1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: mksource.c,v 2.12 2025/01/18 20:23:15 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Generate distant sources corresponding to the given environment map |
6 |
*/ |
7 |
|
8 |
#include "ray.h" |
9 |
#include "random.h" |
10 |
#include "paths.h" |
11 |
#include "resolu.h" |
12 |
|
13 |
#define NTRUNKBR 4 /* number of branches at trunk */ |
14 |
#define NTRUNKVERT 4 /* number of vertices at trunk */ |
15 |
#define DEF_NSAMPS 262144L /* default # sphere samples */ |
16 |
#define DEF_MAXANG 15. /* maximum source angle (deg.) */ |
17 |
|
18 |
/* Data structure for geodesic samples */ |
19 |
|
20 |
typedef struct tritree { |
21 |
int32 gdv[3]; /* spherical triangle vertex direc. */ |
22 |
int32 sd; /* sample direction if leaf */ |
23 |
struct tritree *kid; /* 4 children if branch node */ |
24 |
COLR val; /* sampled color value */ |
25 |
} TRITREE; |
26 |
|
27 |
typedef struct lostlight { |
28 |
struct lostlight *next; /* next in list */ |
29 |
int32 sd; /* lost source direction */ |
30 |
COLOR intens; /* output times solid angle */ |
31 |
} LOSTLIGHT; |
32 |
|
33 |
FVECT scene_cent; /* center of octree cube */ |
34 |
RREAL scene_rad; /* radius to get outside cube from center */ |
35 |
|
36 |
const COLR blkclr = BLKCOLR; |
37 |
|
38 |
#define isleaf(node) ((node)->kid == NULL) |
39 |
|
40 |
/* Compute signum of signed volume for three vectors */ |
41 |
int |
42 |
vol_sign(const FVECT v1, const FVECT v2, const FVECT v3) |
43 |
{ |
44 |
double vol; |
45 |
|
46 |
vol = v1[0]*(v2[1]*v3[2] - v2[2]*v3[1]); |
47 |
vol += v1[1]*(v2[2]*v3[0] - v2[0]*v3[2]); |
48 |
vol += v1[2]*(v2[0]*v3[1] - v2[1]*v3[0]); |
49 |
if (vol > .0) |
50 |
return(1); |
51 |
if (vol < .0) |
52 |
return(-1); |
53 |
return(0); |
54 |
} |
55 |
|
56 |
/* Is the given direction contained within the specified spherical triangle? */ |
57 |
int |
58 |
intriv(const int32 trid[3], const FVECT sdir) |
59 |
{ |
60 |
int sv[3]; |
61 |
FVECT tri[3]; |
62 |
|
63 |
decodedir(tri[0], trid[0]); |
64 |
decodedir(tri[1], trid[1]); |
65 |
decodedir(tri[2], trid[2]); |
66 |
sv[0] = vol_sign(sdir, tri[0], tri[1]); |
67 |
sv[1] = vol_sign(sdir, tri[1], tri[2]); |
68 |
sv[2] = vol_sign(sdir, tri[2], tri[0]); |
69 |
if ((sv[0] == sv[1]) & (sv[1] == sv[2])) |
70 |
return(1); |
71 |
return(!sv[0] | !sv[1] | !sv[2]); |
72 |
} |
73 |
|
74 |
/* Find leaf containing the given sample direction */ |
75 |
TRITREE * |
76 |
findleaf(TRITREE *node, const FVECT sdir) |
77 |
{ |
78 |
int i; |
79 |
|
80 |
if (isleaf(node)) |
81 |
return(intriv(node->gdv,sdir) ? node : (TRITREE *)NULL); |
82 |
for (i = 0; i < 4; i++) { |
83 |
TRITREE *chknode = &node->kid[i]; |
84 |
if (intriv(chknode->gdv, sdir)) |
85 |
return(isleaf(chknode) ? chknode : |
86 |
findleaf(chknode, sdir)); |
87 |
} |
88 |
return(NULL); |
89 |
} |
90 |
|
91 |
/* Initialize leaf with random sample inside the given spherical triangle */ |
92 |
void |
93 |
leafsample(TRITREE *leaf) |
94 |
{ |
95 |
RAY myray; |
96 |
RREAL wt[3]; |
97 |
FVECT sdir; |
98 |
int i, j; |
99 |
/* random point on triangle */ |
100 |
i = random() % 3; |
101 |
wt[i] = frandom(); |
102 |
