1 |
greg |
2.1 |
#ifndef lint |
2 |
greg |
2.12 |
static const char RCSid[] = "$Id: mksource.c,v 2.11 2023/11/17 20:02:07 greg Exp $"; |
3 |
greg |
2.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* Generate distant sources corresponding to the given environment map |
6 |
|
|
*/ |
7 |
|
|
|
8 |
|
|
#include "ray.h" |
9 |
|
|
#include "random.h" |
10 |
schorsch |
2.3 |
#include "resolu.h" |
11 |
greg |
2.1 |
|
12 |
|
|
#define NTRUNKBR 4 /* number of branches at trunk */ |
13 |
|
|
#define NTRUNKVERT 4 /* number of vertices at trunk */ |
14 |
|
|
#define DEF_NSAMPS 262144L /* default # sphere samples */ |
15 |
|
|
#define DEF_MAXANG 15. /* maximum source angle (deg.) */ |
16 |
|
|
|
17 |
|
|
/* Data structure for geodesic samples */ |
18 |
|
|
|
19 |
|
|
typedef struct tritree { |
20 |
greg |
2.5 |
int32 gdv[3]; /* spherical triangle vertex direc. */ |
21 |
|
|
int32 sd; /* sample direction if leaf */ |
22 |
greg |
2.1 |
struct tritree *kid; /* 4 children if branch node */ |
23 |
|
|
COLR val; /* sampled color value */ |
24 |
|
|
} TRITREE; |
25 |
|
|
|
26 |
|
|
typedef struct lostlight { |
27 |
|
|
struct lostlight *next; /* next in list */ |
28 |
greg |
2.5 |
int32 sd; /* lost source direction */ |
29 |
greg |
2.1 |
COLOR intens; /* output times solid angle */ |
30 |
|
|
} LOSTLIGHT; |
31 |
|
|
|
32 |
greg |
2.4 |
extern char *progname; |
33 |
greg |
2.1 |
|
34 |
|
|
FVECT scene_cent; /* center of octree cube */ |
35 |
|
|
RREAL scene_rad; /* radius to get outside cube from center */ |
36 |
|
|
|
37 |
|
|
const COLR blkclr = BLKCOLR; |
38 |
|
|
|
39 |
|
|
#define isleaf(node) ((node)->kid == NULL) |
40 |
|
|
|
41 |
|
|
/* Compute signum of signed volume for three vectors */ |
42 |
|
|
int |
43 |
|
|
vol_sign(const FVECT v1, const FVECT v2, const FVECT v3) |
44 |
|
|
{ |
45 |
|
|
double vol; |
46 |
|
|
|
47 |
|
|
vol = v1[0]*(v2[1]*v3[2] - v2[2]*v3[1]); |
48 |
|
|
vol += v1[1]*(v2[2]*v3[0] - v2[0]*v3[2]); |
49 |
|
|
vol += v1[2]*(v2[0]*v3[1] - v2[1]*v3[0]); |
50 |
|
|
if (vol > .0) |
51 |
|
|
return(1); |
52 |
|
|
if (vol < .0) |
53 |
|
|
return(-1); |
54 |
|
|
return(0); |
55 |
|
|
} |
56 |
|
|
|
57 |
|
|
/* Is the given direction contained within the specified spherical triangle? */ |
58 |
|
|
int |
59 |
greg |
2.5 |
intriv(const int32 trid[3], const FVECT sdir) |
60 |
greg |
2.1 |
{ |
61 |
|
|
int sv[3]; |
62 |
greg |
2.5 |
FVECT tri[3]; |
63 |
greg |
2.1 |
|
64 |
greg |
2.5 |
decodedir(tri[0], trid[0]); |
65 |
|
|
decodedir(tri[1], trid[1]); |
66 |
|
|
decodedir(tri[2], trid[2]); |
67 |
greg |
2.1 |
sv[0] = vol_sign(sdir, tri[0], tri[1]); |
68 |
|
|
sv[1] = vol_sign(sdir, tri[1], tri[2]); |
69 |
|
|
sv[2] = vol_sign(sdir, tri[2], tri[0]); |
70 |
|
|
if ((sv[0] == sv[1]) & (sv[1] == sv[2])) |
71 |
|
|
return(1); |
72 |
|
|
