| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
greg |
2.2 |
static const char RCSid[] = "$Id: mksource.c,v 2.1 2005/04/12 03:30:43 greg Exp $";
|
| 3 |
greg |
2.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Generate distant sources corresponding to the given environment map
|
| 6 |
|
|
*/
|
| 7 |
|
|
|
| 8 |
|
|
#include "ray.h"
|
| 9 |
|
|
#include "random.h"
|
| 10 |
|
|
|
| 11 |
|
|
#define NTRUNKBR 4 /* number of branches at trunk */
|
| 12 |
|
|
#define NTRUNKVERT 4 /* number of vertices at trunk */
|
| 13 |
|
|
#define DEF_NSAMPS 262144L /* default # sphere samples */
|
| 14 |
|
|
#define DEF_MAXANG 15. /* maximum source angle (deg.) */
|
| 15 |
|
|
|
| 16 |
|
|
/* Data structure for geodesic samples */
|
| 17 |
|
|
|
| 18 |
|
|
typedef struct tritree {
|
| 19 |
|
|
FVECT gdv[3]; /* spherical triangle vertex direc. */
|
| 20 |
|
|
FVECT sd; /* sample direction if leaf */
|
| 21 |
|
|
struct tritree *kid; /* 4 children if branch node */
|
| 22 |
|
|
COLR val; /* sampled color value */
|
| 23 |
|
|
} TRITREE;
|
| 24 |
|
|
|
| 25 |
|
|
typedef struct lostlight {
|
| 26 |
|
|
struct lostlight *next; /* next in list */
|
| 27 |
|
|
FVECT sd; /* lost source direction */
|
| 28 |
|
|
COLOR intens; /* output times solid angle */
|
| 29 |
|
|
} LOSTLIGHT;
|
| 30 |
|
|
|
| 31 |
|
|
char *progname;
|
| 32 |
|
|
|
| 33 |
|
|
FVECT scene_cent; /* center of octree cube */
|
| 34 |
|
|
RREAL scene_rad; /* radius to get outside cube from center */
|
| 35 |
|
|
|
| 36 |
|
|
const COLR blkclr = BLKCOLR;
|
| 37 |
|
|
|
| 38 |
|
|
#define isleaf(node) ((node)->kid == NULL)
|
| 39 |
|
|
|
| 40 |
|
|
/* Compute signum of signed volume for three vectors */
|
| 41 |
|
|
int
|
| 42 |
|
|
vol_sign(const FVECT v1, const FVECT v2, const FVECT v3)
|
| 43 |
|
|
{
|
| 44 |
|
|
double vol;
|
| 45 |
|
|
|
| 46 |
|
|
vol = v1[0]*(v2[1]*v3[2] - v2[2]*v3[1]);
|
| 47 |
|
|
vol += v1[1]*(v2[2]*v3[0] - v2[0]*v3[2]);
|
| 48 |
|
|
vol += v1[2]*(v2[0]*v3[1] - v2[1]*v3[0]);
|
| 49 |
|
|
if (vol > .0)
|
| 50 |
|
|
return(1);
|
| 51 |
|
|
if (vol < .0)
|
| 52 |
|
|
return(-1);
|
| 53 |
|
|
return(0);
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
/* Is the given direction contained within the specified spherical triangle? */
|
| 57 |
|
|
int
|
| 58 |
|
|
intriv(FVECT tri[3], const FVECT sdir)
|
| 59 |
|
|
{
|
| 60 |
|
|
int sv[3];
|
| 61 |
|
|
|
| 62 |
|
|
sv[0] = vol_sign(sdir, tri[0], tri[1]);
|
| 63 |
|
|
sv[1] = vol_sign(sdir, tri[1], tri[2]);
|
| 64 |
|
|
sv[2] = vol_sign(sdir, tri[2], tri[0]);
|
| 65 |
|
|
if ((sv[0] == sv[1]) & (sv[1] == sv[2]))
|
| 66 |
|
|
return(1);
|
| 67 |
|
|
return(!sv[0] | !sv[1] | !sv[2]);
|
| 68 |
|
|
}
|
| 69 |
|
