ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/holo.c
Revision: 3.14
Committed: Mon Aug 31 15:40:13 1998 UTC (25 years, 7 months ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 3.13: +5 -13 lines
Log Message:
made use of new VSUB() macro

File Contents

# User Rev Content
1 gregl 3.1 /* Copyright (c) 1997 Silicon Graphics, Inc. */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ SGI";
5     #endif
6    
7     /*
8     * Routines for converting holodeck coordinates, etc.
9     *
10     * 10/22/97 GWLarson
11     */
12    
13     #include "holo.h"
14    
15     float hd_depthmap[DCINF-DCLIN];
16    
17 gregl 3.13 int hdwg0[6] = {1,1,2,2,0,0};
18     int hdwg1[6] = {2,2,0,0,1,1};
19    
20 gregl 3.1 static double logstep;
21    
22    
23     hdcompgrid(hp) /* compute derived grid vector and index */
24     register HOLO *hp;
25     {
26     double d;
27     register int i, j;
28     /* initialize depth map */
29     if (hd_depthmap[0] < 1.) {
30     d = 1. + .5/DCLIN;
31     for (i = 0; i < DCINF-DCLIN; i++) {
32     hd_depthmap[i] = d;
33     d *= 1. + 1./DCLIN;
34     }
35     logstep = log(1. + 1./DCLIN);
36     }
37     /* compute grid coordinate vectors */
38     for (i = 0; i < 3; i++) {
39 gregl 3.13 fcross(hp->wg[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]);
40     d = DOT(hp->wg[i],hp->xv[i]);
41     if (d <= FTINY & d >= -FTINY)
42 gregl 3.1 error(USER, "degenerate holodeck section");
43 gregl 3.13 d = (double)hp->grid[i] / d;
44     hp->wg[i][0] *= d; hp->wg[i][1] *= d; hp->wg[i][2] *= d;
45     hp->wo[i<<1] = DOT(hp->wg[i],hp->orig);
46     d = DOT(hp->wg[i],hp->xv[i]);
47 gregl 3.6 hp->wo[i<<1|1] = hp->wo[i<<1] + d;
48 gregl 3.1 }
49     /* compute linear depth range */
50     hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
51     /* compute wall super-indices from grid */
52     hp->wi[0] = 1; /**** index values begin at 1 ****/
53     for (i = 1; i < 6; i++) {
54     hp->wi[i] = 0;
55     for (j = i; j < 6; j++)
56 gregl 3.13 hp->wi[i] += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
57     hp->wi[i] *= hp->grid[hdwg0[i-1]] * hp->grid[hdwg1[i-1]];
58 gregl 3.1 hp->wi[i] += hp->wi[i-1];
59     }
60     }
61    
62    
63     HOLO *
64     hdalloc(hproto) /* allocate and set holodeck section based on grid */
65     HDGRID *hproto;
66     {
67     HOLO hdhead;
68     register HOLO *hp;
69     int n;
70     /* copy grid to temporary header */
71     bcopy((char *)hproto, (char *)&hdhead, sizeof(HDGRID));
72     /* compute grid vectors and sizes */
73     hdcompgrid(&hdhead);
74     /* allocate header with directory */
75     n = sizeof(HOLO)+nbeams(&hdhead)*sizeof(BEAMI);
76     if ((hp = (HOLO *)malloc(n)) == NULL)
77     return(NULL);
78     /* copy header information */
79     copystruct(hp, &hdhead);
80     /* allocate and clear beam list */
81     hp->bl = (BEAM **)malloc((nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
82     if (hp->bl == NULL) {
83     free((char *)hp);
84     return(NULL);
