ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/holo.c
Revision: 3.16
Committed: Fri Mar 12 09:37:47 1999 UTC (25 years, 1 month ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 3.15: +0 -34 lines
Log Message:
moved hdalloc() from holo.c to holofile.c

File Contents

# Content
1 /* Copyright (c) 1998 Silicon Graphics, Inc. */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ SGI";
5 #endif
6
7 /*
8 * Routines for converting holodeck coordinates, etc.
9 *
10 * 10/22/97 GWLarson
11 */
12
13 #include "holo.h"
14
15 float hd_depthmap[DCINF-DCLIN];
16
17 int hdwg0[6] = {1,1,2,2,0,0};
18 int hdwg1[6] = {2,2,0,0,1,1};
19
20 static double logstep;
21
22
23 hdcompgrid(hp) /* compute derived grid vector and index */
24 register HOLO *hp;
25 {
26 double d;
27 register int i, j;
28 /* initialize depth map */
29 if (hd_depthmap[0] < 1.) {
30 d = 1. + .5/DCLIN;
31 for (i = 0; i < DCINF-DCLIN; i++) {
32 hd_depthmap[i] = d;
33 d *= 1. + 1./DCLIN;
34 }
35 logstep = log(1. + 1./DCLIN);
36 }
37 /* compute grid coordinate vectors */
38 for (i = 0; i < 3; i++) {
39 fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]);
40 d = DOT(hp->wg[i],hp->xv[i]);
41 if (d <= FTINY & d >= -FTINY)
42 error(USER, "degenerate holodeck section");
43 d = hp->grid[i] / d;
44 hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d;
45 }
46 /* compute linear depth range */
47 hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
48 /* compute wall super-indices from grid */
49 hp->wi[0] = 1; /**** index values begin at 1 ****/
50 for (i = 1; i < 6; i++) {
51 hp->wi[i] = 0;
52 for (j = i; j < 6; j++)
53 hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
54 hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]];
55 hp->wi[i] += hp->wi[i-1];
56 }
57 }
58
59
60 hdbcoord(gc, hp, i) /* compute beam coordinates from index */
61 GCOORD gc[2]; /* returned */
62 register HOLO *hp;
63 register int i;
64 {
65 register int j, n;
66 int n2, reverse;
67 GCOORD g2[2];
68 /* check range */
69 if (i < 1 | i > nbeams(hp))
70 return(0);
71 if (reverse = i >= hp->wi[5])
72 i -= hp->wi[5] - 1;
73 for (j = 0; j < 5; j++) /* find w0 */
74 if (hp->wi[j+1] > i)
75 break;
76 i -= hp->wi[gc[0].w=j];
77 /* find w1 */
78 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
79 while (++j < 5) {
80 n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
81 if (n > i)
82 break;
83 i -= n;
84 }
85 gc[1].w = j;
86 /* find position on w0 */
87 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
88 n = i / n2;
89 gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]];
90 gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]];
91 i -= n*n2;
92 /* find position on w1 */
93 gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]];
94 gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]];
95 if (reverse) {
96 copystruct(g2, gc+1);
97 copystruct(gc+1, gc);
98 copystruct(gc, g2);
99 }
100 return(1); /* we're done */
101 }
102
103
104 int
105 hdbindex(hp, gc) /* compute index from beam coordinates */
106 register HOLO *hp;
107 register GCOORD gc[2];
108 {
109 GCOORD g2[2];
110 int reverse;
111 register int i, j;
112 /* check ordering and limits */
113 if (reverse = gc[0].w > gc[1].w) {
114 copystruct(g2, gc+1);
115 copystruct(g2+1, gc);
116 gc = g2;
117 } else if (gc[0].w == gc[1].w)
118 return(0);
119 if (gc[0].w < 0 | gc[1].w > 5)
120 return(0);
121 i = 0; /* compute index */
122 for (j = gc[0].w+1; j < gc[1].w; j++)
123 i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
124 i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]];
125 i += hp->wi[gc[0].w];
126 i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
127 hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ;
128 i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
129 if (reverse)
130 i += hp->wi[5] - 1;
131 return(i);
132 }
133
134
135 hdcell(cp, hp, gc) /* compute cell coordinates */
136 register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
137 register HOLO *hp;
138 register GCOORD *gc;
139 {
140 register FLOAT *v;
141 double d;
142 /* compute common component */
143 VCOPY(cp[0], hp->orig);
144 if (gc->w & 1) {
145 v = hp->xv[gc->w>>1];
146 cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
147 }
148 v = hp->xv[hdwg0[gc->w]];
149 d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]];
150 VSUM(cp[0], cp[0], v, d);
151 v = hp->xv[hdwg1[gc->w]];
152 d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]];
153 VSUM(cp[0], cp[0], v, d);
154 /* compute x1 sums */
155 v = hp->xv[hdwg0[gc->w]];
156 d = 1.0 / hp->grid[hdwg0[gc->w]];
157 VSUM(cp[1], cp[0], v, d);
158 VSUM(cp[3], cp[0], v, d);
159 /* compute y1 sums */
160 v = hp->xv[hdwg1[gc->w]];
161 d = 1.0 / hp->grid[hdwg1[gc->w]];
162 VSUM(cp[2], cp[0], v, d);
163 VSUM(cp[3], cp[3], v, d);
164 }
165
166
167 hdlseg(lseg, hp, gc) /* compute line segment for beam */
168 register int lseg[2][3];
169 register HOLO *hp;
170 GCOORD gc[2];
171 {
172 register int k;
173
174 for (k = 0; k < 2; k++) { /* compute end points */
175 lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
176 lseg[k][hdwg0[gc[k].w]] = gc[k].i[0];
177 lseg[k][hdwg1[gc[k].w]] = gc[k].i[1];
178 }
179 return(1);
180 }
181
182
183 unsigned
184 hdcode(hp, d) /* compute depth code for d */
185 HOLO *hp;
186 double d;
187 {
188 double tl = hp->tlin;
189 register long c;
190
191 if (d <= 0.)
