| 1 |
– |
/* Copyright (c) 1997 Silicon Graphics, Inc. */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ SGI"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
|
* Routines for converting holodeck coordinates, etc. |
| 6 |
|
* |
| 11 |
|
|
| 12 |
|
float hd_depthmap[DCINF-DCLIN]; |
| 13 |
|
|
| 14 |
+ |
int hdwg0[6] = {1,1,2,2,0,0}; |
| 15 |
+ |
int hdwg1[6] = {2,2,0,0,1,1}; |
| 16 |
+ |
|
| 17 |
|
static double logstep; |
| 18 |
|
|
| 19 |
– |
static int wg0[6] = {1,1,2,2,0,0}; |
| 20 |
– |
static int wg1[6] = {2,2,0,0,1,1}; |
| 19 |
|
|
| 20 |
< |
|
| 21 |
< |
hdcompgrid(hp) /* compute derived grid vector and index */ |
| 22 |
< |
register HOLO *hp; |
| 20 |
> |
extern void |
| 21 |
> |
hdcompgrid( /* compute derived grid vector and index */ |
| 22 |
> |
register HOLO *hp |
| 23 |
> |
) |
| 24 |
|
{ |
| 25 |
|
double d; |
| 26 |
|
register int i, j; |
| 35 |
|
} |
| 36 |
|
/* compute grid coordinate vectors */ |
| 37 |
|
for (i = 0; i < 3; i++) { |
| 38 |
< |
fcross(hp->wn[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]); |
| 39 |
< |
if (normalize(hp->wn[i]) == 0.) |
| 38 |
> |
fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]); |
| 39 |
> |
d = DOT(hp->wg[i],hp->xv[i]); |
| 40 |
> |
if ((d <= FTINY) & (d >= -FTINY)) |
| 41 |
|
error(USER, "degenerate holodeck section"); |
| 42 |
< |
hp->wo[i<<1] = DOT(hp->wn[i],hp->orig); |
| 43 |
< |
d = DOT(hp->wn[i],hp->xv[i]); |
| 44 |
< |
hp->wo[i<<1|1] = hp->wo[i<<1] + d; |
| 45 |
< |
hp->wg[i] = (double)hp->grid[i] / d; |
| 42 |
> |
d = hp->grid[i] / d; |
| 43 |
> |
hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d; |
| 44 |
|
} |
| 45 |
|
/* compute linear depth range */ |
| 46 |
|
hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]); |
| 49 |
|
for (i = 1; i < 6; i++) { |
| 50 |
|
hp->wi[i] = 0; |
| 51 |
|
for (j = i; j < 6; j++) |
| 52 |
< |
hp->wi[i] += hp->grid[wg0[j]] * hp->grid[wg1[j]]; |
| 53 |
< |
hp->wi[i] *= hp->grid[wg0[i-1]] * hp->grid[wg1[i-1]]; |
| 52 |
> |
hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; |
| 53 |
> |
hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]]; |
| 54 |
|
hp->wi[i] += hp->wi[i-1]; |
| 55 |
|
} |
| 56 |
|
} |
| 57 |
|
|
| 58 |
|
|
| 59 |
< |
HOLO * |
| 60 |
< |
hdalloc(hproto) /* allocate and set holodeck section based on grid */ |
| 61 |
< |
HDGRID *hproto; |
| 59 |
> |
extern int |
| 60 |
> |
hdbcoord( /* compute beam coordinates from index */ |
| 61 |
> |
GCOORD gc[2], /* returned */ |
| 62 |
> |
register HOLO *hp, |
| 63 |
> |
register int i |
| 64 |
> |
) |
| 65 |
|
{ |
| 65 |
– |
HOLO hdhead; |
| 66 |
– |
register HOLO *hp; |
| 67 |
– |
int n; |
| 68 |
– |
/* copy grid to temporary header */ |
| 69 |
– |
bcopy((char *)hproto, (char *)&hdhead, sizeof(HDGRID)); |
| 70 |
– |
/* compute grid vectors and sizes */ |
| 71 |
– |
hdcompgrid(&hdhead); |
| 72 |
– |
/* allocate header with directory */ |
| 73 |
– |
n = sizeof(HOLO)+nbeams(&hdhead)*sizeof(BEAMI); |