j = random() & 1; |
103 |
wt[(i+2-j)%3] = 1. - wt[i] - |
104 |
(wt[(i+1+j)%3] = (1.-wt[i])*frandom()); |
105 |
sdir[0] = sdir[1] = sdir[2] = .0; |
106 |
for (i = 0; i < 3; i++) { |
107 |
FVECT vt; |
108 |
decodedir(vt, leaf->gdv[i]); |
109 |
VSUM(sdir, sdir, vt, wt[i]); |
110 |
} |
111 |
normalize(sdir); /* record sample direction */ |
112 |
leaf->sd = encodedir(sdir); |
113 |
/* evaluate at inf. */ |
114 |
VSUM(myray.rorg, scene_cent, sdir, scene_rad); |
115 |
VCOPY(myray.rdir, sdir); |
116 |
myray.rmax = 0.; |
117 |
ray_trace(&myray); |
118 |
scolor_colr(leaf->val, myray.rcol); |
119 |
} |
120 |
|
121 |
/* Initialize a branch node contained in the given spherical triangle */ |
122 |
void |
123 |
subdivide(TRITREE *branch, const int32 dv[3]) |
124 |
{ |
125 |
FVECT dvv[3], sdv[3]; |
126 |
int32 sd[3]; |
127 |
int i; |
128 |
|
129 |
for (i = 0; i < 3; i++) { /* copy spherical triangle */ |
130 |
branch->gdv[i] = dv[i]; |
131 |
decodedir(dvv[i], dv[i]); |
132 |
} |
133 |
for (i = 0; i < 3; i++) { /* create new vertices */ |
134 |
int j = (i+1)%3; |
135 |
VADD(sdv[i], dvv[i], dvv[j]); |
136 |
normalize(sdv[i]); |
137 |
sd[i] = encodedir(sdv[i]); |
138 |
} |
139 |
/* allocate leaves */ |
140 |
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE)); |
141 |
if (branch->kid == NULL) |
142 |
error(SYSTEM, "out of memory in subdivide()"); |
143 |
/* assign subtriangle directions */ |
144 |
branch->kid[0].gdv[0] = dv[0]; |
145 |
branch->kid[0].gdv[1] = sd[0]; |
146 |
branch->kid[0].gdv[2] = sd[2]; |
147 |
branch->kid[1].gdv[0] = sd[0]; |
148 |
branch->kid[1].gdv[1] = dv[1]; |
149 |
branch->kid[1].gdv[2] = sd[1]; |
150 |
branch->kid[2].gdv[0] = sd[1]; |
151 |
branch->kid[2].gdv[1] = dv[2]; |
152 |
branch->kid[2].gdv[2] = sd[2]; |
153 |
branch->kid[3].gdv[0] = sd[0]; |
154 |
branch->kid[3].gdv[1] = sd[1]; |
155 |
branch->kid[3].gdv[2] = sd[2]; |
156 |
} |
157 |
|
158 |
/* Recursively subdivide the given node to the specified quadtree depth */ |
159 |
void |
160 |
branchsample(TRITREE *node, int depth) |
161 |
{ |
162 |
int i; |
163 |
|
164 |
if (depth <= 0) |
165 |
return; |
166 |
if (isleaf(node)) { /* subdivide leaf node */ |
167 |
TRITREE branch, *moved_leaf; |
168 |
FVECT sdir; |
169 |
subdivide(&branch, node->gdv); |
170 |
decodedir(sdir, node->sd); |
171 |
moved_leaf = findleaf(&branch, sdir); |
172 |
if (moved_leaf != NULL) { /* bequeath old sample */ |
173 |
moved_leaf->sd = node->sd; |
174 |
copycolr(moved_leaf->val, node->val); |
175 |
} |
176 |
for (i = 0; i < 4; i++) /* compute new samples */ |
177 |
if (&branch.kid[i] != moved_leaf) |
178 |
leafsample(&branch.kid[i]); |
179 |
*node = branch; /* replace leaf with branch */ |
180 |
} |
181 |
for (i = 0; i < 4; i++) /* subdivide children */ |
182 |
branchsample(&node->kid[i], depth-1); |
183 |
} |
184 |
|
185 |
/* Sample sphere using triangular geodesic mesh */ |
186 |
TRITREE * |
187 |
geosample(long nsamps) |
188 |
{ |
189 |
int depth; |
190 |
TRITREE *tree; |
191 |
FVECT trunk[NTRUNKVERT]; |
192 |
int i, j; |
193 |
/* figure out depth */ |
194 |
if ((nsamps -= 4) < 0) |
195 |
error(USER, "minimum number of samples is 4"); |
196 |
