7 |
|
|
8 |
|
#include "ray.h" |
9 |
|
#include "random.h" |
10 |
+ |
#include "paths.h" |
11 |
|
#include "resolu.h" |
12 |
|
|
13 |
|
#define NTRUNKBR 4 /* number of branches at trunk */ |
18 |
|
/* Data structure for geodesic samples */ |
19 |
|
|
20 |
|
typedef struct tritree { |
21 |
< |
FVECT gdv[3]; /* spherical triangle vertex direc. */ |
22 |
< |
FVECT sd; /* sample direction if leaf */ |
21 |
> |
int32 gdv[3]; /* spherical triangle vertex direc. */ |
22 |
> |
int32 sd; /* sample direction if leaf */ |
23 |
|
struct tritree *kid; /* 4 children if branch node */ |
24 |
|
COLR val; /* sampled color value */ |
25 |
|
} TRITREE; |
26 |
|
|
27 |
|
typedef struct lostlight { |
28 |
|
struct lostlight *next; /* next in list */ |
29 |
< |
FVECT sd; /* lost source direction */ |
29 |
> |
int32 sd; /* lost source direction */ |
30 |
|
COLOR intens; /* output times solid angle */ |
31 |
|
} LOSTLIGHT; |
32 |
|
|
32 |
– |
extern char *progname; |
33 |
– |
|
33 |
|
FVECT scene_cent; /* center of octree cube */ |
34 |
|
RREAL scene_rad; /* radius to get outside cube from center */ |
35 |
|
|
55 |
|
|
56 |
|
/* Is the given direction contained within the specified spherical triangle? */ |
57 |
|
int |
58 |
< |
intriv(FVECT tri[3], const FVECT sdir) |
58 |
> |
intriv(const int32 trid[3], const FVECT sdir) |
59 |
|
{ |
60 |
|
int sv[3]; |
61 |
+ |
FVECT tri[3]; |
62 |
|
|
63 |
+ |
decodedir(tri[0], trid[0]); |
64 |
+ |
decodedir(tri[1], trid[1]); |
65 |
+ |
decodedir(tri[2], trid[2]); |
66 |
|
sv[0] = vol_sign(sdir, tri[0], tri[1]); |
67 |
|
sv[1] = vol_sign(sdir, tri[1], tri[2]); |
68 |
|
sv[2] = vol_sign(sdir, tri[2], tri[0]); |
94 |
|
{ |
95 |
|
RAY myray; |
96 |
|
RREAL wt[3]; |
97 |
+ |
FVECT sdir; |
98 |
|
int i, j; |
99 |
|
/* random point on triangle */ |
100 |
|
i = random() % 3; |
102 |
|
j = random() & 1; |
103 |
|
wt[(i+2-j)%3] = 1. - wt[i] - |
104 |
|
(wt[(i+1+j)%3] = (1.-wt[i])*frandom()); |
105 |
< |
leaf->sd[0] = leaf->sd[1] = leaf->sd[2] = .0; |
106 |
< |
for (i = 0; i < 3; i++) |
107 |
< |
VSUM(leaf->sd, leaf->sd, leaf->gdv[i], wt[i]); |
108 |
< |
normalize(leaf->sd); /* record sample direction */ |
105 |
> |
sdir[0] = sdir[1] = sdir[2] = .0; |
106 |
> |
for (i = 0; i < 3; i++) { |
107 |
> |
FVECT vt; |
108 |
> |
decodedir(vt, leaf->gdv[i]); |
109 |
> |
VSUM(sdir, sdir, vt, wt[i]); |
110 |
> |
} |
111 |
> |
normalize(sdir); /* record sample direction */ |
112 |
> |
leaf->sd = encodedir(sdir); |
113 |
|
/* evaluate at inf. */ |
114 |
< |
VSUM(myray.rorg, scene_cent, leaf->sd, scene_rad); |
115 |
< |
VCOPY(myray.rdir, leaf->sd); |
114 |
> |
VSUM(myray.rorg, scene_cent, sdir, scene_rad); |
115 |
> |
VCOPY(myray.rdir, sdir); |
116 |
|
myray.rmax = 0.; |
117 |
|