return(!sv[0] | !sv[1] | !sv[2]); |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
/* Find leaf containing the given sample direction */ |
76 |
|
|
TRITREE * |
77 |
|
|
findleaf(TRITREE *node, const FVECT sdir) |
78 |
|
|
{ |
79 |
|
|
int i; |
80 |
|
|
|
81 |
|
|
if (isleaf(node)) |
82 |
|
|
return(intriv(node->gdv,sdir) ? node : (TRITREE *)NULL); |
83 |
|
|
for (i = 0; i < 4; i++) { |
84 |
|
|
TRITREE *chknode = &node->kid[i]; |
85 |
|
|
if (intriv(chknode->gdv, sdir)) |
86 |
|
|
return(isleaf(chknode) ? chknode : |
87 |
|
|
findleaf(chknode, sdir)); |
88 |
|
|
} |
89 |
|
|
return(NULL); |
90 |
|
|
} |
91 |
|
|
|
92 |
|
|
/* Initialize leaf with random sample inside the given spherical triangle */ |
93 |
|
|
void |
94 |
|
|
leafsample(TRITREE *leaf) |
95 |
|
|
{ |
96 |
|
|
RAY myray; |
97 |
|
|
RREAL wt[3]; |
98 |
greg |
2.5 |
FVECT sdir; |
99 |
greg |
2.1 |
int i, j; |
100 |
|
|
/* random point on triangle */ |
101 |
|
|
i = random() % 3; |
102 |
|
|
wt[i] = frandom(); |
103 |
|
|
j = random() & 1; |
104 |
|
|
wt[(i+2-j)%3] = 1. - wt[i] - |
105 |
|
|
(wt[(i+1+j)%3] = (1.-wt[i])*frandom()); |
106 |
greg |
2.5 |
sdir[0] = sdir[1] = sdir[2] = .0; |
107 |
|
|
for (i = 0; i < 3; i++) { |
108 |
|
|
FVECT vt; |
109 |
|
|
decodedir(vt, leaf->gdv[i]); |
110 |
|
|
VSUM(sdir, sdir, vt, wt[i]); |
111 |
|
|
} |
112 |
|
|
normalize(sdir); /* record sample direction */ |
113 |
|
|
leaf->sd = encodedir(sdir); |
114 |
greg |
2.1 |
/* evaluate at inf. */ |
115 |
greg |
2.5 |
VSUM(myray.rorg, scene_cent, sdir, scene_rad); |
116 |
|
|
VCOPY(myray.rdir, sdir); |
117 |
greg |
2.1 |
myray.rmax = 0.; |
118 |
|
|
ray_trace(&myray); |
119 |
greg |
2.11 |
scolor_colr(leaf->val, myray.rcol); |
120 |
greg |
2.1 |
} |
121 |
|
|
|
122 |
|
|
/* Initialize a branch node contained in the given spherical triangle */ |
123 |
|
|
void |
124 |
greg |
2.5 |
subdivide(TRITREE *branch, const int32 dv[3]) |
125 |
greg |
2.1 |
{ |
126 |
greg |
2.5 |
FVECT dvv[3], sdv[3]; |
127 |
|
|
int32 sd[3]; |
128 |
greg |
2.1 |
int i; |
129 |
|
|
|
130 |
greg |
2.5 |
for (i = 0; i < 3; i++) { /* copy spherical triangle */ |
131 |
|
|
branch->gdv[i] = dv[i]; |
132 |
|
|
decodedir(dvv[i], dv[i]); |
133 |
|
|
} |
134 |
greg |
2.1 |
for (i = 0; i < 3; i++) { /* create new vertices */ |
135 |
|
|
int j = (i+1)%3; |
136 |
greg |
2.5 |
VADD(sdv[i], dvv[i], dvv[j]); |
137 |
greg |
2.1 |
normalize(sdv[i]); |
138 |
greg |
2.5 |
sd[i] = encodedir(sdv[i]); |
139 |
greg |
2.1 |
} |
140 |
|
|
/* allocate leaves */ |
141 |
|
|
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE)); |
142 |
|
|
if (branch->kid == NULL) |
143 |
|
|
error(SYSTEM, "out of memory in subdivide()"); |
144 |
|
|
/* assign subtriangle directions */ |
145 |
greg |
2.5 |
branch->kid[0].gdv[0] = dv[0]; |
146 |
|
|
branch->kid[0].gdv[1] = sd[0]; |
147 |
|
|