85     }
86     bzero((char *)hp->bl, (nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
87     hp->bl[0] = (BEAM *)(hp->bl+nbeams(hp)+1); /* set blglob(hp) */
88     hp->fd = -1;
89     hp->dirty = 0;
90     hp->priv = NULL;
91     /* clear beam directory */
92     bzero((char *)hp->bi, (nbeams(hp)+1)*sizeof(BEAMI));
93     return(hp); /* all is well */
94     }
95    
96    
97     hdbcoord(gc, hp, i) /* compute beam coordinates from index */
98 gregl 3.3 GCOORD gc[2]; /* returned */
99 gregl 3.1 register HOLO *hp;
100     register int i;
101     {
102     register int j, n;
103     int n2, reverse;
104 gregl 3.3 GCOORD g2[2];
105 gregl 3.1 /* check range */
106     if (i < 1 | i > nbeams(hp))
107     return(0);
108     if (reverse = i >= hp->wi[5])
109     i -= hp->wi[5] - 1;
110     for (j = 0; j < 5; j++) /* find w0 */
111     if (hp->wi[j+1] > i)
112     break;
113     i -= hp->wi[gc[0].w=j];
114     /* find w1 */
115 gregl 3.13 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
116 gregl 3.1 while (++j < 5) {
117 gregl 3.13 n = n2 * hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
118 gregl 3.1 if (n > i)
119     break;
120     i -= n;
121     }
122     gc[1].w = j;
123     /* find position on w0 */
124 gregl 3.13 n2 = hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
125 gregl 3.1 n = i / n2;
126 gregl 3.13 gc[0].i[1] = n / hp->grid[hdwg0[gc[0].w]];
127     gc[0].i[0] = n - gc[0].i[1]*hp->grid[hdwg0[gc[0].w]];
128 gregl 3.1 i -= n*n2;
129     /* find position on w1 */
130 gregl 3.13 gc[1].i[1] = i / hp->grid[hdwg0[gc[1].w]];
131     gc[1].i[0] = i - gc[1].i[1]*hp->grid[hdwg0[gc[1].w]];
132 gregl 3.1 if (reverse) {
133     copystruct(g2, gc+1);
134     copystruct(gc+1, gc);
135     copystruct(gc, g2);
136     }
137     return(1); /* we're done */
138     }
139    
140    
141     int
142     hdbindex(hp, gc) /* compute index from beam coordinates */
143     register HOLO *hp;
144 gregl 3.3 register GCOORD gc[2];
145 gregl 3.1 {
146 gregl 3.3 GCOORD g2[2];
147 gregl 3.1 int reverse;
148     register int i, j;
149     /* check ordering and limits */
150     if (reverse = gc[0].w > gc[1].w) {
151     copystruct(g2, gc+1);
152     copystruct(g2+1, gc);
153     gc = g2;
154     } else if (gc[0].w == gc[1].w)
155     return(0);
156     if (gc[0].w < 0 | gc[1].w > 5)
157     return(0);
158     i = 0; /* compute index */
159     for (j = gc[0].w+1; j < gc[1].w; j++)
160 gregl 3.13 i += hp->grid[hdwg0[j]] * hp->grid[hdwg1[j]];
161     i *= hp->grid[hdwg0[gc[0].w]] * hp->grid[hdwg1[gc[0].w]];
162 gregl 3.1 i += hp->wi[gc[0].w];
163 gregl 3.13 i += (hp->grid[hdwg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
164     hp->grid[hdwg0[gc[1].w]] * hp->grid[hdwg1[gc[1].w]] ;
165     i += hp->grid[hdwg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
166 gregl 3.1 if (reverse)
167     i += hp->wi[5] - 1;
168     return(i);
169     }
170    
171    
172 gregl 3.4 hdcell(cp, hp, gc) /* compute cell coordinates */