nsamps = nsamps*(NTRUNKBR-1)/NTRUNKBR; /* round up */ |
197 |
for (depth = 0; nsamps > 1; depth++) |
198 |
nsamps >>= 2; |
199 |
/* make base tetrahedron */ |
200 |
tree = (TRITREE *)malloc(sizeof(TRITREE)); |
201 |
if (tree == NULL) goto memerr; |
202 |
trunk[0][0] = trunk[0][1] = 0; trunk[0][2] = 1; |
203 |
trunk[1][0] = 0; |
204 |
trunk[1][2] = cos(2.*asin(sqrt(2./3.))); |
205 |
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]); |
206 |
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.); |
207 |
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.); |
208 |
tree->gdv[0] = tree->gdv[1] = tree->gdv[2] = encodedir(trunk[0]); |
209 |
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE)); |
210 |
if (tree->kid == NULL) goto memerr; |
211 |
/* grow our tree from trunk */ |
212 |
for (i = 0; i < NTRUNKBR; i++) { |
213 |
for (j = 0; j < 3; j++) /* XXX works for tetra only */ |
214 |
tree->kid[i].gdv[j] = encodedir(trunk[(i+j)%NTRUNKVERT]); |
215 |
leafsample(&tree->kid[i]); |
216 |
branchsample(&tree->kid[i], depth); |
217 |
} |
218 |
return(tree); |
219 |
memerr: |
220 |
error(SYSTEM, "out of memory in geosample()"); |
221 |
return NULL; /* dummy return */ |
222 |
} |
223 |
|
224 |
/* Compute leaf exponent histogram */ |
225 |
void |
226 |
get_ehisto(const TRITREE *node, long exphisto[256]) |
227 |
{ |
228 |
int i; |
229 |
|
230 |
if (isleaf(node)) { |
231 |
++exphisto[node->val[EXP]]; |
232 |
return; |
233 |
} |
234 |
for (i = 0; i < 4; i++) |
235 |
get_ehisto(&node->kid[i], exphisto); |
236 |
} |
237 |
|
238 |
/* Get reasonable source threshold */ |
239 |
double |
240 |
get_threshold(const TRITREE *tree) |
241 |
{ |
242 |
long samptotal = 0; |
243 |
long exphisto[256]; |
244 |
int i; |
245 |
/* compute sample histogram */ |
246 |
memset(exphisto, 0, sizeof(exphisto)); |
247 |
for (i = 0; i < NTRUNKBR; i++) |
248 |
get_ehisto(&tree->kid[i], exphisto); |
249 |
/* use 98th percentile */ |
250 |
for (i = 0; i < 256; i++) |
251 |
samptotal += exphisto[i]; |
252 |
samptotal /= 50; |
253 |
for (i = 256; (--i > 0) & (samptotal > 0); ) |
254 |
samptotal -= exphisto[i]; |
255 |
return(ldexp(.75, i-COLXS)); |
256 |
} |
257 |
|
258 |
/* Find leaf containing the maximum exponent */ |
259 |
TRITREE * |
260 |
findemax(TRITREE *node, int *expp) |
261 |
{ |
262 |
if (!isleaf(node)) { |
263 |
TRITREE *maxleaf; |
264 |
TRITREE *rleaf; |
265 |
maxleaf = findemax(&node->kid[0], expp); |
266 |
rleaf = findemax(&node->kid[1], expp); |
267 |
if (rleaf != NULL) maxleaf = rleaf; |
268 |
rleaf = findemax(&node->kid[2], expp); |
269 |
if (rleaf != NULL) maxleaf = rleaf; |
270 |
rleaf = findemax(&node->kid[3], expp); |
271 |
if (rleaf != NULL) maxleaf = rleaf; |
272 |
return(maxleaf); |
273 |
} |
274 |
if (node->val[EXP] <= *expp) |
275 |
return(NULL); |
276 |
*expp = node->val[EXP]; |
277 |
return(node); |
278 |
} |
279 |
|
280 |
/* Compute solid angle of spherical triangle (approx.) */ |
281 |
double |
282 |
tri_omegav(const int32 vd[3]) |
283 |
{ |
284 |
FVECT v[3], e1, e2, vcross; |
285 |
|
286 |
decodedir(v[0], vd[0]); |
287 |
decodedir(v[1], vd[1]); |
288 |
decodedir(v[2], vd[2]); |
289 |
VSUB(e1, v[1], v[0]); |
290 |