|
|
| 70 |
|
|
/* Find leaf containing the given sample direction */
|
| 71 |
|
|
TRITREE *
|
| 72 |
|
|
findleaf(TRITREE *node, const FVECT sdir)
|
| 73 |
|
|
{
|
| 74 |
|
|
int i;
|
| 75 |
|
|
|
| 76 |
|
|
if (isleaf(node))
|
| 77 |
|
|
return(intriv(node->gdv,sdir) ? node : (TRITREE *)NULL);
|
| 78 |
|
|
for (i = 0; i < 4; i++) {
|
| 79 |
|
|
TRITREE *chknode = &node->kid[i];
|
| 80 |
|
|
if (intriv(chknode->gdv, sdir))
|
| 81 |
|
|
return(isleaf(chknode) ? chknode :
|
| 82 |
|
|
findleaf(chknode, sdir));
|
| 83 |
|
|
}
|
| 84 |
|
|
return(NULL);
|
| 85 |
|
|
}
|
| 86 |
|
|
|
| 87 |
|
|
/* Initialize leaf with random sample inside the given spherical triangle */
|
| 88 |
|
|
void
|
| 89 |
|
|
leafsample(TRITREE *leaf)
|
| 90 |
|
|
{
|
| 91 |
|
|
RAY myray;
|
| 92 |
|
|
RREAL wt[3];
|
| 93 |
|
|
int i, j;
|
| 94 |
|
|
/* random point on triangle */
|
| 95 |
|
|
i = random() % 3;
|
| 96 |
|
|
wt[i] = frandom();
|
| 97 |
|
|
j = random() & 1;
|
| 98 |
|
|
wt[(i+2-j)%3] = 1. - wt[i] -
|
| 99 |
|
|
(wt[(i+1+j)%3] = (1.-wt[i])*frandom());
|
| 100 |
|
|
leaf->sd[0] = leaf->sd[1] = leaf->sd[2] = .0;
|
| 101 |
|
|
for (i = 0; i < 3; i++)
|
| 102 |
|
|
VSUM(leaf->sd, leaf->sd, leaf->gdv[i], wt[i]);
|
| 103 |
|
|
normalize(leaf->sd); /* record sample direction */
|
| 104 |
|
|
/* evaluate at inf. */
|
| 105 |
|
|
VSUM(myray.rorg, scene_cent, leaf->sd, scene_rad);
|
| 106 |
|
|
VCOPY(myray.rdir, leaf->sd);
|
| 107 |
|
|
myray.rmax = 0.;
|
| 108 |
|
|
ray_trace(&myray);
|
| 109 |
|
|
setcolr(leaf->val, colval(myray.rcol,RED),
|
| 110 |
|
|
colval(myray.rcol,GRN),
|
| 111 |
|
|
colval(myray.rcol,BLU));
|
| 112 |
|
|
}
|
| 113 |
|
|
|
| 114 |
|
|
/* Initialize a branch node contained in the given spherical triangle */
|
| 115 |
|
|
void
|
| 116 |
|
|
subdivide(TRITREE *branch, FVECT dv[3])
|
| 117 |
|
|
{
|
| 118 |
|
|
FVECT sdv[3];
|
| 119 |
|
|
int i;
|
| 120 |
|
|
|
| 121 |
|
|
for (i = 0; i < 3; i++) /* copy spherical triangle */
|
| 122 |
|
|
VCOPY(branch->gdv[i], dv[i]);
|
| 123 |
|
|
for (i = 0; i < 3; i++) { /* create new vertices */
|
| 124 |
|
|
int j = (i+1)%3;
|
| 125 |
|
|
VADD(sdv[i], dv[i], dv[j]);
|
| 126 |
|
|
normalize(sdv[i]);
|
| 127 |
|
|
}
|
| 128 |
|
|
/* allocate leaves */
|
| 129 |
|
|
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE));
|
| 130 |
|
|
if (branch->kid == NULL)
|
| 131 |
|
|
error(SYSTEM, "out of memory in subdivide()");
|
| 132 |
|
|
/* assign subtriangle directions */
|
| 133 |
|
|
VCOPY(branch->kid[0].gdv[0], dv[0]);
|
| 134 |
|
|
VCOPY(branch->kid[0].gdv[1], sdv[0]);
|
| 135 |
|
|
VCOPY(branch->kid[0].gdv[2], sdv[2]);
|
| 136 |
|
|
VCOPY(branch->kid[1].gdv[0], sdv[0]);
|
| 137 |
|
|