192 return(0);
193 if (d >= .99*FHUGE)
194 return(DCINF);
195 if (d < tl)
196 return((unsigned)(d*DCLIN/tl));
197 c = (long)(log(d/tl)/logstep) + DCLIN;
198 return(c > DCINF ? (unsigned)DCINF : (unsigned)c);
199 }
200
201
202 hdgrid(gp, hp, wp) /* compute grid coordinates */
203 FVECT gp; /* returned */
204 register HOLO *hp;
205 FVECT wp;
206 {
207 FVECT vt;
208
209 VSUB(vt, wp, hp->orig);
210 gp[0] = DOT(vt, hp->wg[0]);
211 gp[1] = DOT(vt, hp->wg[1]);
212 gp[2] = DOT(vt, hp->wg[2]);
213 }
214
215
216 hdworld(wp, hp, gp) /* compute world coordinates */
217 register FVECT wp;
218 register HOLO *hp;
219 FVECT gp;
220 {
221 register double d;
222
223 d = gp[0]/hp->grid[0];
224 VSUM(wp, hp->orig, hp->xv[0], d);
225
226 d = gp[1]/hp->grid[1];
227 VSUM(wp, wp, hp->xv[1], d);
228
229 d = gp[2]/hp->grid[2];
230 VSUM(wp, wp, hp->xv[2], d);
231 }
232
233
234 double
235 hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
236 FVECT ro, rd; /* returned */
237 HOLO *hp;
238 GCOORD gc[2];
239 BYTE r[2][2];
240 {
241 FVECT cp[4], p[2];
242 register int i, j;
243 double d0, d1;
244 /* compute entry and exit points */
245 for (i = 0; i < 2; i++) {
246 hdcell(cp, hp, gc+i);
247 d0 = (1./256.)*(r[i][0]+.5);
248 d1 = (1./256.)*(r[i][1]+.5);
249 for (j = 0; j < 3; j++)
250 p[i][j] = (1.-d0-d1)*cp[0][j] +
251 d0*cp[1][j] + d1*cp[2][j];
252 }
253 VCOPY(ro, p[0]); /* assign ray origin and direction */
254 VSUB(rd, p[1], p[0]);
255 return(normalize(rd)); /* return maximum inside distance */
256 }
257
258
259 double
260 hdinter(gc, r, ed, hp, ro, rd) /* compute ray intersection with section */
261 register GCOORD gc[2]; /* returned */
262 BYTE r[2][2]; /* returned (optional) */
263 double *ed; /* returned (optional) */
264 register HOLO *hp;
265 FVECT ro, rd; /* normalization of rd affects distances */
266 {
267 FVECT p[2], vt;
268 double d, t0, t1, d0, d1;
269 register FLOAT *v;
270 register int i;
271 /* first, intersect walls */
272 gc[0].w = gc[1].w = -1;
273 t0 = -FHUGE; t1 = FHUGE;
274 VSUB(vt, ro, hp->orig);
275 for (i = 0; i < 3; i++) { /* for each wall pair */
276 d = -DOT(rd, hp->wg[i]); /* plane distance */
277 if (d <= FTINY && d >= -FTINY) /* check for parallel */
278 continue;
279 d1 = DOT(vt, hp->wg[i]); /* ray distances */
280 d0 = d1 / d;
281 d1 = (d1 - hp->grid[i]) / d;
282 if (d < 0) { /* check against best */
283 if (d0 > t0) {
284 t0 = d0;
285 gc[0].w = i<<1;
286 }
287 if (d1 < t1) {
288 t1 = d1;
289 gc[1].w = i<<1 | 1;
290 }
291 } else {
292 if (d1 > t0) {
293 t0 = d1;
294 gc[0].w = i<<1 | 1;
295 }
296 if (d0 < t1) {
297 t1 = d0;
298 gc[1].w = i<<1;
299 }
300 }
301 }
302 if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
303 return(FHUGE);
304 /* compute intersections */
305 VSUM(p[0], ro, rd, t0);
306 VSUM(p[1], ro, rd, t1);
307 /* now, compute grid coordinates */
308 for (i = 0; i < 2; i++) {
309 VSUB(vt, p[i], hp->orig);
310 v = hp->wg[hdwg0[gc[i].w]];
311 d = DOT(vt, v);
312 if (d < 0 || d >= hp->grid[hdwg0[gc[i].w]])
313 return(FHUGE); /* outside wall */
314 gc[i].i[0] = d;
315 if (r != NULL)
316 r[i][0] = 256. * (d - gc[i].i[0]);
317 v = hp->wg[hdwg1[gc[i].w]];
318 d = DOT(vt, v);
319 if (d < 0 || d >= hp->grid[hdwg1[gc[i].w]])
320 return(FHUGE); /* outside wall */
321 gc[i].i[1] = d;
322 if (r != NULL)
323 r[i][1] = 256. * (d - gc[i].i[1]);
324 }
325 if (ed != NULL) /* assign distance to exit point */
326 *ed = t1;
327 return(t0); /* return distance to entry point */
328 }