ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/holo.c
Revision: 3.17
Committed: Sat Feb 22 02:07:24 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R5
Changes since 3.16: +1 -4 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# User Rev Content
1 gregl 3.1 #ifndef lint
2 greg 3.17 static const char RCSid[] = "$Id$";
3 gregl 3.1 #endif
4     /*
5     * Routines for converting holodeck coordinates, etc.
6     *
7     * 10/22/97 GWLarson
8     */
9    
10     #include "holo.h"
11    
12     float hd_depthmap[DCINF-DCLIN];
13    
14 gregl 3.13 int hdwg0[6] = {1,1,2,2,0,0};
15     int hdwg1[6] = {2,2,0,0,1,1};
16    
17 gregl 3.1 static double logstep;
18    
19    
20     hdcompgrid(hp) /* compute derived grid vector and index */
21     register HOLO *hp;
22     {
23     double d;
24     register int i, j;
25     /* initialize depth map */
26     if (hd_depthmap[0] < 1.) {
27     d = 1. + .5/DCLIN;
28     for (i = 0; i < DCINF-DCLIN; i++) {
29     hd_depthmap[i] = d;
30     d *= 1. + 1./DCLIN;
31     }
32     logstep = log(1. + 1./DCLIN);
33     }
34     /* compute grid coordinate vectors */
35     for (i = 0; i < 3; i++) {
36 gregl 3.13 fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]);
37     d = DOT(hp->wg[i],hp->xv[i]);
38     if (d <= FTINY & d >= -FTINY)
39 gregl 3.1 error(USER, "degenerate holodeck section");
40 gwlarson 3.15 d = hp->grid[i] / d;
41 gregl 3.13 hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d;
42 gregl 3.1 }
43     /* compute linear depth range */
44     hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
45     /* compute wall super-indices from grid */
46     hp->wi[0] = 1; /**** index values begin at 1 ****/
47     for (i = 1; i < 6; i++) {
48     hp->wi[i] = 0;
49     for (j = i; j < 6; j++)
50 gregl 3.13 hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
51     hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]];
52 gregl 3.1 hp->wi[i] += hp->wi[i-1];
53     }
54     }
55    
56    
57     hdbcoord(gc, hp, i) /* compute beam coordinates from index */
58 gregl 3.3 GCOORD gc[2]; /* returned */
59 gregl 3.1 register HOLO *hp;
60     register int i;
61     {
62     register int j, n;
63     int n2, reverse;
64 gregl 3.3 GCOORD g2[2];
65 gregl 3.1 /* check range */
66     if (i < 1 | i > nbeams(hp))
67     return(0);
68     if (reverse = i >= hp->wi[5])
69     i -= hp->wi[5] - 1;
70     for (j = 0; j < 5; j++) /* find w0 */
71     if (hp->wi[j+1] > i)
72     break;
73     i -= hp->wi[gc[0].w=j];
74     /* find w1 */
75 gregl 3.13 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
76 gregl 3.1 while (++j < 5) {
77 gregl 3.13 n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
78 gregl 3.1 if (n > i)
79     break;
80     i -= n;
81     }
82     gc[1].w = j;
83     /* find position on w0 */
84 gregl 3.13 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
85 gregl 3.1 n = i / n2;
86 gregl 3.13 gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]];
87     gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]];
88 gregl 3.1 i -= n*n2;
89     /* find position on w1 */
90 gregl 3.13 gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]];
91     gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]];
92 gregl 3.1 if (reverse) {
93     copystruct(g2, gc+1);
94     copystruct(gc+1, gc);
95     copystruct(gc, g2);
96     }
97     return(1); /* we're done */
98     }
99    
100    
101     int
102     hdbindex(hp, gc) /* compute index from beam coordinates */
103     register HOLO *hp;
104 gregl 3.3 register GCOORD gc[2];
105 gregl 3.1 {