VCOPY(branch->kid[1].gdv[1], dv[1]);
|
| 138 |
|
|
VCOPY(branch->kid[1].gdv[2], sdv[1]);
|
| 139 |
|
|
VCOPY(branch->kid[2].gdv[0], sdv[1]);
|
| 140 |
|
|
VCOPY(branch->kid[2].gdv[1], dv[2]);
|
| 141 |
|
|
VCOPY(branch->kid[2].gdv[2], sdv[2]);
|
| 142 |
|
|
VCOPY(branch->kid[3].gdv[0], sdv[0]);
|
| 143 |
|
|
VCOPY(branch->kid[3].gdv[1], sdv[1]);
|
| 144 |
|
|
VCOPY(branch->kid[3].gdv[2], sdv[2]);
|
| 145 |
|
|
}
|
| 146 |
|
|
|
| 147 |
|
|
/* Recursively subdivide the given node to the specified quadtree depth */
|
| 148 |
|
|
void
|
| 149 |
|
|
branchsample(TRITREE *node, int depth)
|
| 150 |
|
|
{
|
| 151 |
|
|
int i;
|
| 152 |
|
|
|
| 153 |
|
|
if (depth <= 0)
|
| 154 |
|
|
return;
|
| 155 |
|
|
if (isleaf(node)) { /* subdivide leaf node */
|
| 156 |
|
|
TRITREE branch, *moved_leaf;
|
| 157 |
|
|
subdivide(&branch, node->gdv);
|
| 158 |
|
|
moved_leaf = findleaf(&branch, node->sd);
|
| 159 |
|
|
if (moved_leaf != NULL) { /* bequeath old sample */
|
| 160 |
|
|
VCOPY(moved_leaf->sd, node->sd);
|
| 161 |
|
|
copycolr(moved_leaf->val, node->val);
|
| 162 |
|
|
}
|
| 163 |
|
|
for (i = 0; i < 4; i++) /* compute new samples */
|
| 164 |
|
|
if (&branch.kid[i] != moved_leaf)
|
| 165 |
|
|
leafsample(&branch.kid[i]);
|
| 166 |
|
|
*node = branch; /* replace leaf with branch */
|
| 167 |
|
|
}
|
| 168 |
|
|
for (i = 0; i < 4; i++) /* subdivide children */
|
| 169 |
|
|
branchsample(&node->kid[i], depth-1);
|
| 170 |
|
|
}
|
| 171 |
|
|
|
| 172 |
|
|
/* Sample sphere using triangular geodesic mesh */
|
| 173 |
|
|
TRITREE *
|
| 174 |
|
|
geosample(int nsamps)
|
| 175 |
|
|
{
|
| 176 |
|
|
int depth;
|
| 177 |
|
|
TRITREE *tree;
|
| 178 |
|
|
FVECT trunk[NTRUNKVERT];
|
| 179 |
|
|
int i, j;
|
| 180 |
|
|
/* figure out depth */
|
| 181 |
|
|
if ((nsamps -= 4) < 0)
|
| 182 |
|
|
error(USER, "minimum number of samples is 4");
|
| 183 |
|
|
nsamps = nsamps*3/NTRUNKBR; /* round up */
|
| 184 |
|
|
for (depth = 0; nsamps > 1; depth++)
|
| 185 |
|
|
nsamps >>= 2;
|
| 186 |
|
|
/* make base tetrahedron */
|
| 187 |
|
|
tree = (TRITREE *)malloc(sizeof(TRITREE));
|
| 188 |
|
|
if (tree == NULL) goto memerr;
|
| 189 |
|
|
trunk[0][0] = trunk[0][1] = 0; trunk[0][2] = 1;
|
| 190 |
|
|
trunk[1][0] = 0;
|
| 191 |
|
|
trunk[1][2] = cos(2.*asin(sqrt(2./3.)));
|
| 192 |
|
|
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]);
|
| 193 |
|
|
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.);
|
| 194 |
|
|
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.);
|
| 195 |
|
|
VCOPY(tree->gdv[0], trunk[0]);
|
| 196 |
|
|
VCOPY(tree->gdv[1], trunk[0]);
|
| 197 |
|
|
VCOPY(tree->gdv[2], trunk[0]);
|
| 198 |
|
|
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE));