ray_trace(&myray); |
118 |
< |
setcolr(leaf->val, colval(myray.rcol,RED), |
111 |
< |
colval(myray.rcol,GRN), |
112 |
< |
colval(myray.rcol,BLU)); |
118 |
> |
scolor_colr(leaf->val, myray.rcol); |
119 |
|
} |
120 |
|
|
121 |
|
/* Initialize a branch node contained in the given spherical triangle */ |
122 |
|
void |
123 |
< |
subdivide(TRITREE *branch, FVECT dv[3]) |
123 |
> |
subdivide(TRITREE *branch, const int32 dv[3]) |
124 |
|
{ |
125 |
< |
FVECT sdv[3]; |
125 |
> |
FVECT dvv[3], sdv[3]; |
126 |
> |
int32 sd[3]; |
127 |
|
int i; |
128 |
|
|
129 |
< |
for (i = 0; i < 3; i++) /* copy spherical triangle */ |
130 |
< |
VCOPY(branch->gdv[i], dv[i]); |
129 |
> |
for (i = 0; i < 3; i++) { /* copy spherical triangle */ |
130 |
> |
branch->gdv[i] = dv[i]; |
131 |
> |
decodedir(dvv[i], dv[i]); |
132 |
> |
} |
133 |
|
for (i = 0; i < 3; i++) { /* create new vertices */ |
134 |
|
int j = (i+1)%3; |
135 |
< |
VADD(sdv[i], dv[i], dv[j]); |
135 |
> |
VADD(sdv[i], dvv[i], dvv[j]); |
136 |
|
normalize(sdv[i]); |
137 |
+ |
sd[i] = encodedir(sdv[i]); |
138 |
|
} |
139 |
|
/* allocate leaves */ |
140 |
|
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE)); |
141 |
|
if (branch->kid == NULL) |
142 |
|
error(SYSTEM, "out of memory in subdivide()"); |
143 |
|
/* assign subtriangle directions */ |
144 |
< |
VCOPY(branch->kid[0].gdv[0], dv[0]); |
145 |
< |
VCOPY(branch->kid[0].gdv[1], sdv[0]); |
146 |
< |
VCOPY(branch->kid[0].gdv[2], sdv[2]); |
147 |
< |
VCOPY(branch->kid[1].gdv[0], sdv[0]); |
148 |
< |
VCOPY(branch->kid[1].gdv[1], dv[1]); |
149 |
< |
VCOPY(branch->kid[1].gdv[2], sdv[1]); |
150 |
< |
VCOPY(branch->kid[2].gdv[0], sdv[1]); |
151 |
< |
VCOPY(branch->kid[2].gdv[1], dv[2]); |
152 |
< |
VCOPY(branch->kid[2].gdv[2], sdv[2]); |
153 |
< |
VCOPY(branch->kid[3].gdv[0], sdv[0]); |
154 |
< |
VCOPY(branch->kid[3].gdv[1], sdv[1]); |
155 |
< |
VCOPY(branch->kid[3].gdv[2], sdv[2]); |
144 |
> |
branch->kid[0].gdv[0] = dv[0]; |
145 |
> |
branch->kid[0].gdv[1] = sd[0]; |
146 |
> |
branch->kid[0].gdv[2] = sd[2]; |
147 |
> |
branch->kid[1].gdv[0] = sd[0]; |
148 |
> |
branch->kid[1].gdv[1] = dv[1]; |
149 |
> |
branch->kid[1].gdv[2] = sd[1]; |
150 |
> |
branch->kid[2].gdv[0] = sd[1]; |
151 |
> |
branch->kid[2].gdv[1] = dv[2]; |
152 |
> |
branch->kid[2].gdv[2] = sd[2]; |
153 |
> |
branch->kid[3].gdv[0] = sd[0]; |
154 |
> |
branch->kid[3].gdv[1] = sd[1]; |
155 |
> |
branch->kid[3].gdv[2] = sd[2]; |
156 |
|
} |
157 |
|
|
158 |
|
/* Recursively subdivide the given node to the specified quadtree depth */ |
165 |
|
return; |
166 |
|
if (isleaf(node)) { /* subdivide leaf node */ |
167 |
|
TRITREE branch, *moved_leaf; |
168 |
+ |
FVECT sdir; |
169 |
|
subdivide(&branch, node->gdv); |
170 |
< |