VSUB(e2, v[2], v[1]); |
291 |
fcross(vcross, e1, e2); |
292 |
return(.5*VLEN(vcross)); |
293 |
} |
294 |
|
295 |
/* Sum intensity times direction for above-threshold perimiter within radius */ |
296 |
void |
297 |
vector_sum(FVECT vsum, TRITREE *node, |
298 |
FVECT cent, double maxr2, int ethresh) |
299 |
{ |
300 |
if (isleaf(node)) { |
301 |
double intens; |
302 |
FVECT sdir; |
303 |
if (node->val[EXP] < ethresh) |
304 |
return; /* below threshold */ |
305 |
if (fdir2diff(node->sd,cent) > maxr2) |
306 |
return; /* too far away */ |
307 |
intens = colrval(node->val,GRN) * tri_omegav(node->gdv); |
308 |
decodedir(sdir, node->sd); |
309 |
VSUM(vsum, vsum, sdir, intens); |
310 |
return; |
311 |
} |
312 |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
313 |
fdir2diff(node->gdv[0],cent) < maxr2 && |
314 |
fdir2diff(node->gdv[1],cent) < maxr2 && |
315 |
fdir2diff(node->gdv[2],cent) < maxr2) |
316 |
return; /* containing node */ |
317 |
vector_sum(vsum, &node->kid[0], cent, maxr2, ethresh); |
318 |
vector_sum(vsum, &node->kid[1], cent, maxr2, ethresh); |
319 |
vector_sum(vsum, &node->kid[2], cent, maxr2, ethresh); |
320 |
vector_sum(vsum, &node->kid[3], cent, maxr2, ethresh); |
321 |
} |
322 |
|
323 |
/* Claim source contributions within the given solid angle */ |
324 |
void |
325 |
claimlight(COLOR intens, TRITREE *node, FVECT cent, double maxr2) |
326 |
{ |
327 |
int remaining; |
328 |
int i; |
329 |
if (isleaf(node)) { /* claim contribution */ |
330 |
COLOR contrib; |
331 |
if (node->val[EXP] <= 0) |
332 |
return; /* already claimed */ |
333 |
if (fdir2diff(node->sd,cent) > maxr2) |
334 |
return; /* too far away */ |
335 |
colr_color(contrib, node->val); |
336 |
scalecolor(contrib, tri_omegav(node->gdv)); |
337 |
addcolor(intens, contrib); |
338 |
copycolr(node->val, blkclr); |
339 |
return; |
340 |
} |
341 |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 && |
342 |
fdir2diff(node->gdv[0],cent) < maxr2 && |
343 |
fdir2diff(node->gdv[1],cent) < maxr2 && |
344 |
fdir2diff(node->gdv[2],cent) < maxr2) |
345 |
return; /* previously claimed node */ |
346 |
remaining = 0; /* recurse on children */ |
347 |
for (i = 0; i < 4; i++) { |
348 |
claimlight(intens, &node->kid[i], cent, maxr2); |
349 |
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0) |
350 |
++remaining; |
351 |
} |
352 |
if (remaining) |
353 |
return; |
354 |
/* consolidate empties */ |
355 |
free(node->kid); node->kid = NULL; |
356 |
copycolr(node->val, blkclr); |
357 |
node->sd = node->gdv[0]; /* doesn't really matter */ |
358 |
} |
359 |
|
360 |
/* Add lost light contribution to the given list */ |
361 |
void |
362 |
add2lost(LOSTLIGHT **llp, COLOR intens, FVECT cent) |
363 |
{ |
364 |
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT)); |
365 |
|
366 |
if (newll == NULL) |
367 |
return; |
368 |
copycolor(newll->intens, intens); |
369 |
newll->sd = encodedir(cent); |
370 |
newll->next = *llp; |
371 |
*llp = newll; |
372 |
} |
373 |
|
374 |
/* Check lost light list for contributions */ |
375 |
void |
376 |
getlost(LOSTLIGHT **llp, COLOR intens, FVECT cent, double omega) |
377 |
{ |
378 |
const double maxr2 = omega/PI; |
379 |
