| 1 |
gregl |
3.1 |
#ifndef lint
|
| 2 |
schorsch |
3.18 |
static const char RCSid[] = "$Id: holo.c,v 3.17 2003/02/22 02:07:24 greg Exp $";
|
| 3 |
gregl |
3.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Routines for converting holodeck coordinates, etc.
|
| 6 |
|
|
*
|
| 7 |
|
|
* 10/22/97 GWLarson
|
| 8 |
|
|
*/
|
| 9 |
|
|
|
| 10 |
|
|
#include "holo.h"
|
| 11 |
|
|
|
| 12 |
|
|
float hd_depthmap[DCINF-DCLIN];
|
| 13 |
|
|
|
| 14 |
gregl |
3.13 |
int hdwg0[6] = {1,1,2,2,0,0};
|
| 15 |
|
|
int hdwg1[6] = {2,2,0,0,1,1};
|
| 16 |
|
|
|
| 17 |
gregl |
3.1 |
static double logstep;
|
| 18 |
|
|
|
| 19 |
|
|
|
| 20 |
|
|
hdcompgrid(hp) /* compute derived grid vector and index */
|
| 21 |
|
|
register HOLO *hp;
|
| 22 |
|
|
{
|
| 23 |
|
|
double d;
|
| 24 |
|
|
register int i, j;
|
| 25 |
|
|
/* initialize depth map */
|
| 26 |
|
|
if (hd_depthmap[0] < 1.) {
|
| 27 |
|
|
d = 1. + .5/DCLIN;
|
| 28 |
|
|
for (i = 0; i < DCINF-DCLIN; i++) {
|
| 29 |
|
|
hd_depthmap[i] = d;
|
| 30 |
|
|
d *= 1. + 1./DCLIN;
|
| 31 |
|
|
}
|
| 32 |
|
|
logstep = log(1. + 1./DCLIN);
|
| 33 |
|
|
}
|
| 34 |
|
|
/* compute grid coordinate vectors */
|
| 35 |
|
|
for (i = 0; i < 3; i++) {
|
| 36 |
gregl |
3.13 |
fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]);
|
| 37 |
|
|
d = DOT(hp->wg[i],hp->xv[i]);
|
| 38 |
|
|
if (d <= FTINY & d >= -FTINY)
|
| 39 |
gregl |
3.1 |
error(USER, "degenerate holodeck section");
|
| 40 |
gwlarson |
3.15 |
d = hp->grid[i] / d;
|
| 41 |
gregl |
3.13 |
hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d;
|
| 42 |
gregl |
3.1 |
}
|
| 43 |
|
|
/* compute linear depth range */
|
| 44 |
|
|
hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
|
| 45 |
|
|
/* compute wall super-indices from grid */
|
| 46 |
|
|
hp->wi[0] = 1; /**** index values begin at 1 ****/
|
| 47 |
|
|
for (i = 1; i < 6; i++) {
|
| 48 |
|
|
hp->wi[i] = 0;
|
| 49 |
|
|
for (j = i; j < 6; j++)
|
| 50 |
gregl |
3.13 |
hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
|
| 51 |
|
|
hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]];
|
| 52 |
gregl |
3.1 |
hp->wi[i] += hp->wi[i-1];
|
| 53 |
|
|
}
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
|
| 57 |
|
|
hdbcoord(gc, hp, i) /* compute beam coordinates from index */
|
| 58 |
gregl |
3.3 |
GCOORD gc[2]; /* returned */
|
| 59 |
gregl |
3.1 |
register HOLO *hp;
|
| 60 |
|
|
register int i;
|
| 61 |
|
|
{
|
| 62 |
|
|
register int j, n;
|
| 63 |
|
|
int n2, reverse;
|
| 64 |
gregl |
3.3 |
GCOORD g2[2];
|
| 65 |
gregl |
3.1 |
/* check range */
|