branch->kid[0].gdv[2] = sd[2]; |
148 |
|
|
branch->kid[1].gdv[0] = sd[0]; |
149 |
|
|
branch->kid[1].gdv[1] = dv[1]; |
150 |
|
|
branch->kid[1].gdv[2] = sd[1]; |
151 |
|
|
branch->kid[2].gdv[0] = sd[1]; |
152 |
|
|
branch->kid[2].gdv[1] = dv[2]; |
153 |
|
|
branch->kid[2].gdv[2] = sd[2]; |
154 |
|
|
branch->kid[3].gdv[0] = sd[0]; |
155 |
|
|
branch->kid[3].gdv[1] = sd[1]; |
156 |
|
|
branch->kid[3].gdv[2] = sd[2]; |
157 |
greg |
2.1 |
} |
158 |
|
|
|
159 |
|
|
/* Recursively subdivide the given node to the specified quadtree depth */ |
160 |
|
|
void |
161 |
|
|
branchsample(TRITREE *node, int depth) |
162 |
|
|
{ |
163 |
|
|
int i; |
164 |
|
|
|
165 |
|
|
if (depth <= 0) |
166 |
|
|
return; |
167 |
|
|
if (isleaf(node)) { /* subdivide leaf node */ |
168 |
|
|
TRITREE branch, *moved_leaf; |
169 |
greg |
2.5 |
FVECT sdir; |
170 |
greg |
2.1 |
subdivide(&branch, node->gdv); |
171 |
greg |
2.5 |
decodedir(sdir, node->sd); |
172 |
|
|
moved_leaf = findleaf(&branch, sdir); |
173 |
greg |
2.1 |
if (moved_leaf != NULL) { /* bequeath old sample */ |
174 |
greg |
2.5 |
moved_leaf->sd = node->sd; |
175 |
greg |
2.1 |
copycolr(moved_leaf->val, node->val); |
176 |
|
|
} |
177 |
|
|
for (i = 0; i < 4; i++) /* compute new samples */ |
178 |
|
|
if (&branch.kid[i] != moved_leaf) |
179 |
|
|
leafsample(&branch.kid[i]); |
180 |
|
|
*node = branch; /* replace leaf with branch */ |
181 |
|
|
} |
182 |
|
|
for (i = 0; i < 4; i++) /* subdivide children */ |
183 |
|
|
branchsample(&node->kid[i], depth-1); |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
/* Sample sphere using triangular geodesic mesh */ |
187 |
|
|
TRITREE * |
188 |
greg |
2.12 |
geosample(long nsamps) |
189 |
greg |
2.1 |
{ |
190 |
|
|
int depth; |
191 |
|
|
TRITREE *tree; |
192 |
|
|
FVECT trunk[NTRUNKVERT]; |
193 |
|
|
int i, j; |
194 |
|
|
/* figure out depth */ |
195 |
|
|
if ((nsamps -= 4) < 0) |
196 |
|
|
error(USER, "minimum number of samples is 4"); |
197 |
greg |
2.12 |
nsamps = nsamps*(NTRUNKBR-1)/NTRUNKBR; /* round up */ |
198 |
greg |
2.1 |
for (depth = 0; nsamps > 1; depth++) |
199 |
|
|
nsamps >>= 2; |
200 |
|
|
/* make base tetrahedron */ |
201 |
|
|
tree = (TRITREE *)malloc(sizeof(TRITREE)); |
202 |
|
|
if (tree == NULL) goto memerr; |
203 |
|
|
trunk[0][0] = trunk[0][1] = 0; trunk[0][2] = 1; |
204 |
|
|
trunk[1][0] = 0; |
205 |
|
|
trunk[1][2] = cos(2.*asin(sqrt(2./3.))); |
206 |
|
|
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]); |
207 |
|
|
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.); |
208 |
|
|
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.); |
209 |
greg |
2.5 |
tree->gdv[0] = tree->gdv[1] = tree->gdv[2] = encodedir(trunk[0]); |
210 |
greg |
2.1 |
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE)); |
211 |
|
|
if (tree->kid == NULL) goto memerr; |
