#ifndef lint static const char RCSid[] = "$Id: sun.c,v 2.7 2019/11/07 23:15:07 greg Exp $"; #endif /* * SOLAR CALCULATIONS * * 3/31/87 * * Michalsky algorithm added October 2019: * "The Astronomical Almanac's Algorithm for Approximate * Solar Position (1950-2050)" by Joseph J. Michalsky, * published in 1988 in Solar Energy, Vol. 40, No. 3. * Also added correction to sdec() (365 was 368 originally) * */ #include #include "sun.h" #ifdef M_PI #define PI M_PI #else #define PI 3.14159265358979323846 #endif #undef DEG #define DEG (PI/180.) double s_latitude = 0.66; /* site latitude (radians north of equator) */ double s_longitude = 2.13; /* site longitude (radians west of Greenwich) */ double s_meridian = 120.*DEG; /* standard meridian (radians west) */ int jdate( /* Julian date (days into year) */ int month, int day ) { static short mo_da[12] = {0,31,59,90,120,151,181,212,243,273,304,334}; return(mo_da[month-1] + day); } double stadj( /* solar time adjustment from Julian date */ int jd ) { return( 0.170 * sin( (4.*PI/373.) * (jd - 80) ) - 0.129 * sin( (2.*PI/355.) * (jd - 8) ) + (12./PI) * (s_meridian - s_longitude) ); } double sdec( /* solar declination angle from Julian date */ int jd ) { return( 0.4093 * sin( (2.*PI/365.) * (jd - 81) ) ); } double salt( /* solar altitude from solar declination and solar time */ double sd, double st ) { return( asin( sin(s_latitude) * sin(sd) - cos(s_latitude) * cos(sd) * cos(st*(PI/12.)) ) ); } double sazi( /* solar azimuth from solar declination and solar time */ double sd, double st ) { return( -atan2( cos(sd)*sin(st*(PI/12.)), -cos(s_latitude)*sin(sd) - sin(s_latitude)*cos(sd)*cos(st*(PI/12.)) ) ); } /****************** More accurate Michalsky algorithm ****************/ /* circle normalization */ static double norm_cir(double r, const double p) { while (r < 0) r += p; while (r >= p) r -= p; return(r); } /* Almanac Julian date relative to noon UT on Jan 1, 2000 (fractional days) */ double mjdate(int year, int month, int day, double hour) { int jd = jdate(month, day); jd += (month > 2) & !(year&3); jd += (year - 1949)*365 + (year - 1949)/4; hour += s_meridian*(12./PI); return(jd + hour*(1./24.) + (2432916.5-2451545.)); } /* Solar declination (and solar time) from Almanac Julian date (fractional) */ double msdec(double mjd, double *stp) { /* Ecliptic coordinates (radians) */ double L = norm_cir(280.460*DEG + 0.9856474*DEG*mjd, 2.*PI); double g = norm_cir(357.528*DEG + 0.9856003*DEG*mjd, 2.*PI); double l = L + 1.915*DEG*sin(g) + 0.020*DEG*sin(2.*g); double ep = 23.439*DEG - 4e-7*DEG*mjd; double sin_l = sin(l); if (stp) { /* solar time requested, also? */ double ra = atan2(sin_l*cos(ep), cos(l)); double utime = 24.*(mjd - floor(mjd)) + 12.; double gmst = 6.697375 + 0.0657098242*mjd + utime; double lmst = gmst - s_longitude*(12./PI); *stp = norm_cir(lmst - ra*(12./PI) + 12., 24.); } return(asin(sin(ep)*sin_l)); /* return solar declination angle */ }