| 17 |
|
/* Data structure for geodesic samples */ |
| 18 |
|
|
| 19 |
|
typedef struct tritree { |
| 20 |
< |
FVECT gdv[3]; /* spherical triangle vertex direc. */ |
| 21 |
< |
FVECT sd; /* sample direction if leaf */ |
| 20 |
> |
int32 gdv[3]; /* spherical triangle vertex direc. */ |
| 21 |
> |
int32 sd; /* sample direction if leaf */ |
| 22 |
|
struct tritree *kid; /* 4 children if branch node */ |
| 23 |
|
COLR val; /* sampled color value */ |
| 24 |
|
} TRITREE; |
| 25 |
|
|
| 26 |
|
typedef struct lostlight { |
| 27 |
|
struct lostlight *next; /* next in list */ |
| 28 |
< |
FVECT sd; /* lost source direction */ |
| 28 |
> |
int32 sd; /* lost source direction */ |
| 29 |
|
COLOR intens; /* output times solid angle */ |
| 30 |
|
} LOSTLIGHT; |
| 31 |
|
|
| 56 |
|
|
| 57 |
|
/* Is the given direction contained within the specified spherical triangle? */ |
| 58 |
|
int |
| 59 |
< |
intriv(FVECT tri[3], const FVECT sdir) |
| 59 |
> |
intriv(const int32 trid[3], const FVECT sdir) |
| 60 |
|
{ |
| 61 |
|
int sv[3]; |
| 62 |
+ |
FVECT tri[3]; |
| 63 |
|
|
| 64 |
+ |
decodedir(tri[0], trid[0]); |
| 65 |
+ |
decodedir(tri[1], trid[1]); |
| 66 |
+ |
decodedir(tri[2], trid[2]); |
| 67 |
|
sv[0] = vol_sign(sdir, tri[0], tri[1]); |
| 68 |
|
sv[1] = vol_sign(sdir, tri[1], tri[2]); |
| 69 |
|
sv[2] = vol_sign(sdir, tri[2], tri[0]); |
| 95 |
|
{ |
| 96 |
|
RAY myray; |
| 97 |
|
RREAL wt[3]; |
| 98 |
+ |
FVECT sdir; |
| 99 |
|
int i, j; |
| 100 |
|
/* random point on triangle */ |
| 101 |
|
i = random() % 3; |
| 103 |
|
j = random() & 1; |
| 104 |
|
wt[(i+2-j)%3] = 1. - wt[i] - |
| 105 |
|
(wt[(i+1+j)%3] = (1.-wt[i])*frandom()); |
| 106 |
< |
leaf->sd[0] = leaf->sd[1] = leaf->sd[2] = .0; |
| 107 |
< |
for (i = 0; i < 3; i++) |
| 108 |
< |
VSUM(leaf->sd, leaf->sd, leaf->gdv[i], wt[i]); |
| 109 |
< |
normalize(leaf->sd); /* record sample direction */ |
| 106 |
> |
sdir[0] = sdir[1] = sdir[2] = .0; |
| 107 |
> |
for (i = 0; i < 3; i++) { |
| 108 |
> |
FVECT vt; |
| 109 |
> |
decodedir(vt, leaf->gdv[i]); |
| 110 |
> |
VSUM(sdir, sdir, vt, wt[i]); |
| 111 |
> |
} |
| 112 |
> |
normalize(sdir); /* record sample direction */ |
| 113 |
> |
leaf->sd = encodedir(sdir); |
| 114 |
|
/* evaluate at inf. */ |
| 115 |
< |
VSUM(myray.rorg, scene_cent, leaf->sd, scene_rad); |
| 116 |
< |
VCOPY(myray.rdir, leaf->sd); |
| 115 |
> |
VSUM(myray.rorg, scene_cent, sdir, scene_rad); |
| 116 |
> |
VCOPY(myray.rdir, sdir); |
| 117 |
|
myray.rmax = 0.; |
| 118 |
|
ray_trace(&myray); |
| 119 |
|
setcolr(leaf->val, colval(myray.rcol,RED), |
| 123 |
|
|
| 124 |
|
/* Initialize a branch node contained in the given spherical triangle */ |
| 125 |
|
void |
| 126 |
< |