212 |
|
|
/* grow our tree from trunk */ |
213 |
|
|
for (i = 0; i < NTRUNKBR; i++) { |
214 |
|
|
for (j = 0; j < 3; j++) /* XXX works for tetra only */ |
215 |
greg |
2.5 |
tree->kid[i].gdv[j] = encodedir(trunk[(i+j)%NTRUNKVERT]); |
216 |
greg |
2.1 |
leafsample(&tree->kid[i]); |
217 |
|
|
branchsample(&tree->kid[i], depth); |
218 |
|
|
} |
219 |
|
|
return(tree); |
220 |
|
|
memerr: |
221 |
|
|
error(SYSTEM, "out of memory in geosample()"); |
222 |
schorsch |
2.3 |
return NULL; /* dummy return */ |
223 |
greg |
2.1 |
} |
224 |
|
|
|
225 |
|
|
/* Compute leaf exponent histogram */ |
226 |
|
|
void |
227 |
|
|
get_ehisto(const TRITREE *node, long exphisto[256]) |
228 |
|
|
{ |
229 |
|
|
int i; |
230 |
|
|
|
231 |
|
|
if (isleaf(node)) { |
232 |
|
|
++exphisto[node->val[EXP]]; |
233 |
|
|
return; |
234 |
|
|
} |
235 |
|
|
for (i = 0; i < 4; i++) |
236 |
|
|
get_ehisto(&node->kid[i], exphisto); |
237 |
|
|
} |
238 |
|
|
|
239 |
|
|
/* Get reasonable source threshold */ |
240 |
|
|
double |
241 |
|
|
get_threshold(const TRITREE *tree) |
242 |
|
|
{ |
243 |
greg |
2.6 |
long samptotal = 0; |
244 |
greg |
2.1 |
long exphisto[256]; |
245 |
|
|
int i; |
246 |
|
|
/* compute sample histogram */ |
247 |
greg |
2.7 |
memset(exphisto, 0, sizeof(exphisto)); |
248 |
greg |
2.1 |
for (i = 0; i < NTRUNKBR; i++) |
249 |
|
|
get_ehisto(&tree->kid[i], exphisto); |
250 |
greg |
2.2 |
/* use 98th percentile */ |
251 |
greg |
2.1 |
for (i = 0; i < 256; i++) |
252 |
|
|
samptotal += exphisto[i]; |
253 |
greg |
2.2 |
samptotal /= 50; |
254 |
greg |
2.1 |
for (i = 256; (--i > 0) & (samptotal > 0); ) |
255 |
|
|
samptotal -= exphisto[i]; |
256 |
|
|
return(ldexp(.75, i-COLXS)); |
257 |
|
|
} |
258 |
|
|
|
259 |
|
|
/* Find leaf containing the maximum exponent */ |
260 |
|
|
TRITREE * |
261 |
|
|
findemax(TRITREE *node, int *expp) |
262 |
|
|
{ |
263 |
|
|
if (!isleaf(node)) { |
264 |
|
|
TRITREE *maxleaf; |
265 |
|
|
TRITREE *rleaf; |
266 |
|
|
maxleaf = findemax(&node->kid[0], expp); |
267 |
|
|
rleaf = findemax(&node->kid[1], expp); |
268 |
|
|
if (rleaf != NULL) maxleaf = rleaf; |
269 |
|
|
rleaf = findemax(&node->kid[2], expp); |
270 |
|
|
if (rleaf != NULL) maxleaf = rleaf; |
271 |
|
|
rleaf = findemax(&node->kid[3], expp); |
272 |
|
|
if (rleaf != NULL) maxleaf = rleaf; |
273 |
|
|
return(maxleaf); |
274 |
|
|
} |
275 |
|
|
if (node->val[EXP] <= *expp) |
276 |
|
|
return(NULL); |
277 |
|
|
*expp = node->val[EXP]; |
278 |
|
|
return(node); |
279 |
|
|
} |
280 |
|
|
|
281 |
|
|
/* Compute solid angle of spherical triangle (approx.) */ |
282 |
|
|
double |
283 |
greg |
2.5 |
tri_omegav(const int32 vd[3]) |
284 |
greg |
2.1 |
{ |
285 |
greg |
2.5 |
FVECT v[3], e1, e2, vcross; |
286 |
|
|
|
287 |
|
|
decodedir(v[0], vd[0]); |
288 |
|
|
decodedir(v[1], vd[1]); |
289 |
|
|