LOSTLIGHT lhead, *lastp, *thisp; |
380 |
|
381 |
lhead.next = *llp; |
382 |
lastp = &lhead; |
383 |
while ((thisp = lastp->next) != NULL) |
384 |
if (fdir2diff(thisp->sd,cent) <= maxr2) { |
385 |
LOSTLIGHT *mynext = thisp->next; |
386 |
addcolor(intens, thisp->intens); |
387 |
free(thisp); |
388 |
lastp->next = mynext; |
389 |
} else |
390 |
lastp = thisp; |
391 |
*llp = lhead.next; |
392 |
} |
393 |
|
394 |
/* Create & print distant sources */ |
395 |
void |
396 |
mksources(TRITREE *samptree, double thresh, double maxang) |
397 |
{ |
398 |
#define MAXITER 100 |
399 |
const int ethresh = (int)(log(thresh)/log(2.) + (COLXS+.5)); |
400 |
const double maxomega = 2.*PI*(1. - cos(PI/180./2.*maxang)); |
401 |
const double minintens = .05*thresh*maxomega; |
402 |
int niter = MAXITER; |
403 |
int nsrcs = 0; |
404 |
LOSTLIGHT *lostlightlist = NULL; |
405 |
int emax; |
406 |
TRITREE *startleaf; |
407 |
double growstep; |
408 |
FVECT curcent; |
409 |
double currad; |
410 |
double curomega; |
411 |
COLOR curintens; |
412 |
double thisthresh; |
413 |
int thisethresh; |
414 |
int i; |
415 |
/* |
416 |
* General algorithm: |
417 |
* 1) Start with brightest unclaimed pixel |
418 |
* 2) Grow source toward brightest unclaimed perimeter until: |
419 |
* a) Source exceeds maximum size, or |
420 |
* b) Perimeter values all below threshold, or |
421 |
* c) Source average drops below threshold |
422 |
* 3) Loop until nothing over threshold |
423 |
* |
424 |
* Complexity added to absorb insignificant sources in larger ones. |
425 |
*/ |
426 |
if (thresh <= FTINY) |
427 |
return; |
428 |
while (niter--) { |
429 |
emax = ethresh; /* find brightest unclaimed */ |
430 |
startleaf = NULL; |
431 |
for (i = 0; i < NTRUNKBR; i++) { |
432 |
TRITREE *bigger = findemax(&samptree->kid[i], &emax); |
433 |
if (bigger != NULL) |
434 |
startleaf = bigger; |
435 |
} |
436 |
if (startleaf == NULL) |
437 |
break; |
438 |
/* claim it */ |
439 |
decodedir(curcent, startleaf->sd); |
440 |
curomega = tri_omegav(startleaf->gdv); |
441 |
currad = sqrt(curomega/PI); |
442 |
growstep = 3.*currad; |
443 |
colr_color(curintens, startleaf->val); |
444 |
thisthresh = .15*bright(curintens); |
445 |
if (thisthresh < thresh) thisthresh = thresh; |
446 |
thisethresh = (int)(log(thisthresh)/log(2.) + (COLXS+.5)); |
447 |
scalecolor(curintens, curomega); |
448 |
copycolr(startleaf->val, blkclr); |
449 |
do { /* grow source */ |
450 |
FVECT vsum; |
451 |
double movedist; |
452 |
vsum[0] = vsum[1] = vsum[2] = .0; |
453 |
for (i = 0; i < NTRUNKBR; i++) |
454 |
vector_sum(vsum, &samptree->kid[i], |
455 |
curcent, 2.-2.*cos(currad+growstep), |
456 |
thisethresh); |
457 |
if (normalize(vsum) == .0) |
458 |
break; |
459 |
movedist = Acos(DOT(vsum,curcent)); |
460 |
if (movedist > growstep) { |
461 |
VSUB(vsum, vsum, curcent); |
462 |
movedist = growstep/VLEN(vsum); |
463 |
VSUM(curcent, curcent, vsum, movedist); |
464 |
normalize(curcent); |
465 |
} else |
466 |
VCOPY(curcent, vsum); |
467 |
currad += growstep; |
468 |
curomega = 2.*PI*(1. - cos(currad)); |
469 |
for (i = 0; i < NTRUNKBR; i++) |
470 |
claimlight(curintens, &samptree->kid[i], |
471 |
curcent, 2.-2.*cos(currad)); |