| 66 |
|
|
if (i < 1 | i > nbeams(hp))
|
| 67 |
|
|
return(0);
|
| 68 |
|
|
if (reverse = i >= hp->wi[5])
|
| 69 |
|
|
i -= hp->wi[5] - 1;
|
| 70 |
|
|
for (j = 0; j < 5; j++) /* find w0 */
|
| 71 |
|
|
if (hp->wi[j+1] > i)
|
| 72 |
|
|
break;
|
| 73 |
|
|
i -= hp->wi[gc[0].w=j];
|
| 74 |
|
|
/* find w1 */
|
| 75 |
gregl |
3.13 |
n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
|
| 76 |
gregl |
3.1 |
while (++j < 5) {
|
| 77 |
gregl |
3.13 |
n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
|
| 78 |
gregl |
3.1 |
if (n > i)
|
| 79 |
|
|
break;
|
| 80 |
|
|
i -= n;
|
| 81 |
|
|
}
|
| 82 |
|
|
gc[1].w = j;
|
| 83 |
|
|
/* find position on w0 */
|
| 84 |
gregl |
3.13 |
n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
|
| 85 |
gregl |
3.1 |
n = i / n2;
|
| 86 |
gregl |
3.13 |
gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]];
|
| 87 |
|
|
gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]];
|
| 88 |
gregl |
3.1 |
i -= n*n2;
|
| 89 |
|
|
/* find position on w1 */
|
| 90 |
gregl |
3.13 |
gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]];
|
| 91 |
|
|
gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]];
|
| 92 |
gregl |
3.1 |
if (reverse) {
|
| 93 |
|
|
copystruct(g2, gc+1);
|
| 94 |
|
|
copystruct(gc+1, gc);
|
| 95 |
|
|
copystruct(gc, g2);
|
| 96 |
|
|
}
|
| 97 |
|
|
return(1); /* we're done */
|
| 98 |
|
|
}
|
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
int
|
| 102 |
|
|
hdbindex(hp, gc) /* compute index from beam coordinates */
|
| 103 |
|
|
register HOLO *hp;
|
| 104 |
gregl |
3.3 |
register GCOORD gc[2];
|
| 105 |
gregl |
3.1 |
{
|
| 106 |
gregl |
3.3 |
GCOORD g2[2];
|
| 107 |
gregl |
3.1 |
int reverse;
|
| 108 |
|
|
register int i, j;
|
| 109 |
|
|
/* check ordering and limits */
|
| 110 |
|
|
if (reverse = gc[0].w > gc[1].w) {
|
| 111 |
|
|
copystruct(g2, gc+1);
|
| 112 |
|
|
copystruct(g2+1, gc);
|
| 113 |
|
|
gc = g2;
|
| 114 |
|
|
} else if (gc[0].w == gc[1].w)
|
| 115 |
|
|
return(0);
|
| 116 |
|
|
if (gc[0].w < 0 | gc[1].w > 5)
|
| 117 |
|
|
return(0);
|
| 118 |
|
|
i = 0; /* compute index */
|
| 119 |
|
|
for (j = gc[0].w+1; j < gc[1].w; j++)
|
| 120 |
gregl |
3.13 |
i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
|
| 121 |
|
|
i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]];
|
| 122 |
gregl |
3.1 |
i += hp->wi[gc[0].w];
|
| 123 |
gregl |
3.13 |
i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
|
| 124 |
|
|
hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ;
|
| 125 |
|
|
i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