|
| 199 |
|
|
if (tree->kid == NULL) goto memerr;
|
| 200 |
|
|
/* grow our tree from trunk */
|
| 201 |
|
|
for (i = 0; i < NTRUNKBR; i++) {
|
| 202 |
|
|
for (j = 0; j < 3; j++) /* XXX works for tetra only */
|
| 203 |
|
|
VCOPY(tree->kid[i].gdv[j], trunk[(i+j)%NTRUNKVERT]);
|
| 204 |
|
|
leafsample(&tree->kid[i]);
|
| 205 |
|
|
branchsample(&tree->kid[i], depth);
|
| 206 |
|
|
}
|
| 207 |
|
|
return(tree);
|
| 208 |
|
|
memerr:
|
| 209 |
|
|
error(SYSTEM, "out of memory in geosample()");
|
| 210 |
|
|
}
|
| 211 |
|
|
|
| 212 |
|
|
/* Compute leaf exponent histogram */
|
| 213 |
|
|
void
|
| 214 |
|
|
get_ehisto(const TRITREE *node, long exphisto[256])
|
| 215 |
|
|
{
|
| 216 |
|
|
int i;
|
| 217 |
|
|
|
| 218 |
|
|
if (isleaf(node)) {
|
| 219 |
|
|
++exphisto[node->val[EXP]];
|
| 220 |
|
|
return;
|
| 221 |
|
|
}
|
| 222 |
|
|
for (i = 0; i < 4; i++)
|
| 223 |
|
|
get_ehisto(&node->kid[i], exphisto);
|
| 224 |
|
|
}
|
| 225 |
|
|
|
| 226 |
|
|
/* Get reasonable source threshold */
|
| 227 |
|
|
double
|
| 228 |
|
|
get_threshold(const TRITREE *tree)
|
| 229 |
|
|
{
|
| 230 |
|
|
long exphisto[256];
|
| 231 |
|
|
long samptotal;
|
| 232 |
|
|
int i;
|
| 233 |
|
|
/* compute sample histogram */
|
| 234 |
|
|
memset((void *)exphisto, 0, sizeof(exphisto));
|
| 235 |
|
|
for (i = 0; i < NTRUNKBR; i++)
|
| 236 |
|
|
get_ehisto(&tree->kid[i], exphisto);
|
| 237 |
greg |
2.2 |
/* use 98th percentile */
|
| 238 |
greg |
2.1 |
for (i = 0; i < 256; i++)
|
| 239 |
|
|
samptotal += exphisto[i];
|
| 240 |
greg |
2.2 |
samptotal /= 50;
|
| 241 |
greg |
2.1 |
for (i = 256; (--i > 0) & (samptotal > 0); )
|
| 242 |
|
|
samptotal -= exphisto[i];
|
| 243 |
|
|
return(ldexp(.75, i-COLXS));
|
| 244 |
|
|
}
|
| 245 |
|
|
|
| 246 |
|
|
/* Find leaf containing the maximum exponent */
|
| 247 |
|
|
TRITREE *
|
| 248 |
|
|
findemax(TRITREE *node, int *expp)
|
| 249 |
|
|
{
|
| 250 |
|
|
if (!isleaf(node)) {
|
| 251 |
|
|
TRITREE *maxleaf;
|
| 252 |
|
|
TRITREE *rleaf;
|
| 253 |
|
|
maxleaf = findemax(&node->kid[0], expp);
|
| 254 |
|
|
rleaf = findemax(&node->kid[1], expp);
|
| 255 |
|
|
if (rleaf != NULL) maxleaf = rleaf;
|
| 256 |
|
|
rleaf = findemax(&node->kid[2], expp);
|
| 257 |
|
|
if (rleaf != NULL) maxleaf = rleaf;
|
| 258 |
|
|
rleaf = findemax(&node->kid[3], expp);
|
| 259 |
|
|
if (rleaf != NULL) maxleaf = rleaf;
|
| 260 |
|
|
return(maxleaf);
|
| 261 |
|
|
}
|
| 262 |
|
|
if (node->val[EXP] <= *expp)
|
| 263 |
|
|
return(NULL);
|
| 264 |
|
|
*expp = node->val[EXP];
|
| 265 |
|
|
return(node);
|
| 266 |
|
|
}
|
| 267 |
|
|
|
| 268 |
|
|
/* Compute solid angle of spherical triangle (approx.) */
|
| 269 |
|
|
double
|
| 270 |
|
|