decodedir(v[2], vd[2]); |
290 |
greg |
2.1 |
VSUB(e1, v[1], v[0]); |
291 |
|
|
VSUB(e2, v[2], v[1]); |
292 |
|
|
fcross(vcross, e1, e2); |
293 |
|
|
return(.5*VLEN(vcross)); |
294 |
|
|
} |
295 |
|
|
|
296 |
greg |
2.5 |
/* Sum intensity times direction for above-threshold perimiter within radius */ |
297 |
greg |
2.1 |
void |
298 |
|
|
vector_sum(FVECT vsum, TRITREE *node, |
299 |
greg |
2.5 |
FVECT cent, double maxr2, int ethresh) |
300 |
greg |
2.1 |
{ |
301 |
|
|
if (isleaf(node)) { |
302 |
|
|
double intens; |
303 |
greg |
2.5 |
FVECT sdir; |
304 |
greg |
2.1 |
if (node->val[EXP] < ethresh) |
305 |
greg |
2.5 |
return; /* below threshold */ |
306 |
|
|
if (fdir2diff(node->sd,cent) > maxr2) |
307 |
|
|
return; /* too far away */ |
308 |
greg |
2.1 |
intens = colrval(node->val,GRN) * tri_omegav(node->gdv); |
309 |
greg |
2.5 |
decodedir(sdir, node->sd); |
310 |
|
|
VSUM(vsum, vsum, sdir, intens); |
311 |
greg |
2.1 |
return; |
312 |
|
|
} |
313 |
greg |
2.5 |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
314 |
|
|
fdir2diff(node->gdv[0],cent) < maxr2 && |
315 |
|
|
fdir2diff(node->gdv[1],cent) < maxr2 && |
316 |
|
|
fdir2diff(node->gdv[2],cent) < maxr2) |
317 |
|
|
return; /* containing node */ |
318 |
|
|
vector_sum(vsum, &node->kid[0], cent, maxr2, ethresh); |
319 |
|
|
vector_sum(vsum, &node->kid[1], cent, maxr2, ethresh); |
320 |
|
|
vector_sum(vsum, &node->kid[2], cent, maxr2, ethresh); |
321 |
|
|
vector_sum(vsum, &node->kid[3], cent, maxr2, ethresh); |
322 |
greg |
2.1 |
} |
323 |
|
|
|
324 |
|
|
/* Claim source contributions within the given solid angle */ |
325 |
|
|
void |
326 |
greg |
2.5 |
claimlight(COLOR intens, TRITREE *node, FVECT cent, double maxr2) |
327 |
greg |
2.1 |
{ |
328 |
|
|
int remaining; |
329 |
|
|
int i; |
330 |
|
|
if (isleaf(node)) { /* claim contribution */ |
331 |
|
|
COLOR contrib; |
332 |
|
|
if (node->val[EXP] <= 0) |
333 |
greg |
2.5 |
return; /* already claimed */ |
334 |
|
|
if (fdir2diff(node->sd,cent) > maxr2) |
335 |
|
|
return; /* too far away */ |
336 |
greg |
2.1 |
colr_color(contrib, node->val); |
337 |
|
|
scalecolor(contrib, tri_omegav(node->gdv)); |
338 |
|
|
addcolor(intens, contrib); |
339 |
|
|
copycolr(node->val, blkclr); |
340 |
|
|
return; |
341 |
|
|
} |
342 |
greg |
2.5 |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
343 |
|
|
fdir2diff(node->gdv[0],cent) < maxr2 && |
344 |
|
|
fdir2diff(node->gdv[1],cent) < maxr2 && |
345 |
|
|
fdir2diff(node->gdv[2],cent) < maxr2) |
346 |
|
|
return; /* previously claimed node */ |
347 |
greg |
2.1 |
remaining = 0; /* recurse on children */ |
348 |
|
|
for (i = 0; i < 4; i++) { |
349 |
greg |
2.5 |
claimlight(intens, &node->kid[i], cent, maxr2); |
350 |
greg |
2.1 |
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0) |
351 |
|
|
++remaining; |