|
| 126 |
gregl |
3.1 |
if (reverse)
|
| 127 |
|
|
i += hp->wi[5] - 1;
|
| 128 |
|
|
return(i);
|
| 129 |
|
|
}
|
| 130 |
|
|
|
| 131 |
|
|
|
| 132 |
gregl |
3.4 |
hdcell(cp, hp, gc) /* compute cell coordinates */
|
| 133 |
|
|
register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
|
| 134 |
gregl |
3.5 |
register HOLO *hp;
|
| 135 |
gregl |
3.4 |
register GCOORD *gc;
|
| 136 |
|
|
{
|
| 137 |
schorsch |
3.18 |
register RREAL *v;
|
| 138 |
gregl |
3.4 |
double d;
|
| 139 |
gregl |
3.5 |
/* compute common component */
|
| 140 |
|
|
VCOPY(cp[0], hp->orig);
|
| 141 |
|
|
if (gc->w & 1) {
|
| 142 |
|
|
v = hp->xv[gc->w>>1];
|
| 143 |
|
|
cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
|
| 144 |
gregl |
3.4 |
}
|
| 145 |
gregl |
3.13 |
v = hp->xv[hdwg0[gc->w]];
|
| 146 |
|
|
d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]];
|
| 147 |
gregl |
3.5 |
VSUM(cp[0], cp[0], v, d);
|
| 148 |
gregl |
3.13 |
v = hp->xv[hdwg1[gc->w]];
|
| 149 |
|
|
d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]];
|
| 150 |
gregl |
3.5 |
VSUM(cp[0], cp[0], v, d);
|
| 151 |
|
|
/* compute x1 sums */
|
| 152 |
gregl |
3.13 |
v = hp->xv[hdwg0[gc->w]];
|
| 153 |
|
|
d = 1.0 / hp->grid[hdwg0[gc->w]];
|
| 154 |
gregl |
3.5 |
VSUM(cp[1], cp[0], v, d);
|
| 155 |
|
|
VSUM(cp[3], cp[0], v, d);
|
| 156 |
|
|
/* compute y1 sums */
|
| 157 |
gregl |
3.13 |
v = hp->xv[hdwg1[gc->w]];
|
| 158 |
|
|
d = 1.0 / hp->grid[hdwg1[gc->w]];
|
| 159 |
gregl |
3.5 |
VSUM(cp[2], cp[0], v, d);
|
| 160 |
|
|
VSUM(cp[3], cp[3], v, d);
|
| 161 |
gregl |
3.4 |
}
|
| 162 |
|
|
|
| 163 |
|
|
|
| 164 |
gregl |
3.9 |
hdlseg(lseg, hp, gc) /* compute line segment for beam */
|
| 165 |
gregl |
3.2 |
register int lseg[2][3];
|
| 166 |
gregl |
3.1 |
register HOLO *hp;
|
| 167 |
gregl |
3.9 |
GCOORD gc[2];
|
| 168 |
gregl |
3.1 |
{
|
| 169 |
|
|
register int k;
|
| 170 |
|
|
|
| 171 |
gregl |
3.2 |
for (k = 0; k < 2; k++) { /* compute end points */
|
| 172 |
|
|
lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
|
| 173 |
gregl |
3.13 |
lseg[k][hdwg0[gc[k].w]] = gc[k].i[0];
|
| 174 |
|
|
lseg[k][hdwg1[gc[k].w]] = gc[k].i[1];
|
| 175 |
gregl |
3.2 |
}
|
| 176 |
gregl |
3.1 |
return(1);
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
|
| 180 |
|
|
unsigned
|
| 181 |
|
|
hdcode(hp, d) /* compute depth code for d */
|
| 182 |
|
|
HOLO *hp;
|
| 183 |
|
|
double d;
|
| 184 |
|
|
{
|
| 185 |
|
|
double tl = hp->tlin;
|
| 186 |
gregl |
3.12 |
register long c;
|
| 187 |
gregl |
3.1 |
|
| 188 |
|
|
if (d <= 0.)