subdivide(TRITREE *branch, FVECT dv[3]) |
| 126 |
> |
subdivide(TRITREE *branch, const int32 dv[3]) |
| 127 |
|
{ |
| 128 |
< |
FVECT sdv[3]; |
| 128 |
> |
FVECT dvv[3], sdv[3]; |
| 129 |
> |
int32 sd[3]; |
| 130 |
|
int i; |
| 131 |
|
|
| 132 |
< |
for (i = 0; i < 3; i++) /* copy spherical triangle */ |
| 133 |
< |
VCOPY(branch->gdv[i], dv[i]); |
| 132 |
> |
for (i = 0; i < 3; i++) { /* copy spherical triangle */ |
| 133 |
> |
branch->gdv[i] = dv[i]; |
| 134 |
> |
decodedir(dvv[i], dv[i]); |
| 135 |
> |
} |
| 136 |
|
for (i = 0; i < 3; i++) { /* create new vertices */ |
| 137 |
|
int j = (i+1)%3; |
| 138 |
< |
VADD(sdv[i], dv[i], dv[j]); |
| 138 |
> |
VADD(sdv[i], dvv[i], dvv[j]); |
| 139 |
|
normalize(sdv[i]); |
| 140 |
+ |
sd[i] = encodedir(sdv[i]); |
| 141 |
|
} |
| 142 |
|
/* allocate leaves */ |
| 143 |
|
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE)); |
| 144 |
|
if (branch->kid == NULL) |
| 145 |
|
error(SYSTEM, "out of memory in subdivide()"); |
| 146 |
|
/* assign subtriangle directions */ |
| 147 |
< |
VCOPY(branch->kid[0].gdv[0], dv[0]); |
| 148 |
< |
VCOPY(branch->kid[0].gdv[1], sdv[0]); |
| 149 |
< |
VCOPY(branch->kid[0].gdv[2], sdv[2]); |
| 150 |
< |
VCOPY(branch->kid[1].gdv[0], sdv[0]); |
| 151 |
< |
VCOPY(branch->kid[1].gdv[1], dv[1]); |
| 152 |
< |
VCOPY(branch->kid[1].gdv[2], sdv[1]); |
| 153 |
< |
VCOPY(branch->kid[2].gdv[0], sdv[1]); |
| 154 |
< |
VCOPY(branch->kid[2].gdv[1], dv[2]); |
| 155 |
< |
VCOPY(branch->kid[2].gdv[2], sdv[2]); |
| 156 |
< |
VCOPY(branch->kid[3].gdv[0], sdv[0]); |
| 157 |
< |
VCOPY(branch->kid[3].gdv[1], sdv[1]); |
| 158 |
< |
VCOPY(branch->kid[3].gdv[2], sdv[2]); |
| 147 |
> |
branch->kid[0].gdv[0] = dv[0]; |
| 148 |
> |
branch->kid[0].gdv[1] = sd[0]; |
| 149 |
> |
branch->kid[0].gdv[2] = sd[2]; |
| 150 |
> |
branch->kid[1].gdv[0] = sd[0]; |
| 151 |
> |
branch->kid[1].gdv[1] = dv[1]; |
| 152 |
> |
branch->kid[1].gdv[2] = sd[1]; |
| 153 |
> |
branch->kid[2].gdv[0] = sd[1]; |
| 154 |
> |
branch->kid[2].gdv[1] = dv[2]; |
| 155 |
> |
branch->kid[2].gdv[2] = sd[2]; |
| 156 |
> |
branch->kid[3].gdv[0] = sd[0]; |
| 157 |
> |
branch->kid[3].gdv[1] = sd[1]; |
| 158 |
> |
branch->kid[3].gdv[2] = sd[2]; |
| 159 |
|
} |
| 160 |
|
|
| 161 |
|
/* Recursively subdivide the given node to the specified quadtree depth */ |
| 168 |
|
return; |
| 169 |
|
if (isleaf(node)) { /* subdivide leaf node */ |
| 170 |
|
TRITREE branch, *moved_leaf; |
| 171 |
+ |
FVECT sdir; |
| 172 |
|
subdivide(&branch, node->gdv); |
| 173 |
< |
moved_leaf = findleaf(&branch, node->sd); |
| 173 |
> |
decodedir(sdir, node->sd); |
| 174 |
> |
moved_leaf = findleaf(&branch, sdir); |
| 175 |
|
if (moved_leaf != NULL) { /* bequeath old sample */ |
| 176 |
< |