| 74 |
– |
if ((hp = (HOLO *)malloc(n)) == NULL) |
| 75 |
– |
return(NULL); |
| 76 |
– |
/* copy header information */ |
| 77 |
– |
copystruct(hp, &hdhead); |
| 78 |
– |
/* allocate and clear beam list */ |
| 79 |
– |
hp->bl = (BEAM **)malloc((nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM)); |
| 80 |
– |
if (hp->bl == NULL) { |
| 81 |
– |
free((char *)hp); |
| 82 |
– |
return(NULL); |
| 83 |
– |
} |
| 84 |
– |
bzero((char *)hp->bl, (nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM)); |
| 85 |
– |
hp->bl[0] = (BEAM *)(hp->bl+nbeams(hp)+1); /* set blglob(hp) */ |
| 86 |
– |
hp->fd = -1; |
| 87 |
– |
hp->dirty = 0; |
| 88 |
– |
hp->priv = NULL; |
| 89 |
– |
/* clear beam directory */ |
| 90 |
– |
bzero((char *)hp->bi, (nbeams(hp)+1)*sizeof(BEAMI)); |
| 91 |
– |
return(hp); /* all is well */ |
| 92 |
– |
} |
| 93 |
– |
|
| 94 |
– |
|
| 95 |
– |
hdbcoord(gc, hp, i) /* compute beam coordinates from index */ |
| 96 |
– |
GCOORD gc[2]; /* returned */ |
| 97 |
– |
register HOLO *hp; |
| 98 |
– |
register int i; |
| 99 |
– |
{ |
| 66 |
|
register int j, n; |
| 67 |
|
int n2, reverse; |
| 68 |
|
GCOORD g2[2]; |
| 69 |
|
/* check range */ |
| 70 |
< |
if (i < 1 | i > nbeams(hp)) |
| 70 |
> |
if ((i < 1) | (i > nbeams(hp))) |
| 71 |
|
return(0); |
| 72 |
< |
if (reverse = i >= hp->wi[5]) |
| 72 |
> |
if ( (reverse = i >= hp->wi[5]) ) |
| 73 |
|
i -= hp->wi[5] - 1; |
| 74 |
|
for (j = 0; j < 5; j++) /* find w0 */ |
| 75 |
|
if (hp->wi[j+1] > i) |
| 76 |
|
break; |
| 77 |
|
i -= hp->wi[gc[0].w=j]; |
| 78 |
|
/* find w1 */ |
| 79 |
< |
n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]]; |
| 79 |
> |
n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; |
| 80 |
|
while (++j < 5) { |
| 81 |
< |
n = n2 * hp->grid[wg0[j]] * hp->grid[wg1[j]]; |
| 81 |
> |
n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; |
| 82 |
|
if (n > i) |
| 83 |
|
break; |
| 84 |
|
i -= n; |
| 85 |
|
} |
| 86 |
|
gc[1].w = j; |
| 87 |
|
/* find position on w0 */ |
| 88 |
< |
n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]]; |
| 88 |
> |
n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; |
| 89 |
|
n = i / n2; |
| 90 |
< |
gc[0].i[1] = n / hp->grid[wg0[gc[0].w]]; |
| 91 |
< |
gc[0].i[0] = n - gc[0].i[1]*hp->grid[wg0[gc[0].w]]; |
| 90 |
> |
gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]]; |
| 91 |
> |
gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]]; |
| 92 |
|
i -= n*n2; |
| 93 |
|
/* find position on w1 */ |
| 94 |
< |
gc[1].i[1] = i / hp->grid[wg0[gc[1].w]]; |
| 95 |
< |
gc[1].i[0] = i - gc[1].i[1]*hp->grid[wg0[gc[1].w]]; |
| 94 |
> |
gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]]; |
| 95 |
> |
gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]]; |
| 96 |
|
if (reverse) { |
| 97 |
< |
copystruct(g2, gc+1); |
| 98 |
< |
copystruct(gc+1, gc); |
| 99 |
< |
copystruct(gc, g2); |
| 97 |
> |
*g2 = *(gc+1); |
| 98 |
> |
*(gc+1) = *gc; |