tri_omegav(FVECT v[3])
|
| 271 |
|
|
{
|
| 272 |
|
|
FVECT e1, e2, vcross;
|
| 273 |
|
|
|
| 274 |
|
|
VSUB(e1, v[1], v[0]);
|
| 275 |
|
|
VSUB(e2, v[2], v[1]);
|
| 276 |
|
|
fcross(vcross, e1, e2);
|
| 277 |
|
|
return(.5*VLEN(vcross));
|
| 278 |
|
|
}
|
| 279 |
|
|
|
| 280 |
|
|
/* Sum intensity times direction for non-zero leaves */
|
| 281 |
|
|
void
|
| 282 |
|
|
vector_sum(FVECT vsum, TRITREE *node,
|
| 283 |
|
|
const FVECT cent, double mincos, int ethresh)
|
| 284 |
|
|
{
|
| 285 |
|
|
if (isleaf(node)) {
|
| 286 |
|
|
double intens;
|
| 287 |
|
|
if (node->val[EXP] < ethresh)
|
| 288 |
|
|
return;
|
| 289 |
|
|
if (DOT(node->sd,cent) < mincos)
|
| 290 |
|
|
return;
|
| 291 |
|
|
intens = colrval(node->val,GRN) * tri_omegav(node->gdv);
|
| 292 |
|
|
VSUM(vsum, vsum, node->sd, intens);
|
| 293 |
|
|
return;
|
| 294 |
|
|
}
|
| 295 |
|
|
if (DOT(node->gdv[0],node->gdv[1]) < mincos &&
|
| 296 |
|
|
DOT(node->gdv[0],cent) > mincos &&
|
| 297 |
|
|
DOT(node->gdv[1],cent) > mincos &&
|
| 298 |
|
|
DOT(node->gdv[2],cent) > mincos)
|
| 299 |
|
|
return;
|
| 300 |
|
|
vector_sum(vsum, &node->kid[0], cent, mincos, ethresh);
|
| 301 |
|
|
vector_sum(vsum, &node->kid[1], cent, mincos, ethresh);
|
| 302 |
|
|
vector_sum(vsum, &node->kid[2], cent, mincos, ethresh);
|
| 303 |
|
|
vector_sum(vsum, &node->kid[3], cent, mincos, ethresh);
|
| 304 |
|
|
}
|
| 305 |
|
|
|
| 306 |
|
|
/* Claim source contributions within the given solid angle */
|
| 307 |
|
|
void
|
| 308 |
|
|
claimlight(COLOR intens, TRITREE *node, const FVECT cent, double mincos)
|
| 309 |
|
|
{
|
| 310 |
|
|
int remaining;
|
| 311 |
|
|
int i;
|
| 312 |
|
|
if (isleaf(node)) { /* claim contribution */
|
| 313 |
|
|
COLOR contrib;
|
| 314 |
|
|
if (node->val[EXP] <= 0)
|
| 315 |
|
|
return;
|
| 316 |
|
|
if (DOT(node->sd,cent) < mincos)
|
| 317 |
|
|
return;
|
| 318 |
|
|
colr_color(contrib, node->val);
|
| 319 |
|
|
scalecolor(contrib, tri_omegav(node->gdv));
|
| 320 |
|
|
addcolor(intens, contrib);
|
| 321 |
|
|
copycolr(node->val, blkclr);
|
| 322 |
|
|
return;
|
| 323 |
|
|
}
|
| 324 |
|
|
if (DOT(node->gdv[0],node->gdv[1]) < mincos &&
|
| 325 |
|
|
DOT(node->gdv[0],cent) > mincos &&
|
| 326 |
|
|
DOT(node->gdv[1],cent) > mincos &&
|
| 327 |
|
|
DOT(node->gdv[2],cent) > mincos)
|
| 328 |
|
|
return;
|
| 329 |
|
|
remaining = 0; /* recurse on children */
|
| 330 |
|
|
for (i = 0; i < 4; i++) {
|
| 331 |
|
|
claimlight(intens, &node->kid[i], cent, mincos);
|
| 332 |
|
|
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0)
|
| 333 |
|
|
++remaining;
|
| 334 |
|
|
}
|
| 335 |
|
|
if (remaining)
|
| 336 |
|
|
return;
|
| 337 |
|
|
/* consolidate empties */
|
| 338 |
|
|