moved_leaf = findleaf(&branch, node->sd); |
170 |
> |
decodedir(sdir, node->sd); |
171 |
> |
moved_leaf = findleaf(&branch, sdir); |
172 |
|
if (moved_leaf != NULL) { /* bequeath old sample */ |
173 |
< |
VCOPY(moved_leaf->sd, node->sd); |
173 |
> |
moved_leaf->sd = node->sd; |
174 |
|
copycolr(moved_leaf->val, node->val); |
175 |
|
} |
176 |
|
for (i = 0; i < 4; i++) /* compute new samples */ |
184 |
|
|
185 |
|
/* Sample sphere using triangular geodesic mesh */ |
186 |
|
TRITREE * |
187 |
< |
geosample(int nsamps) |
187 |
> |
geosample(long nsamps) |
188 |
|
{ |
189 |
|
int depth; |
190 |
|
TRITREE *tree; |
193 |
|
/* figure out depth */ |
194 |
|
if ((nsamps -= 4) < 0) |
195 |
|
error(USER, "minimum number of samples is 4"); |
196 |
< |
nsamps = nsamps*3/NTRUNKBR; /* round up */ |
196 |
> |
nsamps = nsamps*(NTRUNKBR-1)/NTRUNKBR; /* round up */ |
197 |
|
for (depth = 0; nsamps > 1; depth++) |
198 |
|
nsamps >>= 2; |
199 |
|
/* make base tetrahedron */ |
205 |
|
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]); |
206 |
|
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.); |
207 |
|
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.); |
208 |
< |
VCOPY(tree->gdv[0], trunk[0]); |
197 |
< |
VCOPY(tree->gdv[1], trunk[0]); |
198 |
< |
VCOPY(tree->gdv[2], trunk[0]); |
208 |
> |
tree->gdv[0] = tree->gdv[1] = tree->gdv[2] = encodedir(trunk[0]); |
209 |
|
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE)); |
210 |
|
if (tree->kid == NULL) goto memerr; |
211 |
|
/* grow our tree from trunk */ |
212 |
|
for (i = 0; i < NTRUNKBR; i++) { |
213 |
|
for (j = 0; j < 3; j++) /* XXX works for tetra only */ |
214 |
< |
VCOPY(tree->kid[i].gdv[j], trunk[(i+j)%NTRUNKVERT]); |
214 |
> |
tree->kid[i].gdv[j] = encodedir(trunk[(i+j)%NTRUNKVERT]); |
215 |
|
leafsample(&tree->kid[i]); |
216 |
|
branchsample(&tree->kid[i], depth); |
217 |
|
} |
239 |
|
double |
240 |
|
get_threshold(const TRITREE *tree) |
241 |
|
{ |
242 |
+ |
long samptotal = 0; |
243 |
|
long exphisto[256]; |
233 |
– |
long samptotal; |
244 |
|
int i; |
245 |
|
/* compute sample histogram */ |
246 |
< |
memset((void *)exphisto, 0, sizeof(exphisto)); |
246 |
> |
memset(exphisto, 0, sizeof(exphisto)); |
247 |
|
for (i = 0; i < NTRUNKBR; i++) |
248 |
|
get_ehisto(&tree->kid[i], exphisto); |
249 |
|
/* use 98th percentile */ |
279 |
|
|
280 |
|
/* Compute solid angle of spherical triangle (approx.) */ |
281 |
|
double |
282 |
< |
tri_omegav(FVECT v[3]) |
282 |
> |
tri_omegav(const int32 vd[3]) |
283 |
|
{ |
284 |
< |
FVECT e1, e2, vcross; |
285 |
< |
|
284 |
> |
FVECT v[3], e1, e2, vcross; |
285 |
> |
|
286 |
> |
decodedir(v[0], vd[0]); |
287 |
> |
decodedir(v[1], vd[1]); |
288 |
> |
decodedir(v[2], vd[2]); |
289 |
|
