * (d - gc[i].i[1]); } /* return distance from entry point */ vt[0] = ro[0] - p[0][0]; vt[1] = ro[1] - p[0][1]; vt[2] = ro[2] - p[0][2]; return(DOT(vt,rd)); }