ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/holo.c
Revision: 3.21
Committed: Thu Jan 1 11:21:55 2004 UTC (20 years, 10 months ago) by schorsch
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad4R0, rad3R6, rad3R6P1, rad3R8, rad3R9
Changes since 3.20: +62 -44 lines
Log Message:
Ansification and prototypes.

File Contents

# User Rev Content
1 gregl 3.1 #ifndef lint
2 schorsch 3.21 static const char RCSid[] = "$Id: holo.c,v 3.20 2003/07/27 22:12:02 schorsch Exp $";
3 gregl 3.1 #endif
4     /*
5     * Routines for converting holodeck coordinates, etc.
6     *
7     * 10/22/97 GWLarson
8     */
9    
10     #include "holo.h"
11    
12     float hd_depthmap[DCINF-DCLIN];
13    
14 gregl 3.13 int hdwg0[6] = {1,1,2,2,0,0};
15     int hdwg1[6] = {2,2,0,0,1,1};
16    
17 gregl 3.1 static double logstep;
18    
19    
20 schorsch 3.21 extern void
21     hdcompgrid( /* compute derived grid vector and index */
22     register HOLO *hp
23     )
24 gregl 3.1 {
25     double d;
26     register int i, j;
27     /* initialize depth map */
28     if (hd_depthmap[0] < 1.) {
29     d = 1. + .5/DCLIN;
30     for (i = 0; i < DCINF-DCLIN; i++) {
31     hd_depthmap[i] = d;
32     d *= 1. + 1./DCLIN;
33     }
34     logstep = log(1. + 1./DCLIN);
35     }
36     /* compute grid coordinate vectors */
37     for (i = 0; i < 3; i++) {
38 gregl 3.13 fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]);
39     d = DOT(hp->wg[i],hp->xv[i]);
40 schorsch 3.20 if ((d <= FTINY) & (d >= -FTINY))
41 gregl 3.1 error(USER, "degenerate holodeck section");
42 gwlarson 3.15 d = hp->grid[i] / d;
43 gregl 3.13 hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d;
44 gregl 3.1 }
45     /* compute linear depth range */
46     hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
47     /* compute wall super-indices from grid */
48     hp->wi[0] = 1; /**** index values begin at 1 ****/
49     for (i = 1; i < 6; i++) {
50     hp->wi[i] = 0;
51     for (j = i; j < 6; j++)
52 gregl 3.13 hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
53     hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]];
54 gregl 3.1 hp->wi[i] += hp->wi[i-1];
55     }
56     }
57    
58    
59 schorsch 3.21 extern int
60     hdbcoord( /* compute beam coordinates from index */
61     GCOORD gc[2], /* returned */
62     register HOLO *hp,
63     register int i
64     )
65 gregl 3.1 {
66     register int j, n;
67     int n2, reverse;
68 gregl 3.3 GCOORD g2[2];
69 gregl 3.1 /* check range */
70 schorsch 3.20 if ((i < 1) | (i > nbeams(hp)))
71 gregl 3.1 return(0);
72 schorsch 3.20 if ( (reverse = i >= hp->wi[5]) )
73 gregl 3.1 i -= hp->wi[5] - 1;
74     for (j = 0; j < 5; j++) /* find w0 */
75     if (hp->wi[j+1] > i)
76     break;
77     i -= hp->wi[gc[0].w=j];
78     /* find w1 */
79 gregl 3.13 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
80 gregl 3.1 while (++j < 5) {
81 gregl 3.13 n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
82 gregl 3.1 if (n > i)
83     break;
84     i -= n;
85     }
86     gc[1].w = j;
87     /* find position on w0 */
88 gregl 3.13 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
89 gregl 3.1 n = i / n2;
90 gregl 3.13 gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]];
91     gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]];
92 gregl 3.1 i -= n*n2;
93     /* find position on w1 */
94 gregl 3.13 gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]];
95     gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]];
96 gregl 3.1 if (reverse) {
97 schorsch 3.19 *g2 = *(gc+1);
98     *(gc+1) = *gc;
99     *gc = *g2;
100 gregl 3.1 }
101     return(1); /* we're done */
102     }
103    
104    
105 schorsch 3.21 extern int