472 |
} while (curomega < maxomega && |
473 |
bright(curintens)/curomega > thisthresh); |
474 |
if (bright(curintens) < minintens) { |
475 |
add2lost(&lostlightlist, curintens, curcent); |
476 |
continue; |
477 |
} |
478 |
/* absorb lost contributions */ |
479 |
getlost(&lostlightlist, curintens, curcent, curomega); |
480 |
++nsrcs; /* output source */ |
481 |
scalecolor(curintens, 1./curomega); |
482 |
printf("\nvoid illum IBLout\n"); |
483 |
printf("0\n0\n3 %f %f %f\n", |
484 |
colval(curintens,RED), |
485 |
colval(curintens,GRN), |
486 |
colval(curintens,BLU)); |
487 |
printf("\nIBLout source IBLsrc%d\n", nsrcs); |
488 |
printf("0\n0\n4 %f %f %f %f\n", |
489 |
curcent[0], curcent[1], curcent[2], |
490 |
2.*180./PI*currad); |
491 |
niter = MAXITER; |
492 |
} |
493 |
#undef MAXITER |
494 |
} |
495 |
|
496 |
int |
497 |
main(int argc, char *argv[]) |
498 |
{ |
499 |
long nsamps = DEF_NSAMPS; |
500 |
double maxang = DEF_MAXANG; |
501 |
TRITREE *samptree; |
502 |
double thresh = 0; |
503 |
int i; |
504 |
|
505 |
fixargv0(argv[0]); /* sets global progname */ |
506 |
|
507 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
508 |
switch (argv[i][1]) { |
509 |
case 'd': /* number of samples */ |
510 |
if (i >= argc-1) goto userr; |
511 |
nsamps = atol(argv[++i]); |
512 |
break; |
513 |
case 't': /* manual threshold */ |
514 |
if (i >= argc-1) goto userr; |
515 |
thresh = atof(argv[++i]); |
516 |
break; |
517 |
case 'a': /* maximum source angle */ |
518 |
if (i >= argc-1) goto userr; |
519 |
maxang = atof(argv[++i]); |
520 |
if (maxang <= FTINY) |
521 |
goto userr; |
522 |
if (maxang > 180.) |
523 |
maxang = 180.; |
524 |
break; |
525 |
default: |
526 |
goto userr; |
527 |
} |
528 |
if (i < argc-1) |
529 |
goto userr; |
530 |
/* start our ray calculation */ |
531 |
directvis = 0; |
532 |
ray_init(i == argc-1 ? argv[i] : (char *)NULL); |
533 |
VCOPY(scene_cent, thescene.cuorg); |
534 |
scene_cent[0] += 0.5*thescene.cusize; |
535 |
scene_cent[1] += 0.5*thescene.cusize; |
536 |
scene_cent[2] += 0.5*thescene.cusize; |
537 |
scene_rad = 0.86603*thescene.cusize; |
538 |
/* sample geodesic mesh */ |
539 |
samptree = geosample(nsamps); |
540 |
/* get source threshold */ |
541 |
if (thresh <= FTINY) |
542 |
thresh = get_threshold(samptree); |
543 |
/* done with ray samples */ |
544 |
ray_done(1); |
545 |
/* print header */ |
546 |
printf("# "); |
547 |
printargs(argc, argv, stdout); |
548 |
/* create & print sources */ |
549 |
mksources(samptree, thresh, maxang); |
550 |
/* all done, no need to clean up */ |
551 |
return(0); |
552 |
userr: |
553 |
fprintf(stderr, "Usage: %s [-d nsamps][-t thresh][-a maxang] [octree]\n", |
554 |
argv[0]); |
555 |
exit(1); |
556 |
} |
557 |
|
558 |
void |
559 |
eputs(const char *s) |
560 |
{ |
561 |
static int midline = 0; |
562 |
|
563 |
if (!*s) |
564 |
return; |
565 |
if (!midline++) { |
566 |
fputs(progname, stderr); |
567 |
fputs(": ", stderr); |
568 |
} |
569 |
fputs(s, stderr); |
570 |
if (s[strlen(s)-1] == '\n') { |
571 |
fflush(stderr); |
572 |
midline = 0; |
573 |
} |
574 |
} |
575 |
|
576 |
void |
577 |
wputs(const char *s) |
578 |
{ |
579 |
/* no warnings */ |
580 |
} |