106 gregl 3.3 GCOORD g2[2];
107 gregl 3.1 int reverse;
108     register int i, j;
109     /* check ordering and limits */
110     if (reverse = gc[0].w > gc[1].w) {
111     copystruct(g2, gc+1);
112     copystruct(g2+1, gc);
113     gc = g2;
114     } else if (gc[0].w == gc[1].w)
115     return(0);
116     if (gc[0].w < 0 | gc[1].w > 5)
117     return(0);
118     i = 0; /* compute index */
119     for (j = gc[0].w+1; j < gc[1].w; j++)
120 gregl 3.13 i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
121     i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]];
122 gregl 3.1 i += hp->wi[gc[0].w];
123 gregl 3.13 i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
124     hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ;
125     i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
126 gregl 3.1 if (reverse)
127     i += hp->wi[5] - 1;
128     return(i);
129     }
130    
131    
132 gregl 3.4 hdcell(cp, hp, gc) /* compute cell coordinates */
133     register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
134 gregl 3.5 register HOLO *hp;
135 gregl 3.4 register GCOORD *gc;
136     {
137     register FLOAT *v;
138     double d;
139 gregl 3.5 /* compute common component */
140     VCOPY(cp[0], hp->orig);
141     if (gc->w & 1) {
142     v = hp->xv[gc->w>>1];
143     cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
144 gregl 3.4 }
145 gregl 3.13 v = hp->xv[hdwg0[gc->w]];
146     d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]];
147 gregl 3.5 VSUM(cp[0], cp[0], v, d);
148 gregl 3.13 v = hp->xv[hdwg1[gc->w]];
149     d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]];
150 gregl 3.5 VSUM(cp[0], cp[0], v, d);
151     /* compute x1 sums */
152 gregl 3.13 v = hp->xv[hdwg0[gc->w]];
153     d = 1.0 / hp->grid[hdwg0[gc->w]];
154 gregl 3.5 VSUM(cp[1], cp[0], v, d);
155     VSUM(cp[3], cp[0], v, d);
156     /* compute y1 sums */
157 gregl 3.13 v = hp->xv[hdwg1[gc->w]];
158     d = 1.0 / hp->grid[hdwg1[gc->w]];
159 gregl 3.5 VSUM(cp[2], cp[0], v, d);
160     VSUM(cp[3], cp[3], v, d);
161 gregl 3.4 }
162    
163    
164 gregl 3.9 hdlseg(lseg, hp, gc) /* compute line segment for beam */
165 gregl 3.2 register int lseg[2][3];
166 gregl 3.1 register HOLO *hp;
167 gregl 3.9 GCOORD gc[2];
168 gregl 3.1 {
169     register int k;
170    
171 gregl 3.2 for (k = 0; k < 2; k++) { /* compute end points */
172     lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
173 gregl 3.13 lseg[k][hdwg0[gc[k].w]] = gc[k].i[0];
174     lseg[k][hdwg1[gc[k].w]] = gc[k].i[1];
175 gregl 3.2 }
176 gregl 3.1 return(1);
177     }
178    
179    
180     unsigned
181     hdcode(hp, d) /* compute depth code for d */
182     HOLO *hp;
183     double d;
184     {
185     double tl = hp->tlin;
186 gregl 3.12 register long c;
187 gregl 3.1
188     if (d <= 0.)
189     return(0);
190     if (d >= .99*FHUGE)
191     return(DCINF);
192     if (d < tl)
193     return((unsigned)(d*DCLIN/tl));
194 gregl 3.12 c = (long)(log(d/tl)/logstep) + DCLIN;
195     return(c > DCINF ? (unsigned)DCINF : (unsigned)c);
196 gregl 3.1 }
197    
198    
199 gregl 3.6 hdgrid(gp, hp, wp) /* compute grid coordinates */
200     FVECT gp; /* returned */
201     register HOLO *hp;
202     FVECT wp;
203     {
204     FVECT vt;
205    
206 gwlarson 3.14 VSUB(vt, wp, hp->orig);
207 gregl 3.13 gp[0] = DOT(vt, hp->wg[0]);
208     gp[1] = DOT(vt, hp->wg[1]);
209     gp[2] = DOT(vt, hp->wg[2]);
210 gregl 3.6 }
211    
212    
213 gregl 3.7 hdworld(wp, hp, gp) /* compute world coordinates */
214     register FVECT wp;
215     register HOLO *hp;