VCOPY(moved_leaf->sd, node->sd); |
| 176 |
> |
moved_leaf->sd = node->sd; |
| 177 |
|
copycolr(moved_leaf->val, node->val); |
| 178 |
|
} |
| 179 |
|
for (i = 0; i < 4; i++) /* compute new samples */ |
| 208 |
|
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]); |
| 209 |
|
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.); |
| 210 |
|
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.); |
| 211 |
< |
VCOPY(tree->gdv[0], trunk[0]); |
| 197 |
< |
VCOPY(tree->gdv[1], trunk[0]); |
| 198 |
< |
VCOPY(tree->gdv[2], trunk[0]); |
| 211 |
> |
tree->gdv[0] = tree->gdv[1] = tree->gdv[2] = encodedir(trunk[0]); |
| 212 |
|
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE)); |
| 213 |
|
if (tree->kid == NULL) goto memerr; |
| 214 |
|
/* grow our tree from trunk */ |
| 215 |
|
for (i = 0; i < NTRUNKBR; i++) { |
| 216 |
|
for (j = 0; j < 3; j++) /* XXX works for tetra only */ |
| 217 |
< |
VCOPY(tree->kid[i].gdv[j], trunk[(i+j)%NTRUNKVERT]); |
| 217 |
> |
tree->kid[i].gdv[j] = encodedir(trunk[(i+j)%NTRUNKVERT]); |
| 218 |
|
leafsample(&tree->kid[i]); |
| 219 |
|
branchsample(&tree->kid[i], depth); |
| 220 |
|
} |
| 282 |
|
|
| 283 |
|
/* Compute solid angle of spherical triangle (approx.) */ |
| 284 |
|
double |
| 285 |
< |
tri_omegav(FVECT v[3]) |
| 285 |
> |
tri_omegav(const int32 vd[3]) |
| 286 |
|
{ |
| 287 |
< |
FVECT e1, e2, vcross; |
| 288 |
< |
|
| 287 |
> |
FVECT v[3], e1, e2, vcross; |
| 288 |
> |
|
| 289 |
> |
decodedir(v[0], vd[0]); |
| 290 |
> |
decodedir(v[1], vd[1]); |
| 291 |
> |
decodedir(v[2], vd[2]); |
| 292 |
|
VSUB(e1, v[1], v[0]); |
| 293 |
|
VSUB(e2, v[2], v[1]); |
| 294 |
|
fcross(vcross, e1, e2); |
| 295 |
|
return(.5*VLEN(vcross)); |
| 296 |
|
} |
| 297 |
|
|
| 298 |
< |
/* Sum intensity times direction for non-zero leaves */ |
| 298 |
> |
/* Sum intensity times direction for above-threshold perimiter within radius */ |
| 299 |
|
void |
| 300 |
|
vector_sum(FVECT vsum, TRITREE *node, |
| 301 |
< |
const FVECT cent, double mincos, int ethresh) |
| 301 |
> |
FVECT cent, double maxr2, int ethresh) |
| 302 |
|
{ |
| 303 |
|
if (isleaf(node)) { |
| 304 |
|
double intens; |
| 305 |
+ |
FVECT sdir; |
| 306 |
|
if (node->val[EXP] < ethresh) |
| 307 |
< |
return; |
| 308 |
< |
if (DOT(node->sd,cent) < mincos) |
| 309 |
< |
return; |
| 307 |
> |
return; /* below threshold */ |
| 308 |
> |
if (fdir2diff(node->sd,cent) > maxr2) |
| 309 |
> |
return; /* too far away */ |
| 310 |
|
intens = colrval(node->val,GRN) * tri_omegav(node->gdv); |
| 311 |
< |
VSUM(vsum, vsum, node->sd, intens); |
| 311 |
> |
decodedir(sdir, node->sd); |
| 312 |
> |
VSUM(vsum, vsum, sdir, intens); |
| 313 |
|
return; |
| 314 |
|
} |
| 315 |
< |