106     hdbindex( /* compute index from beam coordinates */
107     register HOLO *hp,
108     register GCOORD gc[2]
109     )
110 gregl 3.1 {
111 gregl 3.3 GCOORD g2[2];
112 gregl 3.1 int reverse;
113     register int i, j;
114     /* check ordering and limits */
115 schorsch 3.20 if ( (reverse = gc[0].w > gc[1].w) ) {
116 schorsch 3.19 *g2 = *(gc+1);
117     *(g2+1) = *gc;
118 gregl 3.1 gc = g2;
119     } else if (gc[0].w == gc[1].w)
120     return(0);
121 schorsch 3.20 if ((gc[0].w < 0) | (gc[1].w > 5))
122 gregl 3.1 return(0);
123     i = 0; /* compute index */
124     for (j = gc[0].w+1; j < gc[1].w; j++)
125 gregl 3.13 i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
126     i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]];
127 gregl 3.1 i += hp->wi[gc[0].w];
128 gregl 3.13 i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
129     hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ;
130     i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
131 gregl 3.1 if (reverse)
132     i += hp->wi[5] - 1;
133     return(i);
134     }
135    
136    
137 schorsch 3.21 extern void
138     hdcell( /* compute cell coordinates */
139     register FVECT cp[4], /* returned (may be passed as FVECT cp[2][2]) */
140     register HOLO *hp,
141     register GCOORD *gc
142     )
143 gregl 3.4 {
144 schorsch 3.18 register RREAL *v;
145 gregl 3.4 double d;
146 gregl 3.5 /* compute common component */
147     VCOPY(cp[0], hp->orig);
148     if (gc->w & 1) {
149     v = hp->xv[gc->w>>1];
150     cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
151 gregl 3.4 }
152 gregl 3.13 v = hp->xv[hdwg0[gc->w]];
153     d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]];
154 gregl 3.5 VSUM(cp[0], cp[0], v, d);
155 gregl 3.13 v = hp->xv[hdwg1[gc->w]];
156     d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]];
157 gregl 3.5 VSUM(cp[0], cp[0], v, d);
158     /* compute x1 sums */
159 gregl 3.13 v = hp->xv[hdwg0[gc->w]];
160     d = 1.0 / hp->grid[hdwg0[gc->w]];
161 gregl 3.5 VSUM(cp[1], cp[0], v, d);
162     VSUM(cp[3], cp[0], v, d);
163     /* compute y1 sums */
164 gregl 3.13 v = hp->xv[hdwg1[gc->w]];
165     d = 1.0 / hp->grid[hdwg1[gc->w]];
166 gregl 3.5 VSUM(cp[2], cp[0], v, d);
167     VSUM(cp[3], cp[3], v, d);
168 gregl 3.4 }
169    
170    
171 schorsch 3.21 extern int
172     hdlseg( /* compute line segment for beam */
173     register int lseg[2][3],
174     register HOLO *hp,
175     GCOORD gc[2]
176     )
177 gregl 3.1 {
178     register int k;
179    
180 gregl 3.2 for (k = 0; k < 2; k++) { /* compute end points */
181     lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
182 gregl 3.13 lseg[k][hdwg0[gc[k].w]] = gc[k].i[0];
183     lseg[k][hdwg1[gc[k].w]] = gc[k].i[1];
184 gregl 3.2 }
185 gregl 3.1 return(1);
186     }
187    
188    
189 schorsch 3.21 extern unsigned int
190     hdcode( /* compute depth code for d */
191     HOLO *hp,
192     double d
193     )
194 gregl 3.1 {
195     double tl = hp->tlin;
196 gregl 3.12 register long c;
197 gregl 3.1
198     if (d <= 0.)
199     return(0);
200     if (d >= .99*FHUGE)
201     return(DCINF);
202     if (d < tl)
203     return((unsigned)(d*DCLIN/tl));
204 gregl 3.12 c = (long)(log(d/tl)/logstep) + DCLIN;
205     return(c > DCINF ? (unsigned)DCINF : (unsigned)c);
206 gregl 3.1 }
207    
208    
209 schorsch 3.21 extern void
210     hdgrid( /* compute grid coordinates */
211     FVECT gp, /* returned */
212     register HOLO *hp,
213     FVECT wp
214     )
215 gregl 3.6 {
216     FVECT vt;
217    
218 gwlarson 3.14 VSUB(vt, wp, hp->orig);
219 gregl 3.13 gp[0] = DOT(vt, hp->wg[0]);
220     gp[1] = DOT(vt, hp->wg[1]);
221     gp[2] = DOT(vt, hp->wg[2]);
222 gregl 3.6 }
223    
224    
225 schorsch 3.21 extern void