|
| 189 |
|
|
return(0);
|
| 190 |
|
|
if (d >= .99*FHUGE)
|
| 191 |
|
|
return(DCINF);
|
| 192 |
|
|
if (d < tl)
|
| 193 |
|
|
return((unsigned)(d*DCLIN/tl));
|
| 194 |
gregl |
3.12 |
c = (long)(log(d/tl)/logstep) + DCLIN;
|
| 195 |
|
|
return(c > DCINF ? (unsigned)DCINF : (unsigned)c);
|
| 196 |
gregl |
3.1 |
}
|
| 197 |
|
|
|
| 198 |
|
|
|
| 199 |
gregl |
3.6 |
hdgrid(gp, hp, wp) /* compute grid coordinates */
|
| 200 |
|
|
FVECT gp; /* returned */
|
| 201 |
|
|
register HOLO *hp;
|
| 202 |
|
|
FVECT wp;
|
| 203 |
|
|
{
|
| 204 |
|
|
FVECT vt;
|
| 205 |
|
|
|
| 206 |
gwlarson |
3.14 |
VSUB(vt, wp, hp->orig);
|
| 207 |
gregl |
3.13 |
gp[0] = DOT(vt, hp->wg[0]);
|
| 208 |
|
|
gp[1] = DOT(vt, hp->wg[1]);
|
| 209 |
|
|
gp[2] = DOT(vt, hp->wg[2]);
|
| 210 |
gregl |
3.6 |
}
|
| 211 |
|
|
|
| 212 |
|
|
|
| 213 |
gregl |
3.7 |
hdworld(wp, hp, gp) /* compute world coordinates */
|
| 214 |
|
|
register FVECT wp;
|
| 215 |
|
|
register HOLO *hp;
|
| 216 |
gregl |
3.8 |
FVECT gp;
|
| 217 |
gregl |
3.7 |
{
|
| 218 |
gregl |
3.8 |
register double d;
|
| 219 |
|
|
|
| 220 |
|
|
d = gp[0]/hp->grid[0];
|
| 221 |
|
|
VSUM(wp, hp->orig, hp->xv[0], d);
|
| 222 |
|
|
|
| 223 |
|
|
d = gp[1]/hp->grid[1];
|
| 224 |
|
|
VSUM(wp, wp, hp->xv[1], d);
|
| 225 |
|
|
|
| 226 |
|
|
d = gp[2]/hp->grid[2];
|
| 227 |
|
|
VSUM(wp, wp, hp->xv[2], d);
|
| 228 |
gregl |
3.7 |
}
|
| 229 |
|
|
|
| 230 |
|
|
|
| 231 |
gregl |
3.1 |
double
|
| 232 |
|
|
hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
|
| 233 |
|
|
FVECT ro, rd; /* returned */
|
| 234 |
gregl |
3.5 |
HOLO *hp;
|
| 235 |
|
|
GCOORD gc[2];
|
| 236 |
gregl |
3.1 |
BYTE r[2][2];
|
| 237 |
|
|
{
|
| 238 |
gregl |
3.5 |
FVECT cp[4], p[2];
|
| 239 |
|
|
register int i, j;
|
| 240 |
|
|
double d0, d1;
|
| 241 |
gregl |
3.1 |
/* compute entry and exit points */
|
| 242 |
|
|
for (i = 0; i < 2; i++) {
|
| 243 |
gregl |
3.5 |
hdcell(cp, hp, gc+i);
|
| 244 |
|
|
d0 = (1./256.)*(r[i][0]+.5);
|
| 245 |
|
|
d1 = (1./256.)*(r[i][1]+.5);
|
| 246 |
|
|
for (j = 0; j < 3; j++)
|
| 247 |
|
|
p[i][j] = (1.-d0-d1)*cp[0][j] +
|
| 248 |
|
|
d0*cp[1][j] + d1*cp[2][j];
|
| 249 |
gregl |
3.1 |
}
|
| 250 |
|
|
VCOPY(ro, p[0]); /* assign ray origin and direction */
|
| 251 |
gwlarson |
3.14 |
VSUB(rd, p[1], p[0]);
|
| 252 |
gregl |
3.1 |
return(normalize(rd)); /* return maximum inside distance */
|
| 253 |
|
|
}
|
| 254 |
|
|
|
| 255 |
|
|
|
| 256 |
|
|
double
|
| 257 |
gregl |
3.10 |
hdinter(gc, r, ed, hp, ro, rd) /* compute ray intersection with section */
|
| 258 |
gregl |
3.3 |
register GCOORD gc[2]; /* returned */
|
| 259 |
gregl |
3.11 |
BYTE r[2][2]; /* returned (optional) */
|
| 260 |
gregl |
3.10 |
double *ed; /* returned (optional) */