352 |
|
|
} |
353 |
|
|
if (remaining) |
354 |
|
|
return; |
355 |
|
|
/* consolidate empties */ |
356 |
greg |
2.7 |
free(node->kid); node->kid = NULL; |
357 |
greg |
2.1 |
copycolr(node->val, blkclr); |
358 |
greg |
2.5 |
node->sd = node->gdv[0]; /* doesn't really matter */ |
359 |
greg |
2.1 |
} |
360 |
|
|
|
361 |
|
|
/* Add lost light contribution to the given list */ |
362 |
|
|
void |
363 |
greg |
2.5 |
add2lost(LOSTLIGHT **llp, COLOR intens, FVECT cent) |
364 |
greg |
2.1 |
{ |
365 |
|
|
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT)); |
366 |
|
|
|
367 |
|
|
if (newll == NULL) |
368 |
|
|
return; |
369 |
|
|
copycolor(newll->intens, intens); |
370 |
greg |
2.5 |
newll->sd = encodedir(cent); |
371 |
greg |
2.1 |
newll->next = *llp; |
372 |
|
|
*llp = newll; |
373 |
|
|
} |
374 |
|
|
|
375 |
|
|
/* Check lost light list for contributions */ |
376 |
|
|
void |
377 |
greg |
2.5 |
getlost(LOSTLIGHT **llp, COLOR intens, FVECT cent, double omega) |
378 |
greg |
2.1 |
{ |
379 |
greg |
2.5 |
const double maxr2 = omega/PI; |
380 |
greg |
2.1 |
LOSTLIGHT lhead, *lastp, *thisp; |
381 |
|
|
|
382 |
|
|
lhead.next = *llp; |
383 |
|
|
lastp = &lhead; |
384 |
|
|
while ((thisp = lastp->next) != NULL) |
385 |
greg |
2.5 |
if (fdir2diff(thisp->sd,cent) <= maxr2) { |
386 |
greg |
2.1 |
LOSTLIGHT *mynext = thisp->next; |
387 |
|
|
addcolor(intens, thisp->intens); |
388 |
greg |
2.7 |
free(thisp); |
389 |
greg |
2.1 |
lastp->next = mynext; |
390 |
|
|
} else |
391 |
|
|
lastp = thisp; |
392 |
|
|
*llp = lhead.next; |
393 |
|
|
} |
394 |
|
|
|
395 |
|
|
/* Create & print distant sources */ |
396 |
|
|
void |
397 |
|
|
mksources(TRITREE *samptree, double thresh, double maxang) |
398 |
|
|
{ |
399 |
greg |
2.9 |
#define MAXITER 100 |
400 |
greg |
2.1 |
const int ethresh = (int)(log(thresh)/log(2.) + (COLXS+.5)); |
401 |
|
|
const double maxomega = 2.*PI*(1. - cos(PI/180./2.*maxang)); |
402 |
|
|
const double minintens = .05*thresh*maxomega; |
403 |
greg |
2.9 |
int niter = MAXITER; |
404 |
greg |
2.1 |
int nsrcs = 0; |
405 |
|
|
LOSTLIGHT *lostlightlist = NULL; |
406 |
|
|
int emax; |
407 |
|
|
TRITREE *startleaf; |
408 |
|
|
double growstep; |
409 |
|
|
FVECT curcent; |
410 |
|
|
double currad; |
411 |
|
|
double curomega; |
412 |
|
|
COLOR curintens; |
413 |
|
|
double thisthresh; |
414 |
|
|
int thisethresh; |
415 |
|
|
int i; |
416 |
|
|
/* |
417 |
|
|
* General algorithm: |
418 |
|
|
* 1) Start with brightest unclaimed pixel |
419 |
|
|
* 2) Grow source toward brightest unclaimed perimeter until: |
420 |
|
|
* a) Source exceeds maximum size, or |
421 |
|
|
* b) Perimeter values all below threshold, or |
422 |
|
|
* c) Source average drops below threshold |
423 |
|
|
* 3) Loop until nothing over threshold |
424 |
|
|
* |
425 |
|
|