if (DOT(node->gdv[0],node->gdv[1]) < mincos && |
| 316 |
< |
DOT(node->gdv[0],cent) > mincos && |
| 317 |
< |
DOT(node->gdv[1],cent) > mincos && |
| 318 |
< |
DOT(node->gdv[2],cent) > mincos) |
| 319 |
< |
return; |
| 320 |
< |
vector_sum(vsum, &node->kid[0], cent, mincos, ethresh); |
| 321 |
< |
vector_sum(vsum, &node->kid[1], cent, mincos, ethresh); |
| 322 |
< |
vector_sum(vsum, &node->kid[2], cent, mincos, ethresh); |
| 323 |
< |
vector_sum(vsum, &node->kid[3], cent, mincos, ethresh); |
| 315 |
> |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
| 316 |
> |
fdir2diff(node->gdv[0],cent) < maxr2 && |
| 317 |
> |
fdir2diff(node->gdv[1],cent) < maxr2 && |
| 318 |
> |
fdir2diff(node->gdv[2],cent) < maxr2) |
| 319 |
> |
return; /* containing node */ |
| 320 |
> |
vector_sum(vsum, &node->kid[0], cent, maxr2, ethresh); |
| 321 |
> |
vector_sum(vsum, &node->kid[1], cent, maxr2, ethresh); |
| 322 |
> |
vector_sum(vsum, &node->kid[2], cent, maxr2, ethresh); |
| 323 |
> |
vector_sum(vsum, &node->kid[3], cent, maxr2, ethresh); |
| 324 |
|
} |
| 325 |
|
|
| 326 |
|
/* Claim source contributions within the given solid angle */ |
| 327 |
|
void |
| 328 |
< |
claimlight(COLOR intens, TRITREE *node, const FVECT cent, double mincos) |
| 328 |
> |
claimlight(COLOR intens, TRITREE *node, FVECT cent, double maxr2) |
| 329 |
|
{ |
| 330 |
|
int remaining; |
| 331 |
|
int i; |
| 332 |
|
if (isleaf(node)) { /* claim contribution */ |
| 333 |
|
COLOR contrib; |
| 334 |
|
if (node->val[EXP] <= 0) |
| 335 |
< |
return; |
| 336 |
< |
if (DOT(node->sd,cent) < mincos) |
| 337 |
< |
return; |
| 335 |
> |
return; /* already claimed */ |
| 336 |
> |
if (fdir2diff(node->sd,cent) > maxr2) |
| 337 |
> |
return; /* too far away */ |
| 338 |
|
colr_color(contrib, node->val); |
| 339 |
|
scalecolor(contrib, tri_omegav(node->gdv)); |
| 340 |
|
addcolor(intens, contrib); |
| 341 |
|
copycolr(node->val, blkclr); |
| 342 |
|
return; |
| 343 |
|
} |
| 344 |
< |
if (DOT(node->gdv[0],node->gdv[1]) < mincos && |
| 345 |
< |
DOT(node->gdv[0],cent) > mincos && |
| 346 |
< |
DOT(node->gdv[1],cent) > mincos && |
| 347 |
< |
DOT(node->gdv[2],cent) > mincos) |
| 348 |
< |
return; |
| 344 |
> |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
| 345 |
> |
fdir2diff(node->gdv[0],cent) < maxr2 && |
| 346 |
> |
fdir2diff(node->gdv[1],cent) < maxr2 && |
| 347 |
> |
fdir2diff(node->gdv[2],cent) < maxr2) |
| 348 |
> |
return; /* previously claimed node */ |
| 349 |
|
remaining = 0; /* recurse on children */ |
| 350 |
|
for (i = 0; i < 4; i++) { |
| 351 |
< |
claimlight(intens, &node->kid[i], cent, mincos); |
| 351 |
> |
claimlight(intens, &node->kid[i], cent, maxr2); |
| 352 |
|