VSUB(e1, v[1], v[0]); |
290 |
|
VSUB(e2, v[2], v[1]); |
291 |
|
fcross(vcross, e1, e2); |
292 |
|
return(.5*VLEN(vcross)); |
293 |
|
} |
294 |
|
|
295 |
< |
/* Sum intensity times direction for non-zero leaves */ |
295 |
> |
/* Sum intensity times direction for above-threshold perimiter within radius */ |
296 |
|
void |
297 |
|
vector_sum(FVECT vsum, TRITREE *node, |
298 |
< |
const FVECT cent, double mincos, int ethresh) |
298 |
> |
FVECT cent, double maxr2, int ethresh) |
299 |
|
{ |
300 |
|
if (isleaf(node)) { |
301 |
|
double intens; |
302 |
+ |
FVECT sdir; |
303 |
|
if (node->val[EXP] < ethresh) |
304 |
< |
return; |
305 |
< |
if (DOT(node->sd,cent) < mincos) |
306 |
< |
return; |
304 |
> |
return; /* below threshold */ |
305 |
> |
if (fdir2diff(node->sd,cent) > maxr2) |
306 |
> |
return; /* too far away */ |
307 |
|
intens = colrval(node->val,GRN) * tri_omegav(node->gdv); |
308 |
< |
VSUM(vsum, vsum, node->sd, intens); |
308 |
> |
decodedir(sdir, node->sd); |
309 |
> |
VSUM(vsum, vsum, sdir, intens); |
310 |
|
return; |
311 |
|
} |
312 |
< |
if (DOT(node->gdv[0],node->gdv[1]) < mincos && |
313 |
< |
DOT(node->gdv[0],cent) > mincos && |
314 |
< |
DOT(node->gdv[1],cent) > mincos && |
315 |
< |
DOT(node->gdv[2],cent) > mincos) |
316 |
< |
return; |
317 |
< |
vector_sum(vsum, &node->kid[0], cent, mincos, ethresh); |
318 |
< |
vector_sum(vsum, &node->kid[1], cent, mincos, ethresh); |
319 |
< |
vector_sum(vsum, &node->kid[2], cent, mincos, ethresh); |
320 |
< |
vector_sum(vsum, &node->kid[3], cent, mincos, ethresh); |
312 |
> |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
313 |
> |
fdir2diff(node->gdv[0],cent) < maxr2 && |
314 |
> |
fdir2diff(node->gdv[1],cent) < maxr2 && |
315 |
> |
fdir2diff(node->gdv[2],cent) < maxr2) |
316 |
> |
return; /* containing node */ |
317 |
> |
vector_sum(vsum, &node->kid[0], cent, maxr2, ethresh); |
318 |
> |
vector_sum(vsum, &node->kid[1], cent, maxr2, ethresh); |
319 |
> |
vector_sum(vsum, &node->kid[2], cent, maxr2, ethresh); |
320 |
> |
vector_sum(vsum, &node->kid[3], cent, maxr2, ethresh); |
321 |
|
} |
322 |
|
|
323 |
|
/* Claim source contributions within the given solid angle */ |
324 |
|
void |
325 |
< |
claimlight(COLOR intens, TRITREE *node, const FVECT cent, double mincos) |
325 |
> |
claimlight(COLOR intens, TRITREE *node, FVECT cent, double maxr2) |
326 |
|
{ |
327 |
|
int remaining; |
328 |
|
int i; |
329 |
|
if (isleaf(node)) { /* claim contribution */ |
330 |
|
COLOR contrib; |
331 |
|
if (node->val[EXP] <= 0) |
332 |
< |
return; |
333 |
< |
if (DOT(node->sd,cent) < mincos) |
334 |
< |
return; |
332 |
> |
return; /* already claimed */ |
333 |
> |
if (fdir2diff(node->sd,cent) > maxr2) |
334 |
> |
return; /* too far away */ |