173     register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
174 gregl 3.5 register HOLO *hp;
175 gregl 3.4 register GCOORD *gc;
176     {
177     register FLOAT *v;
178     double d;
179 gregl 3.5 /* compute common component */
180     VCOPY(cp[0], hp->orig);
181     if (gc->w & 1) {
182     v = hp->xv[gc->w>>1];
183     cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
184 gregl 3.4 }
185 gregl 3.13 v = hp->xv[hdwg0[gc->w]];
186     d = (double)gc->i[0] / hp->grid[hdwg0[gc->w]];
187 gregl 3.5 VSUM(cp[0], cp[0], v, d);
188 gregl 3.13 v = hp->xv[hdwg1[gc->w]];
189     d = (double)gc->i[1] / hp->grid[hdwg1[gc->w]];
190 gregl 3.5 VSUM(cp[0], cp[0], v, d);
191     /* compute x1 sums */
192 gregl 3.13 v = hp->xv[hdwg0[gc->w]];
193     d = 1.0 / hp->grid[hdwg0[gc->w]];
194 gregl 3.5 VSUM(cp[1], cp[0], v, d);
195     VSUM(cp[3], cp[0], v, d);
196     /* compute y1 sums */
197 gregl 3.13 v = hp->xv[hdwg1[gc->w]];
198     d = 1.0 / hp->grid[hdwg1[gc->w]];
199 gregl 3.5 VSUM(cp[2], cp[0], v, d);
200     VSUM(cp[3], cp[3], v, d);
201 gregl 3.4 }
202    
203    
204 gregl 3.9 hdlseg(lseg, hp, gc) /* compute line segment for beam */
205 gregl 3.2 register int lseg[2][3];
206 gregl 3.1 register HOLO *hp;
207 gregl 3.9 GCOORD gc[2];
208 gregl 3.1 {
209     register int k;
210    
211 gregl 3.2 for (k = 0; k < 2; k++) { /* compute end points */
212     lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
213 gregl 3.13 lseg[k][hdwg0[gc[k].w]] = gc[k].i[0];
214     lseg[k][hdwg1[gc[k].w]] = gc[k].i[1];
215 gregl 3.2 }
216 gregl 3.1 return(1);
217     }
218    
219    
220     unsigned
221     hdcode(hp, d) /* compute depth code for d */
222     HOLO *hp;
223     double d;
224     {
225     double tl = hp->tlin;
226 gregl 3.12 register long c;
227 gregl 3.1
228     if (d <= 0.)
229     return(0);
230     if (d >= .99*FHUGE)
231     return(DCINF);
232     if (d < tl)
233     return((unsigned)(d*DCLIN/tl));
234 gregl 3.12 c = (long)(log(d/tl)/logstep) + DCLIN;
235     return(c > DCINF ? (unsigned)DCINF : (unsigned)c);
236 gregl 3.1 }
237    
238    
239 gregl 3.6 hdgrid(gp, hp, wp) /* compute grid coordinates */
240     FVECT gp; /* returned */
241     register HOLO *hp;
242     FVECT wp;
243     {
244     FVECT vt;
245    
246 gwlarson 3.14 VSUB(vt, wp, hp->orig);
247 gregl 3.13 gp[0] = DOT(vt, hp->wg[0]);
248     gp[1] = DOT(vt, hp->wg[1]);
249     gp[2] = DOT(vt, hp->wg[2]);
250 gregl 3.6 }
251    
252    
253 gregl 3.7 hdworld(wp, hp, gp) /* compute world coordinates */
254     register FVECT wp;
255     register HOLO *hp;
256 gregl 3.8 FVECT gp;
257 gregl 3.7 {
258 gregl 3.8 register double d;
259    
260     d = gp[0]/hp->grid[0];
261     VSUM(wp, hp->orig, hp->xv[0], d);
262    
263     d = gp[1]/hp->grid[1];
264     VSUM(wp, wp, hp->xv[1], d);
265    
266     d = gp[2]/hp->grid[2];
267     VSUM(wp, wp, hp->xv[2], d);
268 gregl 3.7 }
269    
270    
271 gregl 3.1 double
272     hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
273     FVECT ro, rd; /* returned */
274 gregl 3.5 HOLO *hp;