free((void *)node->kid); node->kid = NULL;
|
| 339 |
|
|
copycolr(node->val, blkclr);
|
| 340 |
|
|
VCOPY(node->sd, node->gdv[0]); /* doesn't really matter */
|
| 341 |
|
|
}
|
| 342 |
|
|
|
| 343 |
|
|
/* Add lost light contribution to the given list */
|
| 344 |
|
|
void
|
| 345 |
|
|
add2lost(LOSTLIGHT **llp, COLOR intens, const FVECT cent)
|
| 346 |
|
|
{
|
| 347 |
|
|
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT));
|
| 348 |
|
|
|
| 349 |
|
|
if (newll == NULL)
|
| 350 |
|
|
return;
|
| 351 |
|
|
copycolor(newll->intens, intens);
|
| 352 |
|
|
VCOPY(newll->sd, cent);
|
| 353 |
|
|
newll->next = *llp;
|
| 354 |
|
|
*llp = newll;
|
| 355 |
|
|
}
|
| 356 |
|
|
|
| 357 |
|
|
/* Check lost light list for contributions */
|
| 358 |
|
|
void
|
| 359 |
|
|
getlost(LOSTLIGHT **llp, COLOR intens, const FVECT cent, double omega)
|
| 360 |
|
|
{
|
| 361 |
|
|
const double mincos = 1. - omega/(2.*PI);
|
| 362 |
|
|
LOSTLIGHT lhead, *lastp, *thisp;
|
| 363 |
|
|
|
| 364 |
|
|
lhead.next = *llp;
|
| 365 |
|
|
lastp = &lhead;
|
| 366 |
|
|
while ((thisp = lastp->next) != NULL)
|
| 367 |
|
|
if (DOT(thisp->sd,cent) >= mincos) {
|
| 368 |
|
|
LOSTLIGHT *mynext = thisp->next;
|
| 369 |
|
|
addcolor(intens, thisp->intens);
|
| 370 |
|
|
free((void *)thisp);
|
| 371 |
|
|
lastp->next = mynext;
|
| 372 |
|
|
} else
|
| 373 |
|
|
lastp = thisp;
|
| 374 |
|
|
*llp = lhead.next;
|
| 375 |
|
|
}
|
| 376 |
|
|
|
| 377 |
|
|
/* Create & print distant sources */
|
| 378 |
|
|
void
|
| 379 |
|
|
mksources(TRITREE *samptree, double thresh, double maxang)
|
| 380 |
|
|
{
|
| 381 |
|
|
const int ethresh = (int)(log(thresh)/log(2.) + (COLXS+.5));
|
| 382 |
|
|
const double maxomega = 2.*PI*(1. - cos(PI/180./2.*maxang));
|
| 383 |
|
|
const double minintens = .05*thresh*maxomega;
|
| 384 |
|
|
int nsrcs = 0;
|
| 385 |
|
|
LOSTLIGHT *lostlightlist = NULL;
|
| 386 |
|
|
int emax;
|
| 387 |
|
|
TRITREE *startleaf;
|
| 388 |
|
|
COLOR cval;
|
| 389 |
|
|
double growstep;
|
| 390 |
|
|
FVECT curcent;
|
| 391 |
|
|
double currad;
|
| 392 |
|
|
double curomega;
|
| 393 |
|
|
COLOR curintens;
|
| 394 |
|
|
double thisthresh;
|
| 395 |
|
|
int thisethresh;
|
| 396 |
|
|
int i;
|
| 397 |
|
|
/*
|
| 398 |
|
|
* General algorithm:
|
| 399 |
|
|
* 1) Start with brightest unclaimed pixel
|
| 400 |
|
|
* 2) Grow source toward brightest unclaimed perimeter until:
|
| 401 |
|
|
* a) Source exceeds maximum size, or
|
| 402 |
|
|
* b) Perimeter values all below threshold, or
|
| 403 |
|
|
* c) Source average drops below threshold
|
| 404 |
|
|
* 3) Loop until nothing over threshold
|
| 405 |
|
|
*
|
| 406 |
|
|
* Complexity added to absorb insignificant sources in larger ones.