335 |
|
colr_color(contrib, node->val); |
336 |
|
scalecolor(contrib, tri_omegav(node->gdv)); |
337 |
|
addcolor(intens, contrib); |
338 |
|
copycolr(node->val, blkclr); |
339 |
|
return; |
340 |
|
} |
341 |
< |
if (DOT(node->gdv[0],node->gdv[1]) < mincos && |
342 |
< |
DOT(node->gdv[0],cent) > mincos && |
343 |
< |
DOT(node->gdv[1],cent) > mincos && |
344 |
< |
DOT(node->gdv[2],cent) > mincos) |
345 |
< |
return; |
341 |
> |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
342 |
> |
fdir2diff(node->gdv[0],cent) < maxr2 && |
343 |
> |
fdir2diff(node->gdv[1],cent) < maxr2 && |
344 |
> |
fdir2diff(node->gdv[2],cent) < maxr2) |
345 |
> |
return; /* previously claimed node */ |
346 |
|
remaining = 0; /* recurse on children */ |
347 |
|
for (i = 0; i < 4; i++) { |
348 |
< |
claimlight(intens, &node->kid[i], cent, mincos); |
348 |
> |
claimlight(intens, &node->kid[i], cent, maxr2); |
349 |
|
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0) |
350 |
|
++remaining; |
351 |
|
} |
352 |
|
if (remaining) |
353 |
|
return; |
354 |
|
/* consolidate empties */ |
355 |
< |
free((void *)node->kid); node->kid = NULL; |
355 |
> |
free(node->kid); node->kid = NULL; |
356 |
|
copycolr(node->val, blkclr); |
357 |
< |
VCOPY(node->sd, node->gdv[0]); /* doesn't really matter */ |
357 |
> |
node->sd = node->gdv[0]; /* doesn't really matter */ |
358 |
|
} |
359 |
|
|
360 |
|
/* Add lost light contribution to the given list */ |
361 |
|
void |
362 |
< |
add2lost(LOSTLIGHT **llp, COLOR intens, const FVECT cent) |
362 |
> |
add2lost(LOSTLIGHT **llp, COLOR intens, FVECT cent) |
363 |
|
{ |
364 |
|
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT)); |
365 |
|
|
366 |
|
if (newll == NULL) |
367 |
|
return; |
368 |
|
copycolor(newll->intens, intens); |
369 |
< |
VCOPY(newll->sd, cent); |
369 |
> |
newll->sd = encodedir(cent); |
370 |
|
newll->next = *llp; |
371 |
|
*llp = newll; |
372 |
|
} |
373 |
|
|
374 |
|
/* Check lost light list for contributions */ |
375 |
|
void |
376 |
< |
getlost(LOSTLIGHT **llp, COLOR intens, const FVECT cent, double omega) |
376 |
> |
getlost(LOSTLIGHT **llp, COLOR intens, FVECT cent, double omega) |
377 |
|
{ |
378 |
< |
const double mincos = 1. - omega/(2.*PI); |
378 |
> |
const double maxr2 = omega/PI; |
379 |
|
LOSTLIGHT lhead, *lastp, *thisp; |
380 |
|
|
381 |
|
lhead.next = *llp; |
382 |
|
lastp = &lhead; |
383 |
|
while ((thisp = lastp->next) != NULL) |
384 |
< |
if (DOT(thisp->sd,cent) >= mincos) { |
384 |
> |
if (fdir2diff(thisp->sd,cent) <= maxr2) { |
385 |
|
LOSTLIGHT *mynext = thisp->next; |
386 |
|
addcolor(intens, thisp->intens); |
387 |
< |
free((void *)thisp); |
387 |
> |
free(thisp); |
388 |
|
lastp->next = mynext; |
389 |
|
} else |
390 |
|