|
| 261 |
gregl |
3.1 |
register HOLO *hp;
|
| 262 |
gregl |
3.11 |
FVECT ro, rd; /* normalization of rd affects distances */
|
| 263 |
gregl |
3.1 |
{
|
| 264 |
|
|
FVECT p[2], vt;
|
| 265 |
|
|
double d, t0, t1, d0, d1;
|
| 266 |
schorsch |
3.18 |
register RREAL *v;
|
| 267 |
gregl |
3.1 |
register int i;
|
| 268 |
|
|
/* first, intersect walls */
|
| 269 |
|
|
gc[0].w = gc[1].w = -1;
|
| 270 |
|
|
t0 = -FHUGE; t1 = FHUGE;
|
| 271 |
gwlarson |
3.15 |
VSUB(vt, ro, hp->orig);
|
| 272 |
gregl |
3.1 |
for (i = 0; i < 3; i++) { /* for each wall pair */
|
| 273 |
gregl |
3.13 |
d = -DOT(rd, hp->wg[i]); /* plane distance */
|
| 274 |
gregl |
3.1 |
if (d <= FTINY && d >= -FTINY) /* check for parallel */
|
| 275 |
|
|
continue;
|
| 276 |
gwlarson |
3.15 |
d1 = DOT(vt, hp->wg[i]); /* ray distances */
|
| 277 |
|
|
d0 = d1 / d;
|
| 278 |
|
|
d1 = (d1 - hp->grid[i]) / d;
|
| 279 |
|
|
if (d < 0) { /* check against best */
|
| 280 |
gregl |
3.1 |
if (d0 > t0) {
|
| 281 |
|
|
t0 = d0;
|
| 282 |
|
|
gc[0].w = i<<1;
|
| 283 |
|
|
}
|
| 284 |
|
|
if (d1 < t1) {
|
| 285 |
|
|
t1 = d1;
|
| 286 |
|
|
gc[1].w = i<<1 | 1;
|
| 287 |
|
|
}
|
| 288 |
|
|
} else {
|
| 289 |
|
|
if (d1 > t0) {
|
| 290 |
|
|
t0 = d1;
|
| 291 |
|
|
gc[0].w = i<<1 | 1;
|
| 292 |
|
|
}
|
| 293 |
|
|
if (d0 < t1) {
|
| 294 |
|
|
t1 = d0;
|
| 295 |
|
|
gc[1].w = i<<1;
|
| 296 |
|
|
}
|
| 297 |
|
|
}
|
| 298 |
|
|
}
|
| 299 |
|
|
if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
|
| 300 |
|
|
return(FHUGE);
|
| 301 |
|
|
/* compute intersections */
|
| 302 |
gwlarson |
3.14 |
VSUM(p[0], ro, rd, t0);
|
| 303 |
|
|
VSUM(p[1], ro, rd, t1);
|
| 304 |
gregl |
3.1 |
/* now, compute grid coordinates */
|
| 305 |
|
|
for (i = 0; i < 2; i++) {
|
| 306 |
gwlarson |
3.14 |
VSUB(vt, p[i], hp->orig);
|
| 307 |
gregl |
3.13 |
v = hp->wg[hdwg0[gc[i].w]];
|
| 308 |
|
|
d = DOT(vt, v);
|
| 309 |
gwlarson |
3.15 |
if (d < 0 || d >= hp->grid[hdwg0[gc[i].w]])
|
| 310 |
gregl |
3.1 |
return(FHUGE); /* outside wall */
|
| 311 |
gwlarson |
3.15 |
gc[i].i[0] = d;
|
| 312 |
gregl |
3.11 |
if (r != NULL)
|
| 313 |
|
|
r[i][0] = 256. * (d - gc[i].i[0]);
|
| 314 |
gregl |
3.13 |
v = hp->wg[hdwg1[gc[i].w]];
|
| 315 |
|
|
d = DOT(vt, v);
|
| 316 |
gwlarson |
3.15 |
if (d < 0 || d >= hp->grid[hdwg1[gc[i].w]])
|
| 317 |
gregl |
3.1 |
return(FHUGE); /* outside wall */
|
| 318 |
gwlarson |
3.15 |
gc[i].i[1] = d;
|
| 319 |
gregl |
3.11 |
if (r != NULL)
|
| 320 |
|
|
r[i][1] = 256. * (d - gc[i].i[1]);
|
| 321 |
gregl |
3.1 |
}
|
| 322 |
gregl |
3.10 |
if (ed != NULL) /* assign distance to exit point */
|
| 323 |
|
|
*ed = t1;
|
| 324 |
|
|
return(t0); /* return distance to entry point */
|
| 325 |
gregl |
3.1 |
}
|