|
| 407 |
|
|
*/
|
| 408 |
|
|
if (thresh <= FTINY)
|
| 409 |
|
|
return;
|
| 410 |
|
|
for ( ; ; ) {
|
| 411 |
|
|
emax = ethresh; /* find brightest unclaimed */
|
| 412 |
|
|
startleaf = NULL;
|
| 413 |
|
|
for (i = 0; i < NTRUNKBR; i++) {
|
| 414 |
|
|
TRITREE *bigger = findemax(&samptree->kid[i], &emax);
|
| 415 |
|
|
if (bigger != NULL)
|
| 416 |
|
|
startleaf = bigger;
|
| 417 |
|
|
}
|
| 418 |
|
|
if (startleaf == NULL)
|
| 419 |
|
|
break;
|
| 420 |
|
|
/* claim it */
|
| 421 |
|
|
VCOPY(curcent, startleaf->sd);
|
| 422 |
|
|
curomega = tri_omegav(startleaf->gdv);
|
| 423 |
|
|
currad = sqrt(curomega/PI);
|
| 424 |
|
|
growstep = 3.*currad;
|
| 425 |
|
|
colr_color(curintens, startleaf->val);
|
| 426 |
|
|
thisthresh = .15*bright(curintens);
|
| 427 |
|
|
if (thisthresh < thresh) thisthresh = thresh;
|
| 428 |
|
|
thisethresh = (int)(log(thisthresh)/log(2.) + (COLXS+.5));
|
| 429 |
|
|
scalecolor(curintens, curomega);
|
| 430 |
|
|
copycolr(startleaf->val, blkclr);
|
| 431 |
|
|
do { /* grow source */
|
| 432 |
|
|
FVECT vsum;
|
| 433 |
|
|
double movedist;
|
| 434 |
|
|
vsum[0] = vsum[1] = vsum[2] = .0;
|
| 435 |
|
|
for (i = 0; i < NTRUNKBR; i++)
|
| 436 |
|
|
vector_sum(vsum, &samptree->kid[i],
|
| 437 |
|
|
curcent, cos(currad+growstep),
|
| 438 |
|
|
thisethresh);
|
| 439 |
|
|
if (normalize(vsum) == .0)
|
| 440 |
|
|
break;
|
| 441 |
|
|
movedist = acos(DOT(vsum,curcent));
|
| 442 |
|
|
if (movedist > growstep) {
|
| 443 |
|
|
VSUB(vsum, vsum, curcent);
|
| 444 |
|
|
movedist = growstep/VLEN(vsum);
|
| 445 |
|
|
VSUM(curcent, curcent, vsum, movedist);
|
| 446 |
|
|
normalize(curcent);
|
| 447 |
|
|
} else
|
| 448 |
|
|
VCOPY(curcent, vsum);
|
| 449 |
|
|
currad += growstep;
|
| 450 |
|
|
curomega = 2.*PI*(1. - cos(currad));
|
| 451 |
|
|
for (i = 0; i < NTRUNKBR; i++)
|
| 452 |
|
|
claimlight(curintens, &samptree->kid[i],
|
| 453 |
|
|
curcent, cos(currad));
|
| 454 |
|
|
} while (curomega < maxomega &&
|
| 455 |
|
|
bright(curintens)/curomega > thisthresh);
|
| 456 |
|
|
if (bright(curintens) < minintens) {
|
| 457 |
|
|
add2lost(&lostlightlist, curintens, curcent);
|
| 458 |
|
|
continue;
|
| 459 |
|
|
}
|
| 460 |
|
|
/* absorb lost contributions */
|
| 461 |
|
|
getlost(&lostlightlist, curintens, curcent, curomega);
|
| 462 |
|
|
++nsrcs; /* output source */
|
| 463 |
|
|
scalecolor(curintens, 1./curomega);
|
| 464 |
|
|
printf("\nvoid illum IBLout\n");
|
| 465 |
|
|
printf("0\n0\n3 %f %f %f\n",
|
| 466 |
|
|
colval(curintens,RED),
|
| 467 |
|
|
colval(curintens,GRN),
|
| 468 |
|
|
colval(curintens,BLU));
|
| 469 |
|
|
printf("\nIBLout source IBLsrc%d\n", nsrcs);
|
| 470 |
|
|
printf("0\n0\n4 %f %f %f %f\n",
|
| 471 |
|
|
curcent[0], curcent[1], curcent[2],
|
| 472 |
|
|
2.*180./PI*currad);
|
| 473 |
|
|
}
|
| 474 |
|
|
}
|
| 475 |
|
|
|
| 476 |
|
|
int
|
| 477 |
|
|
main(int argc, char *argv[])
|
| 478 |
|
|
{
|
| 479 |
|
|
long nsamps = DEF_NSAMPS;
|
| 480 |
|
|
double maxang = DEF_MAXANG;
|
| 481 |
|
|
TRITREE *samptree;
|
| 482 |
|
|
double thresh = 0;
|
| 483 |
|
|
int i;
|
| 484 |
|
|
|
| 485 |
|
|
progname = argv[0];
|
| 486 |
|
|
for (i = 1; i < argc && argv[i][0] == '-'; i++)
|
| 487 |
|
|
switch (argv[i][1]) {
|
| 488 |
|
|
case 'd': /* number of samples */
|
| 489 |
|
|
if (i >= argc-1) goto userr;
|
| 490 |
|
|
nsamps = atol(argv[++i]);
|
| 491 |
|
|
break;
|
| 492 |
|
|
case 't': /* manual threshold */
|
| 493 |
|
|
if (i >= argc-1) goto userr;
|
| 494 |
|
|
thresh = atof(argv[++i]);
|
| 495 |
|
|
break;
|
| 496 |
|
|
case 'a': /* maximum source angle */
|
| 497 |
|
|
if (i >= argc-1) goto userr;
|
| 498 |
|
|
maxang = atof(argv[++i]);
|
| 499 |
|
|
if (maxang <= FTINY)
|
| 500 |
|
|
goto userr;
|
| 501 |
|
|
if (maxang > 180.)