* Complexity added to absorb insignificant sources in larger ones. |
426 |
|
|
*/ |
427 |
|
|
if (thresh <= FTINY) |
428 |
|
|
return; |
429 |
greg |
2.9 |
while (niter--) { |
430 |
greg |
2.1 |
emax = ethresh; /* find brightest unclaimed */ |
431 |
|
|
startleaf = NULL; |
432 |
|
|
for (i = 0; i < NTRUNKBR; i++) { |
433 |
|
|
TRITREE *bigger = findemax(&samptree->kid[i], &emax); |
434 |
|
|
if (bigger != NULL) |
435 |
|
|
startleaf = bigger; |
436 |
|
|
} |
437 |
|
|
if (startleaf == NULL) |
438 |
|
|
break; |
439 |
|
|
/* claim it */ |
440 |
greg |
2.5 |
decodedir(curcent, startleaf->sd); |
441 |
greg |
2.1 |
curomega = tri_omegav(startleaf->gdv); |
442 |
|
|
currad = sqrt(curomega/PI); |
443 |
|
|
growstep = 3.*currad; |
444 |
|
|
colr_color(curintens, startleaf->val); |
445 |
|
|
thisthresh = .15*bright(curintens); |
446 |
|
|
if (thisthresh < thresh) thisthresh = thresh; |
447 |
|
|
thisethresh = (int)(log(thisthresh)/log(2.) + (COLXS+.5)); |
448 |
|
|
scalecolor(curintens, curomega); |
449 |
|
|
copycolr(startleaf->val, blkclr); |
450 |
|
|
do { /* grow source */ |
451 |
|
|
FVECT vsum; |
452 |
|
|
double movedist; |
453 |
|
|
vsum[0] = vsum[1] = vsum[2] = .0; |
454 |
|
|
for (i = 0; i < NTRUNKBR; i++) |
455 |
|
|
vector_sum(vsum, &samptree->kid[i], |
456 |
greg |
2.5 |
curcent, 2.-2.*cos(currad+growstep), |
457 |
greg |
2.1 |
thisethresh); |
458 |
|
|
if (normalize(vsum) == .0) |
459 |
|
|
break; |
460 |
greg |
2.8 |
movedist = Acos(DOT(vsum,curcent)); |
461 |
greg |
2.1 |
if (movedist > growstep) { |
462 |
|
|
VSUB(vsum, vsum, curcent); |
463 |
|
|
movedist = growstep/VLEN(vsum); |
464 |
|
|
VSUM(curcent, curcent, vsum, movedist); |
465 |
|
|
normalize(curcent); |
466 |
|
|
} else |
467 |
|
|
VCOPY(curcent, vsum); |
468 |
|
|
currad += growstep; |
469 |
|
|
curomega = 2.*PI*(1. - cos(currad)); |
470 |
|
|
for (i = 0; i < NTRUNKBR; i++) |
471 |
|
|
claimlight(curintens, &samptree->kid[i], |
472 |
greg |
2.5 |
curcent, 2.-2.*cos(currad)); |
473 |
greg |
2.1 |
} while (curomega < maxomega && |
474 |
|
|
bright(curintens)/curomega > thisthresh); |
475 |
|
|
if (bright(curintens) < minintens) { |
476 |
|
|
add2lost(&lostlightlist, curintens, curcent); |
477 |
|
|
continue; |
478 |
|
|
} |
479 |
|
|
/* absorb lost contributions */ |
480 |
|
|
getlost(&lostlightlist, curintens, curcent, curomega); |
481 |
|
|
++nsrcs; /* output source */ |
482 |
|
|
scalecolor(curintens, 1./curomega); |
483 |
|
|
printf("\nvoid illum IBLout\n"); |
484 |
|
|
printf("0\n0\n3 %f %f %f\n", |
485 |
|
|
colval(curintens,RED), |
486 |
|
|
colval(curintens,GRN), |
487 |
|
|
colval(curintens,BLU)); |
488 |
|
|
printf("\nIBLout source IBLsrc%d\n", nsrcs); |
489 |
|
|
printf("0\n0\n4 %f %f %f %f\n", |
490 |
|
|
curcent[0], curcent[1], curcent[2], |
491 |
|
|
2.*180./PI*currad); |
492 |
greg |