| 99 |
> |
*gc = *g2; |
| 100 |
|
} |
| 101 |
|
return(1); /* we're done */ |
| 102 |
|
} |
| 103 |
|
|
| 104 |
|
|
| 105 |
< |
int |
| 106 |
< |
hdbindex(hp, gc) /* compute index from beam coordinates */ |
| 107 |
< |
register HOLO *hp; |
| 108 |
< |
register GCOORD gc[2]; |
| 105 |
> |
extern int |
| 106 |
> |
hdbindex( /* compute index from beam coordinates */ |
| 107 |
> |
register HOLO *hp, |
| 108 |
> |
register GCOORD gc[2] |
| 109 |
> |
) |
| 110 |
|
{ |
| 111 |
|
GCOORD g2[2]; |
| 112 |
|
int reverse; |
| 113 |
|
register int i, j; |
| 114 |
|
/* check ordering and limits */ |
| 115 |
< |
if (reverse = gc[0].w > gc[1].w) { |
| 116 |
< |
copystruct(g2, gc+1); |
| 117 |
< |
copystruct(g2+1, gc); |
| 115 |
> |
if ( (reverse = gc[0].w > gc[1].w) ) { |
| 116 |
> |
*g2 = *(gc+1); |
| 117 |
> |
*(g2+1) = *gc; |
| 118 |
|
gc = g2; |
| 119 |
|
} else if (gc[0].w == gc[1].w) |
| 120 |
|
return(0); |
| 121 |
< |
if (gc[0].w < 0 | gc[1].w > 5) |
| 121 |
> |
if ((gc[0].w < 0) | (gc[1].w > 5)) |
| 122 |
|
return(0); |
| 123 |
|
i = 0; /* compute index */ |
| 124 |
|
for (j = gc[0].w+1; j < gc[1].w; j++) |
| 125 |
< |
i += hp->grid[wg0[j]] * hp->grid[wg1[j]]; |
| 126 |
< |
i *= hp->grid[wg0[gc[0].w]] * hp->grid[wg1[gc[0].w]]; |
| 125 |
> |
i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]]; |
| 126 |
> |
i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]]; |
| 127 |
|
i += hp->wi[gc[0].w]; |
| 128 |
< |
i += (hp->grid[wg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) * |
| 129 |
< |
hp->grid[wg0[gc[1].w]] * hp->grid[wg1[gc[1].w]] ; |
| 130 |
< |
i += hp->grid[wg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0]; |
| 128 |
> |
i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) * |
| 129 |
> |
hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ; |
| 130 |
> |
i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0]; |
| 131 |
|
if (reverse) |
| 132 |
|
i += hp->wi[5] - 1; |
| 133 |
|
return(i); |
| 134 |
|
} |
| 135 |
|
|
| 136 |
|
|
| 137 |
< |
hdcell(cp, hp, gc) /* compute cell coordinates */ |
| 138 |
< |
register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */ |
| 139 |
< |
register HOLO *hp; |
| 140 |
< |
register GCOORD *gc; |
| 137 |
> |
extern void |
| 138 |
> |
hdcell( /* compute cell coordinates */ |
| 139 |
> |
register FVECT cp[4], /* returned (may be passed as FVECT cp[2][2]) */ |
| 140 |
> |
register HOLO *hp, |
| 141 |
> |
register GCOORD *gc |
| 142 |
> |
) |
| 143 |
|
{ |
| 144 |
< |
register FLOAT *v; |
| 144 |
> |
register RREAL *v; |
| 145 |
|
double d; |
| 146 |
|
/* compute common component */ |
| 147 |
|
VCOPY(cp[0], hp->orig); |
| 149 |
|
v = hp->xv[gc->w>>1]; |
| 150 |
|
cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2]; |
| 151 |
|
} |
| 152 |
< |
v = hp->xv[wg0[gc->w]]; |
| 153 |
< |
d = (double)gc->i[0] / hp->grid[wg0[gc->w]]; |
| 152 |
> |
v = hp->xv[hdwg0[gc->w]]; |
| 153 |
> |