275     GCOORD gc[2];
276 gregl 3.1 BYTE r[2][2];
277     {
278 gregl 3.5 FVECT cp[4], p[2];
279     register int i, j;
280     double d0, d1;
281 gregl 3.1 /* compute entry and exit points */
282     for (i = 0; i < 2; i++) {
283 gregl 3.5 hdcell(cp, hp, gc+i);
284     d0 = (1./256.)*(r[i][0]+.5);
285     d1 = (1./256.)*(r[i][1]+.5);
286     for (j = 0; j < 3; j++)
287     p[i][j] = (1.-d0-d1)*cp[0][j] +
288     d0*cp[1][j] + d1*cp[2][j];
289 gregl 3.1 }
290     VCOPY(ro, p[0]); /* assign ray origin and direction */
291 gwlarson 3.14 VSUB(rd, p[1], p[0]);
292 gregl 3.1 return(normalize(rd)); /* return maximum inside distance */
293     }
294    
295    
296     double
297 gregl 3.10 hdinter(gc, r, ed, hp, ro, rd) /* compute ray intersection with section */
298 gregl 3.3 register GCOORD gc[2]; /* returned */
299 gregl 3.11 BYTE r[2][2]; /* returned (optional) */
300 gregl 3.10 double *ed; /* returned (optional) */
301 gregl 3.1 register HOLO *hp;
302 gregl 3.11 FVECT ro, rd; /* normalization of rd affects distances */
303 gregl 3.1 {
304     FVECT p[2], vt;
305     double d, t0, t1, d0, d1;
306     register FLOAT *v;
307     register int i;
308     /* first, intersect walls */
309     gc[0].w = gc[1].w = -1;
310     t0 = -FHUGE; t1 = FHUGE;
311     for (i = 0; i < 3; i++) { /* for each wall pair */
312 gregl 3.13 d = -DOT(rd, hp->wg[i]); /* plane distance */
313 gregl 3.1 if (d <= FTINY && d >= -FTINY) /* check for parallel */
314     continue;
315 gregl 3.13 d1 = DOT(ro, hp->wg[i]); /* ray distances */
316 gregl 3.1 d0 = (d1 - hp->wo[i<<1]) / d;
317     d1 = (d1 - hp->wo[i<<1|1]) / d;
318     if (d0 < d1) { /* check against best */
319     if (d0 > t0) {
320     t0 = d0;
321     gc[0].w = i<<1;
322     }
323     if (d1 < t1) {
324     t1 = d1;
325     gc[1].w = i<<1 | 1;
326     }
327     } else {
328     if (d1 > t0) {
329     t0 = d1;
330     gc[0].w = i<<1 | 1;
331     }
332     if (d0 < t1) {
333     t1 = d0;
334     gc[1].w = i<<1;
335     }
336     }
337     }
338     if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
339     return(FHUGE);
340     /* compute intersections */
341 gwlarson 3.14 VSUM(p[0], ro, rd, t0);
342     VSUM(p[1], ro, rd, t1);
343 gregl 3.1 /* now, compute grid coordinates */
344     for (i = 0; i < 2; i++) {
345 gwlarson 3.14 VSUB(vt, p[i], hp->orig);
346 gregl 3.13 v = hp->wg[hdwg0[gc[i].w]];
347     d = DOT(vt, v);
348     if (d < 0. || (gc[i].i[0] = d) >= hp->grid[hdwg0[gc[i].w]])
349 gregl 3.1 return(FHUGE); /* outside wall */
350 gregl 3.11 if (r != NULL)
351     r[i][0] = 256. * (d - gc[i].i[0]);
352 gregl 3.13 v = hp->wg[hdwg1[gc[i].w]];
353     d = DOT(vt, v);
354     if (d < 0. || (gc[i].i[1] = d) >= hp->grid[hdwg1[gc[i].w]])
355 gregl 3.1 return(FHUGE); /* outside wall */
356 gregl 3.11 if (r != NULL)
357     r[i][1] = 256. * (d - gc[i].i[1]);
358 gregl 3.1 }
359 gregl 3.10 if (ed != NULL) /* assign distance to exit point */
360     *ed = t1;
361     return(t0); /* return distance to entry point */
362 gregl 3.1 }