lastp = thisp; |
395 |
|
void |
396 |
|
mksources(TRITREE *samptree, double thresh, double maxang) |
397 |
|
{ |
398 |
+ |
#define MAXITER 100 |
399 |
|
const int ethresh = (int)(log(thresh)/log(2.) + (COLXS+.5)); |
400 |
|
const double maxomega = 2.*PI*(1. - cos(PI/180./2.*maxang)); |
401 |
|
const double minintens = .05*thresh*maxomega; |
402 |
+ |
int niter = MAXITER; |
403 |
|
int nsrcs = 0; |
404 |
|
LOSTLIGHT *lostlightlist = NULL; |
405 |
|
int emax; |
425 |
|
*/ |
426 |
|
if (thresh <= FTINY) |
427 |
|
return; |
428 |
< |
for ( ; ; ) { |
428 |
> |
while (niter--) { |
429 |
|
emax = ethresh; /* find brightest unclaimed */ |
430 |
|
startleaf = NULL; |
431 |
|
for (i = 0; i < NTRUNKBR; i++) { |
436 |
|
if (startleaf == NULL) |
437 |
|
break; |
438 |
|
/* claim it */ |
439 |
< |
VCOPY(curcent, startleaf->sd); |
439 |
> |
decodedir(curcent, startleaf->sd); |
440 |
|
curomega = tri_omegav(startleaf->gdv); |
441 |
|
currad = sqrt(curomega/PI); |
442 |
|
growstep = 3.*currad; |
452 |
|
vsum[0] = vsum[1] = vsum[2] = .0; |
453 |
|
for (i = 0; i < NTRUNKBR; i++) |
454 |
|
vector_sum(vsum, &samptree->kid[i], |
455 |
< |
curcent, cos(currad+growstep), |
455 |
> |
curcent, 2.-2.*cos(currad+growstep), |
456 |
|
thisethresh); |
457 |
|
if (normalize(vsum) == .0) |
458 |
|
break; |
459 |
< |
movedist = acos(DOT(vsum,curcent)); |
459 |
> |
movedist = Acos(DOT(vsum,curcent)); |
460 |
|
if (movedist > growstep) { |
461 |
|
VSUB(vsum, vsum, curcent); |
462 |
|
movedist = growstep/VLEN(vsum); |
468 |
|
curomega = 2.*PI*(1. - cos(currad)); |
469 |
|
for (i = 0; i < NTRUNKBR; i++) |
470 |
|
claimlight(curintens, &samptree->kid[i], |
471 |
< |
curcent, cos(currad)); |
471 |
> |
curcent, 2.-2.*cos(currad)); |
472 |
|
} while (curomega < maxomega && |
473 |
|
bright(curintens)/curomega > thisthresh); |
474 |
|
if (bright(curintens) < minintens) { |
488 |
|
printf("0\n0\n4 %f %f %f %f\n", |
489 |
|
curcent[0], curcent[1], curcent[2], |
490 |
|
2.*180./PI*currad); |
491 |
+ |
niter = MAXITER; |
492 |
|
} |
493 |
+ |
#undef MAXITER |
494 |
|
} |
495 |
|
|
496 |
|
int |
501 |
|
TRITREE *samptree; |
502 |
|
double thresh = 0; |
503 |
|
int i; |
504 |
< |
|
505 |
< |
progname = argv[0]; |
504 |
> |
|
505 |
> |
fixargv0(argv[0]); /* sets global progname */ |
506 |
> |
|
507 |
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
508 |
|
switch (argv[i][1]) { |
509 |
|
case 'd': /* number of samples */ |
556 |
|
} |
557 |
|
|
558 |
|
void |
559 |
< |
eputs(char *s) |
559 |
> |
eputs(const char *s) |
560 |
|
{ |
561 |
|
static int midline = 0; |
562 |
|
|
574 |
|
} |
575 |
|
|
576 |
|
void |
577 |
< |
wputs(char *s) |
577 |
> |
wputs(const char *s) |
578 |
|
{ |
579 |
|
/* no warnings */ |
580 |
|
} |