d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]]; |
| 154 |
|
VSUM(cp[0], cp[0], v, d); |
| 155 |
< |
v = hp->xv[wg1[gc->w]]; |
| 156 |
< |
d = (double)gc->i[1] / hp->grid[wg1[gc->w]]; |
| 155 |
> |
v = hp->xv[hdwg1[gc->w]]; |
| 156 |
> |
d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]]; |
| 157 |
|
VSUM(cp[0], cp[0], v, d); |
| 158 |
|
/* compute x1 sums */ |
| 159 |
< |
v = hp->xv[wg0[gc->w]]; |
| 160 |
< |
d = 1.0 / hp->grid[wg0[gc->w]]; |
| 159 |
> |
v = hp->xv[hdwg0[gc->w]]; |
| 160 |
> |
d = 1.0 / hp->grid[hdwg0[gc->w]]; |
| 161 |
|
VSUM(cp[1], cp[0], v, d); |
| 162 |
|
VSUM(cp[3], cp[0], v, d); |
| 163 |
|
/* compute y1 sums */ |
| 164 |
< |
v = hp->xv[wg1[gc->w]]; |
| 165 |
< |
d = 1.0 / hp->grid[wg1[gc->w]]; |
| 164 |
> |
v = hp->xv[hdwg1[gc->w]]; |
| 165 |
> |
d = 1.0 / hp->grid[hdwg1[gc->w]]; |
| 166 |
|
VSUM(cp[2], cp[0], v, d); |
| 167 |
|
VSUM(cp[3], cp[3], v, d); |
| 168 |
|
} |
| 169 |
|
|
| 170 |
|
|
| 171 |
< |
hdlseg(lseg, hp, i) /* compute line segment for beam */ |
| 172 |
< |
register int lseg[2][3]; |
| 173 |
< |
register HOLO *hp; |
| 174 |
< |
int i; |
| 171 |
> |
extern int |
| 172 |
> |
hdlseg( /* compute line segment for beam */ |
| 173 |
> |
register int lseg[2][3], |
| 174 |
> |
register HOLO *hp, |
| 175 |
> |
GCOORD gc[2] |
| 176 |
> |
) |
| 177 |
|
{ |
| 207 |
– |
GCOORD gc[2]; |
| 178 |
|
register int k; |
| 179 |
|
|
| 210 |
– |
if (!hdbcoord(gc, hp, i)) /* compute grid coordinates */ |
| 211 |
– |
return(0); |
| 180 |
|
for (k = 0; k < 2; k++) { /* compute end points */ |
| 181 |
|
lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ; |
| 182 |
< |
lseg[k][wg0[gc[k].w]] = gc[k].i[0]; |
| 183 |
< |
lseg[k][wg1[gc[k].w]] = gc[k].i[1]; |
| 182 |
> |
lseg[k][hdwg0[gc[k].w]] = gc[k].i[0]; |
| 183 |
> |
lseg[k][hdwg1[gc[k].w]] = gc[k].i[1]; |
| 184 |
|
} |
| 185 |
|
return(1); |
| 186 |
|
} |
| 187 |
|
|
| 188 |
|
|
| 189 |
< |
unsigned |
| 190 |
< |
hdcode(hp, d) /* compute depth code for d */ |
| 191 |
< |
HOLO *hp; |
| 192 |
< |
double d; |
| 189 |
> |
extern unsigned int |
| 190 |
> |
hdcode( /* compute depth code for d */ |
| 191 |
> |
HOLO *hp, |
| 192 |
> |
double d |
| 193 |
> |
) |
| 194 |
|
{ |
| 195 |
|
double tl = hp->tlin; |
| 196 |
< |
register unsigned c; |
| 196 |
> |
register long c; |
| 197 |
|
|
| 198 |
|
if (d <= 0.) |
| 199 |
|
return(0); |
| 201 |
|
return(DCINF); |
| 202 |
|
if (d < tl) |
| 203 |
|
return((unsigned)(d*DCLIN/tl)); |
| 204 |
< |
c = (unsigned)(log(d/tl)/logstep) + DCLIN; |
| 205 |
< |
return(c > DCINF ? DCINF : c); |
| 204 |
> |
c = (long)(log(d/tl)/logstep) + DCLIN; |
| 205 |
> |
return(c > DCINF ? (unsigned)DCINF : (unsigned)c); |
| 206 |
|
} |
| 207 |
|
|
| 208 |
|
|
| 209 |
< |
hdgrid(gp, hp, wp) /* compute grid coordinates */ |
| 210 |
< |
FVECT gp; /* returned */ |
| 211 |
< |
register HOLO *hp; |
| 212 |
< |
FVECT wp; |
| 209 |
> |
extern void |
| 210 |
> |
hdgrid( /* compute grid coordinates */ |
| 211 |
> |