2.9 |
niter = MAXITER; |
493 |
greg |
2.1 |
} |
494 |
greg |
2.9 |
#undef MAXITER |
495 |
greg |
2.1 |
} |
496 |
|
|
|
497 |
|
|
int |
498 |
|
|
main(int argc, char *argv[]) |
499 |
|
|
{ |
500 |
|
|
long nsamps = DEF_NSAMPS; |
501 |
|
|
double maxang = DEF_MAXANG; |
502 |
|
|
TRITREE *samptree; |
503 |
|
|
double thresh = 0; |
504 |
|
|
int i; |
505 |
|
|
|
506 |
|
|
progname = argv[0]; |
507 |
|
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
508 |
|
|
switch (argv[i][1]) { |
509 |
|
|
case 'd': /* number of samples */ |
510 |
|
|
if (i >= argc-1) goto userr; |
511 |
|
|
nsamps = atol(argv[++i]); |
512 |
|
|
break; |
513 |
|
|
case 't': /* manual threshold */ |
514 |
|
|
if (i >= argc-1) goto userr; |
515 |
|
|
thresh = atof(argv[++i]); |
516 |
|
|
break; |
517 |
|
|
case 'a': /* maximum source angle */ |
518 |
|
|
if (i >= argc-1) goto userr; |
519 |
|
|
maxang = atof(argv[++i]); |
520 |
|
|
if (maxang <= FTINY) |
521 |
|
|
goto userr; |
522 |
|
|
if (maxang > 180.) |
523 |
|
|
maxang = 180.; |
524 |
|
|
break; |
525 |
|
|
default: |
526 |
|
|
goto userr; |
527 |
|
|
} |
528 |
|
|
if (i < argc-1) |
529 |
|
|
goto userr; |
530 |
|
|
/* start our ray calculation */ |
531 |
|
|
directvis = 0; |
532 |
|
|
ray_init(i == argc-1 ? argv[i] : (char *)NULL); |
533 |
|
|
VCOPY(scene_cent, thescene.cuorg); |
534 |
|
|
scene_cent[0] += 0.5*thescene.cusize; |
535 |
|
|
scene_cent[1] += 0.5*thescene.cusize; |
536 |
|
|
scene_cent[2] += 0.5*thescene.cusize; |
537 |
|
|
scene_rad = 0.86603*thescene.cusize; |
538 |
|
|
/* sample geodesic mesh */ |
539 |
|
|
samptree = geosample(nsamps); |
540 |
|
|
/* get source threshold */ |
541 |
|
|
if (thresh <= FTINY) |
542 |
|
|
thresh = get_threshold(samptree); |
543 |
|
|
/* done with ray samples */ |
544 |
|
|
ray_done(1); |
545 |
|
|
/* print header */ |
546 |
|
|
printf("# "); |
547 |
|
|
printargs(argc, argv, stdout); |
548 |
|
|
/* create & print sources */ |
549 |
|
|
mksources(samptree, thresh, maxang); |
550 |
|
|
/* all done, no need to clean up */ |
551 |
|
|
return(0); |
552 |
|
|
userr: |
553 |
|
|
fprintf(stderr, "Usage: %s [-d nsamps][-t thresh][-a maxang] [octree]\n", |
554 |
|
|
argv[0]); |
555 |
|
|
exit(1); |
556 |
|
|
} |
557 |
|
|
|
558 |
|
|
void |
559 |
greg |
2.10 |
eputs(const char *s) |
560 |
greg |
2.1 |
{ |
561 |
|
|
static int midline = 0; |
562 |
|
|
|
563 |
|
|
if (!*s) |
564 |
|
|
return; |
565 |
|
|
if (!midline++) { |
566 |
|
|
fputs(progname, stderr); |
567 |
|
|
fputs(": ", stderr); |
568 |
|
|
} |
569 |
|
|
fputs(s, stderr); |
570 |
|
|
if (s[strlen(s)-1] == '\n') { |
571 |
|
|
fflush(stderr); |
572 |
|
|
midline = 0; |
573 |
|
|
} |
574 |
|
|
} |
575 |
|
|
|
576 |
|
|
void |
577 |
greg |
2.10 |
wputs(const char *s) |
578 |
greg |
2.1 |
{ |
579 |
|
|
/* no warnings */ |
580 |
|
|
} |