|
| 502 |
|
|
maxang = 180.;
|
| 503 |
|
|
break;
|
| 504 |
|
|
default:
|
| 505 |
|
|
goto userr;
|
| 506 |
|
|
}
|
| 507 |
|
|
if (i < argc-1)
|
| 508 |
|
|
goto userr;
|
| 509 |
|
|
/* start our ray calculation */
|
| 510 |
|
|
directvis = 0;
|
| 511 |
|
|
ray_init(i == argc-1 ? argv[i] : (char *)NULL);
|
| 512 |
|
|
VCOPY(scene_cent, thescene.cuorg);
|
| 513 |
|
|
scene_cent[0] += 0.5*thescene.cusize;
|
| 514 |
|
|
scene_cent[1] += 0.5*thescene.cusize;
|
| 515 |
|
|
scene_cent[2] += 0.5*thescene.cusize;
|
| 516 |
|
|
scene_rad = 0.86603*thescene.cusize;
|
| 517 |
|
|
/* sample geodesic mesh */
|
| 518 |
|
|
samptree = geosample(nsamps);
|
| 519 |
|
|
/* get source threshold */
|
| 520 |
|
|
if (thresh <= FTINY)
|
| 521 |
|
|
thresh = get_threshold(samptree);
|
| 522 |
|
|
/* done with ray samples */
|
| 523 |
|
|
ray_done(1);
|
| 524 |
|
|
/* print header */
|
| 525 |
|
|
printf("# ");
|
| 526 |
|
|
printargs(argc, argv, stdout);
|
| 527 |
|
|
/* create & print sources */
|
| 528 |
|
|
mksources(samptree, thresh, maxang);
|
| 529 |
|
|
/* all done, no need to clean up */
|
| 530 |
|
|
return(0);
|
| 531 |
|
|
userr:
|
| 532 |
|
|
fprintf(stderr, "Usage: %s [-d nsamps][-t thresh][-a maxang] [octree]\n",
|
| 533 |
|
|
argv[0]);
|
| 534 |
|
|
exit(1);
|
| 535 |
|
|
}
|
| 536 |
|
|
|
| 537 |
|
|
void
|
| 538 |
|
|
eputs(char *s)
|
| 539 |
|
|
{
|
| 540 |
|
|
static int midline = 0;
|
| 541 |
|
|
|
| 542 |
|
|
if (!*s)
|
| 543 |
|
|
return;
|
| 544 |
|
|
if (!midline++) {
|
| 545 |
|
|
fputs(progname, stderr);
|
| 546 |
|
|
fputs(": ", stderr);
|
| 547 |
|
|
}
|
| 548 |
|
|
fputs(s, stderr);
|
| 549 |
|
|
if (s[strlen(s)-1] == '\n') {
|
| 550 |
|
|
fflush(stderr);
|
| 551 |
|
|
midline = 0;
|
| 552 |
|
|
}
|
| 553 |
|
|
}
|
| 554 |
|
|
|
| 555 |
|
|
void
|
| 556 |
|
|
wputs(char *s)
|
| 557 |
|
|
{
|
| 558 |
|
|
/* no warnings */
|
| 559 |
|
|
}
|