FVECT gp, /* returned */ |
| 212 |
> |
register HOLO *hp, |
| 213 |
> |
FVECT wp |
| 214 |
> |
) |
| 215 |
|
{ |
| 216 |
|
FVECT vt; |
| 217 |
|
|
| 218 |
< |
vt[0] = wp[0] - hp->orig[0]; |
| 219 |
< |
vt[1] = wp[1] - hp->orig[1]; |
| 220 |
< |
vt[2] = wp[2] - hp->orig[2]; |
| 221 |
< |
gp[0] = DOT(vt, hp->wn[0]) * hp->wg[0]; |
| 251 |
< |
gp[1] = DOT(vt, hp->wn[1]) * hp->wg[1]; |
| 252 |
< |
gp[2] = DOT(vt, hp->wn[2]) * hp->wg[2]; |
| 218 |
> |
VSUB(vt, wp, hp->orig); |
| 219 |
> |
gp[0] = DOT(vt, hp->wg[0]); |
| 220 |
> |
gp[1] = DOT(vt, hp->wg[1]); |
| 221 |
> |
gp[2] = DOT(vt, hp->wg[2]); |
| 222 |
|
} |
| 223 |
|
|
| 224 |
|
|
| 225 |
< |
hdworld(wp, hp, gp) /* compute world coordinates */ |
| 226 |
< |
register FVECT wp; |
| 227 |
< |
register HOLO *hp; |
| 228 |
< |
FVECT gp; |
| 225 |
> |
extern void |
| 226 |
> |
hdworld( /* compute world coordinates */ |
| 227 |
> |
register FVECT wp, |
| 228 |
> |
register HOLO *hp, |
| 229 |
> |
FVECT gp |
| 230 |
> |
) |
| 231 |
|
{ |
| 232 |
|
register double d; |
| 233 |
|
|
| 242 |
|
} |
| 243 |
|
|
| 244 |
|
|
| 245 |
< |
double |
| 246 |
< |
hdray(ro, rd, hp, gc, r) /* compute ray within a beam */ |
| 247 |
< |
FVECT ro, rd; /* returned */ |
| 248 |
< |
HOLO *hp; |
| 249 |
< |
GCOORD gc[2]; |
| 250 |
< |
BYTE r[2][2]; |
| 245 |
> |
extern double |
| 246 |
> |
hdray( /* compute ray within a beam */ |
| 247 |
> |
FVECT ro, |
| 248 |
> |
FVECT rd, /* returned */ |
| 249 |
> |
HOLO *hp, |
| 250 |
> |
GCOORD gc[2], |
| 251 |
> |
BYTE r[2][2] |
| 252 |
> |
) |
| 253 |
|
{ |
| 254 |
|
FVECT cp[4], p[2]; |
| 255 |
|
register int i, j; |
| 264 |
|
d0*cp[1][j] + d1*cp[2][j]; |
| 265 |
|
} |
| 266 |
|
VCOPY(ro, p[0]); /* assign ray origin and direction */ |
| 267 |
< |
rd[0] = p[1][0] - p[0][0]; |
| 295 |
< |
rd[1] = p[1][1] - p[0][1]; |
| 296 |
< |
rd[2] = p[1][2] - p[0][2]; |
| 267 |
> |
VSUB(rd, p[1], p[0]); |
| 268 |
|
return(normalize(rd)); /* return maximum inside distance */ |
| 269 |
|
} |
| 270 |
|
|
| 271 |
|
|
| 272 |
< |
double |
| 273 |
< |
hdinter(gc, r, hp, ro, rd) /* compute ray intersection with section */ |
| 274 |
< |
register GCOORD gc[2]; /* returned */ |
| 275 |
< |
BYTE r[2][2]; /* returned */ |
| 276 |
< |
register HOLO *hp; |
| 277 |
< |
FVECT ro, rd; /* rd should be normalized */ |
| 272 |
> |
extern double |
| 273 |
> |
hdinter( /* compute ray intersection with section */ |
| 274 |
> |
register GCOORD gc[2], /* returned */ |
| 275 |
> |
BYTE r[2][2], /* returned (optional) */ |
| 276 |
> |
double *ed, /* returned (optional) */ |
| 277 |
> |
register HOLO *hp, |
| 278 |
> |
FVECT ro, |
| 279 |
> |
FVECT rd /* normalization of rd affects distances */ |
| 280 |
> |
) |
| 281 |
|
{ |
| 282 |
|
FVECT p[2], vt; |
| 283 |
|
double d, t0, t1, d0, d1; |
| 284 |
< |
register FLOAT *v; |
| 284 |
> |
register RREAL *v; |
| 285 |
|
register int i; |
| 286 |
|
/* first, intersect walls */ |
| 287 |
|
gc[0].w = gc[1].w = -1; |