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0) |
| 353 |
|
++remaining; |
| 354 |
|
} |
| 357 |
|
/* consolidate empties */ |
| 358 |
|
free((void *)node->kid); node->kid = NULL; |
| 359 |
|
copycolr(node->val, blkclr); |
| 360 |
< |
VCOPY(node->sd, node->gdv[0]); /* doesn't really matter */ |
| 360 |
> |
node->sd = node->gdv[0]; /* doesn't really matter */ |
| 361 |
|
} |
| 362 |
|
|
| 363 |
|
/* Add lost light contribution to the given list */ |
| 364 |
|
void |
| 365 |
< |
add2lost(LOSTLIGHT **llp, COLOR intens, const FVECT cent) |
| 365 |
> |
add2lost(LOSTLIGHT **llp, COLOR intens, FVECT cent) |
| 366 |
|
{ |
| 367 |
|
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT)); |
| 368 |
|
|
| 369 |
|
if (newll == NULL) |
| 370 |
|
return; |
| 371 |
|
copycolor(newll->intens, intens); |
| 372 |
< |
VCOPY(newll->sd, cent); |
| 372 |
> |
newll->sd = encodedir(cent); |
| 373 |
|
newll->next = *llp; |
| 374 |
|
*llp = newll; |
| 375 |
|
} |
| 376 |
|
|
| 377 |
|
/* Check lost light list for contributions */ |
| 378 |
|
void |
| 379 |
< |
getlost(LOSTLIGHT **llp, COLOR intens, const FVECT cent, double omega) |
| 379 |
> |
getlost(LOSTLIGHT **llp, COLOR intens, FVECT cent, double omega) |
| 380 |
|
{ |
| 381 |
< |
const double mincos = 1. - omega/(2.*PI); |
| 381 |
> |
const double maxr2 = omega/PI; |
| 382 |
|
LOSTLIGHT lhead, *lastp, *thisp; |
| 383 |
|
|
| 384 |
|
lhead.next = *llp; |
| 385 |
|
lastp = &lhead; |
| 386 |
|
while ((thisp = lastp->next) != NULL) |
| 387 |
< |
if (DOT(thisp->sd,cent) >= mincos) { |
| 387 |
> |
if (fdir2diff(thisp->sd,cent) <= maxr2) { |
| 388 |
|
LOSTLIGHT *mynext = thisp->next; |
| 389 |
|
addcolor(intens, thisp->intens); |
| 390 |
|
free((void *)thisp); |
| 437 |
|
if (startleaf == NULL) |
| 438 |
|
break; |
| 439 |
|
/* claim it */ |
| 440 |
< |
VCOPY(curcent, startleaf->sd); |
| 440 |
> |
decodedir(curcent, startleaf->sd); |
| 441 |
|
curomega = tri_omegav(startleaf->gdv); |
| 442 |
|
currad = sqrt(curomega/PI); |
| 443 |
|
growstep = 3.*currad; |
| 453 |
|
vsum[0] = vsum[1] = vsum[2] = .0; |
| 454 |
|
for (i = 0; i < NTRUNKBR; i++) |
| 455 |
|
vector_sum(vsum, &samptree->kid[i], |
| 456 |
< |
curcent, cos(currad+growstep), |
| 456 |
> |
curcent, 2.-2.*cos(currad+growstep), |
| 457 |
|
thisethresh); |
| 458 |
|
if (normalize(vsum) == .0) |
| 459 |
|
break; |
| 469 |
|
curomega = 2.*PI*(1. - cos(currad)); |
| 470 |
|
for (i = 0; i < NTRUNKBR; i++) |
| 471 |
|
claimlight(curintens, &samptree->kid[i], |
| 472 |
< |
curcent, cos(currad)); |
| 472 |
> |
curcent, 2.-2.*cos(currad)); |
| 473 |
|
} while (curomega < maxomega && |
| 474 |
|
bright(curintens)/curomega > thisthresh); |
| 475 |
|
if (bright(curintens) < minintens) { |