216 gregl 3.8 FVECT gp;
217 gregl 3.7 {
218 gregl 3.8 register double d;
219    
220     d = gp[0]/hp->grid[0];
221     VSUM(wp, hp->orig, hp->xv[0], d);
222    
223     d = gp[1]/hp->grid[1];
224     VSUM(wp, wp, hp->xv[1], d);
225    
226     d = gp[2]/hp->grid[2];
227     VSUM(wp, wp, hp->xv[2], d);
228 gregl 3.7 }
229    
230    
231 gregl 3.1 double
232     hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
233     FVECT ro, rd; /* returned */
234 gregl 3.5 HOLO *hp;
235     GCOORD gc[2];
236 gregl 3.1 BYTE r[2][2];
237     {
238 gregl 3.5 FVECT cp[4], p[2];
239     register int i, j;
240     double d0, d1;
241 gregl 3.1 /* compute entry and exit points */
242     for (i = 0; i < 2; i++) {
243 gregl 3.5 hdcell(cp, hp, gc+i);
244     d0 = (1./256.)*(r[i][0]+.5);
245     d1 = (1./256.)*(r[i][1]+.5);
246     for (j = 0; j < 3; j++)
247     p[i][j] = (1.-d0-d1)*cp[0][j] +
248     d0*cp[1][j] + d1*cp[2][j];
249 gregl 3.1 }
250     VCOPY(ro, p[0]); /* assign ray origin and direction */
251 gwlarson 3.14 VSUB(rd, p[1], p[0]);
252 gregl 3.1 return(normalize(rd)); /* return maximum inside distance */
253     }
254    
255    
256     double
257 gregl 3.10 hdinter(gc, r, ed, hp, ro, rd) /* compute ray intersection with section */
258 gregl 3.3 register GCOORD gc[2]; /* returned */
259 gregl 3.11 BYTE r[2][2]; /* returned (optional) */
260 gregl 3.10 double *ed; /* returned (optional) */
261 gregl 3.1 register HOLO *hp;
262 gregl 3.11 FVECT ro, rd; /* normalization of rd affects distances */
263 gregl 3.1 {
264     FVECT p[2], vt;
265     double d, t0, t1, d0, d1;
266     register FLOAT *v;
267     register int i;
268     /* first, intersect walls */
269     gc[0].w = gc[1].w = -1;
270     t0 = -FHUGE; t1 = FHUGE;
271 gwlarson 3.15 VSUB(vt, ro, hp->orig);
272 gregl 3.1 for (i = 0; i < 3; i++) { /* for each wall pair */
273 gregl 3.13 d = -DOT(rd, hp->wg[i]); /* plane distance */
274 gregl 3.1 if (d <= FTINY && d >= -FTINY) /* check for parallel */
275     continue;
276 gwlarson 3.15 d1 = DOT(vt, hp->wg[i]); /* ray distances */
277     d0 = d1 / d;
278     d1 = (d1 - hp->grid[i]) / d;
279     if (d < 0) { /* check against best */
280 gregl 3.1 if (d0 > t0) {
281     t0 = d0;
282     gc[0].w = i<<1;
283     }
284     if (d1 < t1) {
285     t1 = d1;
286     gc[1].w = i<<1 | 1;
287     }
288     } else {
289     if (d1 > t0) {
290     t0 = d1;
291     gc[0].w = i<<1 | 1;
292     }
293     if (d0 < t1) {
294     t1 = d0;
295     gc[1].w = i<<1;
296     }
297     }
298     }
299     if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
300     return(FHUGE);
301     /* compute intersections */
302 gwlarson 3.14 VSUM(p[0], ro, rd, t0);
303     VSUM(p[1], ro, rd, t1);
304 gregl 3.1 /* now, compute grid coordinates */
305     for (i = 0; i < 2; i++) {
306 gwlarson 3.14 VSUB(vt, p[i], hp->orig);
307 gregl 3.13 v = hp->wg[hdwg0[gc[i].w]];
308     d = DOT(vt, v);
309 gwlarson 3.15 if (d < 0 || d >= hp->grid[hdwg0[gc[i].w]])
310 gregl 3.1 return(FHUGE); /* outside wall */
311 gwlarson 3.15 gc[i].i[0] = d;
312 gregl 3.11 if (r != NULL)
313     r[i][0] = 256. * (d - gc[i].i[0]);
314 gregl 3.13 v = hp->wg[hdwg1[gc[i].w]];
315     d = DOT(vt, v);
316 gwlarson 3.15 if (d < 0 || d >= hp->grid[hdwg1[gc[i].w]])
317 gregl 3.1 return(FHUGE); /* outside wall */
318 gwlarson 3.15 gc[i].i[1] = d;
319 gregl 3.11 if (r != NULL)
320     r[i][1] = 256. * (d - gc[i].i[1]);
321 gregl 3.1 }
322 gregl 3.10 if (ed != NULL) /* assign distance to exit point */
323     *ed = t1;
324     return(t0); /* return distance to entry point */
325 gregl 3.1 }