| 288 |
|
t0 = -FHUGE; t1 = FHUGE; |
| 289 |
+ |
VSUB(vt, ro, hp->orig); |
| 290 |
|
for (i = 0; i < 3; i++) { /* for each wall pair */ |
| 291 |
< |
d = -DOT(rd, hp->wn[i]); /* plane distance */ |
| 291 |
> |
d = -DOT(rd, hp->wg[i]); /* plane distance */ |
| 292 |
|
if (d <= FTINY && d >= -FTINY) /* check for parallel */ |
| 293 |
|
continue; |
| 294 |
< |
d1 = DOT(ro, hp->wn[i]); /* ray distances */ |
| 295 |
< |
d0 = (d1 - hp->wo[i<<1]) / d; |
| 296 |
< |
d1 = (d1 - hp->wo[i<<1|1]) / d; |
| 297 |
< |
if (d0 < d1) { /* check against best */ |
| 294 |
> |
d1 = DOT(vt, hp->wg[i]); /* ray distances */ |
| 295 |
> |
d0 = d1 / d; |
| 296 |
> |
d1 = (d1 - hp->grid[i]) / d; |
| 297 |
> |
if (d < 0) { /* check against best */ |
| 298 |
|
if (d0 > t0) { |
| 299 |
|
t0 = d0; |
| 300 |
|
gc[0].w = i<<1; |
| 314 |
|
} |
| 315 |
|
} |
| 316 |
|
} |
| 317 |
< |
if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */ |
| 317 |
> |
if ((gc[0].w < 0) | (gc[1].w < 0)) /* paranoid check */ |
| 318 |
|
return(FHUGE); |
| 319 |
|
/* compute intersections */ |
| 320 |
< |
for (i = 0; i < 3; i++) { |
| 321 |
< |
p[0][i] = ro[i] + rd[i]*t0; |
| 347 |
< |
p[1][i] = ro[i] + rd[i]*t1; |
| 348 |
< |
} |
| 320 |
> |
VSUM(p[0], ro, rd, t0); |
| 321 |
> |
VSUM(p[1], ro, rd, t1); |
| 322 |
|
/* now, compute grid coordinates */ |
| 323 |
|
for (i = 0; i < 2; i++) { |
| 324 |
< |
vt[0] = p[i][0] - hp->orig[0]; |
| 325 |
< |
vt[1] = p[i][1] - hp->orig[1]; |
| 326 |
< |
vt[2] = p[i][2] - hp->orig[2]; |
| 327 |
< |
v = hp->wn[wg0[gc[i].w]]; |
| 355 |
< |
d = DOT(vt, v) * hp->wg[wg0[gc[i].w]]; |
| 356 |
< |
if (d < 0. || (gc[i].i[0] = d) >= hp->grid[wg0[gc[i].w]]) |
| 324 |
> |
VSUB(vt, p[i], hp->orig); |
| 325 |
> |
v = hp->wg[hdwg0[gc[i].w]]; |
| 326 |
> |
d = DOT(vt, v); |
| 327 |
> |
if (d < 0 || d >= hp->grid[hdwg0[gc[i].w]]) |
| 328 |
|
return(FHUGE); /* outside wall */ |
| 329 |
< |
r[i][0] = 256. * (d - gc[i].i[0]); |
| 330 |
< |
v = hp->wn[wg1[gc[i].w]]; |
| 331 |
< |
d = DOT(vt, v) * hp->wg[wg1[gc[i].w]]; |
| 332 |
< |
if (d < 0. || (gc[i].i[1] = d) >= hp->grid[wg1[gc[i].w]]) |
| 329 |
> |
gc[i].i[0] = d; |
| 330 |
> |
if (r != NULL) |
| 331 |
> |
r[i][0] = 256. * (d - gc[i].i[0]); |
| 332 |
> |
v = hp->wg[hdwg1[gc[i].w]]; |
| 333 |
> |
d = DOT(vt, v); |
| 334 |
> |
if (d < 0 || d >= hp->grid[hdwg1[gc[i].w]]) |
| 335 |
|
return(FHUGE); /* outside wall */ |
| 336 |
< |
r[i][1] = 256. * (d - gc[i].i[1]); |
| 336 |
> |
gc[i].i[1] = d; |
| 337 |
> |
if (r != NULL) |
| 338 |
> |
r[i][1] = 256. * (d - gc[i].i[1]); |
| 339 |
|
} |
| 340 |
< |
/* return distance from entry point */ |
| 341 |
< |
vt[0] = ro[0] - p[0][0]; |
| 342 |
< |
vt[1] = ro[1] - p[0][1]; |
| 368 |
< |
vt[2] = ro[2] - p[0][2]; |
| 369 |
< |
return(DOT(vt,rd)); |
| 340 |
> |
if (ed != NULL) /* assign distance to exit point */ |
| 341 |
> |
*ed = t1; |
| 342 |
> |
return(t0); /* return distance to entry point */ |
| 343 |
|
} |