226     hdworld( /* compute world coordinates */
227     register FVECT wp,
228     register HOLO *hp,
229     FVECT gp
230     )
231 gregl 3.7 {
232 gregl 3.8 register double d;
233    
234     d = gp[0]/hp->grid[0];
235     VSUM(wp, hp->orig, hp->xv[0], d);
236    
237     d = gp[1]/hp->grid[1];
238     VSUM(wp, wp, hp->xv[1], d);
239    
240     d = gp[2]/hp->grid[2];
241     VSUM(wp, wp, hp->xv[2], d);
242 gregl 3.7 }
243    
244    
245 schorsch 3.21 extern double
246     hdray( /* compute ray within a beam */
247     FVECT ro,
248     FVECT rd, /* returned */
249     HOLO *hp,
250     GCOORD gc[2],
251     BYTE r[2][2]
252     )
253 gregl 3.1 {
254 gregl 3.5 FVECT cp[4], p[2];
255     register int i, j;
256     double d0, d1;
257 gregl 3.1 /* compute entry and exit points */
258     for (i = 0; i < 2; i++) {
259 gregl 3.5 hdcell(cp, hp, gc+i);
260     d0 = (1./256.)*(r[i][0]+.5);
261     d1 = (1./256.)*(r[i][1]+.5);
262     for (j = 0; j < 3; j++)
263     p[i][j] = (1.-d0-d1)*cp[0][j] +
264     d0*cp[1][j] + d1*cp[2][j];
265 gregl 3.1 }
266     VCOPY(ro, p[0]); /* assign ray origin and direction */
267 gwlarson 3.14 VSUB(rd, p[1], p[0]);
268 gregl 3.1 return(normalize(rd)); /* return maximum inside distance */
269     }
270    
271    
272 schorsch 3.21 extern double
273     hdinter( /* compute ray intersection with section */
274     register GCOORD gc[2], /* returned */
275     BYTE r[2][2], /* returned (optional) */
276     double *ed, /* returned (optional) */
277     register HOLO *hp,
278     FVECT ro,
279     FVECT rd /* normalization of rd affects distances */
280     )
281 gregl 3.1 {
282     FVECT p[2], vt;
283     double d, t0, t1, d0, d1;
284 schorsch 3.18 register RREAL *v;
285 gregl 3.1 register int i;
286     /* first, intersect walls */
287     gc[0].w = gc[1].w = -1;
288     t0 = -FHUGE; t1 = FHUGE;
289 gwlarson 3.15 VSUB(vt, ro, hp->orig);
290 gregl 3.1 for (i = 0; i < 3; i++) { /* for each wall pair */
291 gregl 3.13 d = -DOT(rd, hp->wg[i]); /* plane distance */
292 gregl 3.1 if (d <= FTINY && d >= -FTINY) /* check for parallel */
293     continue;
294 gwlarson 3.15 d1 = DOT(vt, hp->wg[i]); /* ray distances */
295     d0 = d1 / d;
296     d1 = (d1 - hp->grid[i]) / d;
297     if (d < 0) { /* check against best */
298 gregl 3.1 if (d0 > t0) {
299     t0 = d0;
300     gc[0].w = i<<1;
301     }
302     if (d1 < t1) {
303     t1 = d1;
304     gc[1].w = i<<1 | 1;
305     }
306     } else {
307     if (d1 > t0) {
308     t0 = d1;
309     gc[0].w = i<<1 | 1;
310     }
311     if (d0 < t1) {
312     t1 = d0;
313     gc[1].w = i<<1;
314     }
315     }
316     }
317 schorsch 3.20 if ((gc[0].w < 0) | (gc[1].w < 0)) /* paranoid check */
318 gregl 3.1 return(FHUGE);
319     /* compute intersections */
320 gwlarson 3.14 VSUM(p[0], ro, rd, t0);
321     VSUM(p[1], ro, rd, t1);
322 gregl 3.1 /* now, compute grid coordinates */
323     for (i = 0; i < 2; i++) {
324 gwlarson 3.14 VSUB(vt, p[i], hp->orig);
325 gregl 3.13 v = hp->wg[hdwg0[gc[i].w]];
326     d = DOT(vt, v);
327 gwlarson 3.15 if (d < 0 || d >= hp->grid[hdwg0[gc[i].w]])
328 gregl 3.1 return(FHUGE); /* outside wall */
329 gwlarson 3.15 gc[i].i[0] = d;
330 gregl 3.11 if (r != NULL)
331     r[i][0] = 256. * (d - gc[i].i[0]);
332 gregl 3.13 v = hp->wg[hdwg1[gc[i].w]];
333     d = DOT(vt, v);
334 gwlarson 3.15 if (d < 0 || d >= hp->grid[hdwg1[gc[i].w]])
335 gregl 3.1 return(FHUGE); /* outside wall */
336 gwlarson 3.15 gc[i].i[1] = d;
337 gregl 3.11 if (r != NULL)
338     r[i][1] = 256. * (d - gc[i].i[1]);
339 gregl 3.1 }
340 gregl 3.10 if (ed != NULL) /* assign distance to exit point */
341     *ed = t1;
342     return(t0); /* return distance to entry point */
343 gregl 3.1 }