#ifndef lint static const char RCSid[] = "$Id: holo.c,v 3.19 2003/07/21 22:30:18 schorsch Exp $"; #endif /* * Routines for converting holodeck coordinates, etc. * * 10/22/97 GWLarson */ #include "holo.h" float hd_depthmap[DCINF-DCLIN]; int hdwg0[6] = {1,1,2,2,0,0}; int hdwg1[6] = {2,2,0,0,1,1}; static double logstep; hdcompgrid(hp) /* compute derived grid vector and index */ register HOLO *hp; { double d; register int i, j; /* initialize depth map */ if (hd_depthmap[0] < 1.) { d = 1. + .5/DCLIN; for (i = 0; i < DCINF-DCLIN; i++) { hd_depthmap[i] = d; d *= 1. + 1./DCLIN; } logstep = log(1. + 1./DCLIN); } /* compute grid coordinate vectors */ for (i = 0; i < 3; i++) { fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]); d = DOT(hp->wg[i],hp->xv[i]); if (d <= FTINY & d >= -FTINY) error(USER, "degenerate holodeck section"); d = hp->grid[i] / d; hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d; } /* compute linear depth range */ hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]); /* compute wall super-indices from grid */ hp->wi[0] = 1; /**** index values begin at 1 ****/ for (i = 1; i < 6; i++) { hp->wi[i] = 0; for (j = i; j < 6; j++) hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]]; hp->wi[i] += hp->wi[i-1]; } } hdbcoord(gc, hp, i) /* compute beam coordinates from index */ GCOORD gc[2]; /* returned */ register HOLO *hp; register int i; { register int j, n; int n2, reverse; GCOORD g2[2]; /* check range */ if (i < 1 | i > nbeams(hp)) return(0); if (reverse = i >= hp->wi[5]) i -= hp->wi[5] - 1; for (j = 0; j < 5; j++) /* find w0 */ if (hp->wi[j+1] > i) break; i -= hp->wi[gc[0].w=j]; /* find w1 */ n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; while (++j < 5) { n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; if (n > i) break; i -= n; } gc[1].w = j; /* find position on w0 */ n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; n = i / n2; gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]]; gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]]; i -= n*n2; /* find position on w1 */ gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]]; gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]]; if (reverse) { *g2 = *(gc+1); *(gc+1) = *gc; *gc = *g2; } return(1); /* we're done */ } int hdbindex(hp, gc) /* compute index from beam coordinates */ register HOLO *hp; register GCOORD gc[2]; { GCOORD g2[2]; int reverse; register int i, j; /* check ordering and limits */ if (reverse = gc[0].w > gc[1].w) { *g2 = *(gc+1); *(g2+1) = *gc; gc = g2; } else if (gc[0].w == gc[1].w) return(0); if (gc[0].w < 0 | gc[1].w > 5) return(0); i = 0; /* compute index */ for (j = gc[0].w+1; j < gc[1].w; j++) i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]]; i += hp->wi[gc[0].w]; i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) * hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ; i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0]; if (reverse) i += hp->wi[5] - 1; return(i); } hdcell(cp, hp, gc) /* compute cell coordinates */ register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */ register HOLO *hp; register GCOORD *gc; { register RREAL *v; double d; /* compute common component */ VCOPY(cp[0], hp->orig); if (gc->w & 1) { v = hp->xv[gc->w>>1]; cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2]; } v = hp->xv[hdwg0[gc->w]]; d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]]; VSUM(cp[0], cp[0], v, d); v = hp->xv[hdwg1[gc->w]]; d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]]; VSUM(cp[0], cp[0], v, d); /* compute x1 sums */ v = hp->xv[hdwg0[gc->w]]; d = 1.0 / hp->grid[hdwg0[gc->w]]; VSUM(cp[1], cp[0], v, d); VSUM(cp[3], cp[0], v, d); /* compute y1 sums */ v = hp->xv[hdwg1[gc->w]]; d = 1.0 / hp->grid[hdwg1[gc->w]]; VSUM(cp[2], cp[0], v, d); VSUM(cp[3], cp[3], v, d); } hdlseg(lseg, hp, gc) /* compute line segment for beam */ register int lseg[2][3]; register HOLO *hp; GCOORD gc[2]; { register int k; for (k = 0; k < 2; k++) { /* compute end points */ lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ; lseg[k][hdwg0[gc[k].w]] = gc[k].i[0]; lseg[k][hdwg1[gc[k].w]] = gc[k].i[1]; } return(1); } unsigned hdcode(hp, d) /* compute depth code for d */ HOLO *hp; double d; { double tl = hp->tlin; register long c; if (d <= 0.) return(0); if (d >= .99*FHUGE) return(DCINF); if (d < tl) return((unsigned)(d*DCLIN/tl)); c = (long)(log(d/tl)/logstep) + DCLIN; return(c > DCINF ? (unsigned)DCINF : (unsigned)c); } hdgrid(gp, hp, wp) /* compute grid coordinates */ FVECT gp; /* returned */ register HOLO *hp; FVECT wp; { FVECT vt; VSUB(vt, wp, hp->orig); gp[0] = DOT(vt, hp->wg[0]); gp[1] = DOT(vt, hp->wg[1]); gp[2] = DOT(vt, hp->wg[2]); } hdworld(wp, hp, gp) /* compute world coordinates */ register FVECT wp; register HOLO *hp; FVECT gp; { register double d; d = gp[0]/hp->grid[0]; VSUM(wp, hp->orig, hp->xv[0], d); d = gp[1]/hp->grid[1]; VSUM(wp, wp, hp->xv[1], d); d = gp[2]/hp->grid[2]; VSUM(wp, wp, hp->xv[2], d); } double hdray(ro, rd, hp, gc, r) /* compute ray within a beam */ FVECT ro, rd; /* returned */ HOLO *hp; GCOORD gc[2]; BYTE r[2][2]; { FVECT cp[4], p[2]; register int i, j; double d0, d1; /* compute entry and exit points */ for (i = 0; i < 2; i++) { hdcell(cp, hp, gc+i); d0 = (1./256.)*(r[i][0]+.5); d1 = (1./256.)*(r[i][1]+.5); for (j = 0; j < 3; j++) p[i][j] = (1.-d0-d1)*cp[0][j] + d0*cp[1][j] + d1*cp[2][j]; } VCOPY(ro, p[0]); /* assign ray origin and direction */ VSUB(rd, p[1], p[0]); return(normalize(rd)); /* return maximum inside distance */ } double hdinter(gc, r, ed, hp, ro, rd) /* compute ray intersection with section */ register GCOORD gc[2]; /* returned */ BYTE r[2][2]; /* returned (optional) */ double *ed; /* returned (optional) */ register HOLO *hp; FVECT ro, rd; /* normalization of rd affects distances */ { FVECT p[2], vt; double d, t0, t1, d0, d1; register RREAL *v; register int i; /* first, intersect walls */ gc[0].w = gc[1].w = -1; t0 = -FHUGE; t1 = FHUGE; VSUB(vt, ro, hp->orig); for (i = 0; i < 3; i++) { /* for each wall pair */ d = -DOT(rd, hp->wg[i]); /* plane distance */ if (d <= FTINY && d >= -FTINY) /* check for parallel */ continue; d1 = DOT(vt, hp->wg[i]); /* ray distances */ d0 = d1 / d; d1 = (d1 - hp->grid[i]) / d; if (d < 0) { /* check against best */ if (d0 > t0) { t0 = d0; gc[0].w = i<<1; } if (d1 < t1) { t1 = d1; gc[1].w = i<<1 | 1; } } else { if (d1 > t0) { t0 = d1; gc[0].w = i<<1 | 1; } if (d0 < t1) { t1 = d0; gc[1].w = i<<1; } } } if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */ return(FHUGE); /* compute intersections */ VSUM(p[0], ro, rd, t0); VSUM(p[1], ro, rd, t1); /* now, compute grid coordinates */ for (i = 0; i < 2; i++) { VSUB(vt, p[i], hp->orig); v = hp->wg[hdwg0[gc[i].w]]; d = DOT(vt, v); if (d < 0 || d >= hp->grid[hdwg0[gc[i].w]]) return(FHUGE); /* outside wall */ gc[i].i[0] = d; if (r != NULL) r[i][0] = 256. * (d - gc[i].i[0]); v = hp->wg[hdwg1[gc[i].w]]; d = DOT(vt, v); if (d < 0 || d >= hp->grid[hdwg1[gc[i].w]]) return(FHUGE); /* outside wall */ gc[i].i[1] = d; if (r != NULL) r[i][1] = 256. * (d - gc[i].i[1]); } if (ed != NULL) /* assign distance to exit point */ *ed = t1; return(t0); /* return distance to entry point */ }